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ABSTRACT

In reliability and lifetime studies, it is often impractical to observe the
failure times of all units in a sample, particularly when the process is time-
consuming or expensive. Type II censoring addresses this by terminating
the experiment after a predetermined number of failures from a total
sample of size. The Discrete Alpha Power Extended Inverted Weibull
distribution is particularly suitable for modeling such censored discrete
lifetime data. Its flexible shape parameters allow it to capture a wide
range of failure behaviors, including over-dispersion, which is common in
censored datasets. In this context, the likelihood function and estimation
procedures (maximum likelihood and Bayesian) explicitly account for the
censoring, ensuring unbiased parameter estimates and reliable predictive
inferences. Consequently, the Discrete Alpha Power Extended Inverted
Weibull distribution provides a practical and statistically robust frame-
work for analyzing discrete lifetimes under type II censoring.

1 Introduction
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According to [1], modelling using continuous lifespan distributions is a prominent topic in a
variety of domains, including economics, medicine, engineering science, and other closely connected
sciences. The gamma and exponential distributions are substituted discretely by geometric and
negative binomial distributions. These distributions, however, do not necessarily correlate to the exact
facts as seen. The requirement for more reliable discrete distributions that can reproduce discrete data
in a range of real-world circumstances has lately resulted in the discretization of various continuous

lifespan distributions in literature.
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Discreteization, or the act of condensing probability distributions of uncertainty into a limited
number of point masses, is a common task in decision analysis. Additional information is accessible
in [2].

When a decision analysis model contains a high level of uncertainty, determining the values
of numerous points in the distribution, let alone the true distribution, can be difficult or costly.
Discretization replaces difficult and computationally expensive integrations with the evaluation of
a small number of utilities in order to expedite computation and reduce the cost of computing some
counterparts. Reference [3] found that discretization considerably improves a decision analyst’s ability
to communicate with clients. Discretization enables the investigation and evaluation of judgments that
are incomprehensible to humans, even with increased processing capacity. The discretization process
can be thought of as two separate processes. The first stage involves selecting the points that are
relevant to discretization. These locations often indicate the original distribution’s percentiles. The
discretization method entails assigning a probability mass to each site in the second phase. Days
can be used to symbolize the length of life for individuals with brain tumors or, in survival studies,
the time it takes for remission to resume. Every second of the day, reliability engineers determine
whether a system is functioning properly. Observed data shows the number of time units successfully
completed prior to a breakdown. The count phenomenon can be observed in a variety of real-
world circumstances, including accident frequency, ecological species types, insurance claims, and
longevity data. In these cases, discrete distributions are quite beneficial for simulating lifespan data.
Discretization techniques are commonly used due to their utility. The probability distribution can be
made discrete by partitioning it into intervals based on values or cumulative distributions. Every time,
the mean or median is assigned a percentile. Finally, each interval is allocated a probability based
on its size. Choosing means and percentiles is another discretization strategy. Reference [4] provided
information on the odds that correspond to the original distribution’s moments.

There are many methods of optimization algorithms in engineering. One of the most popular
algorithms is the Shuffled Frog Leaping Algorithm (SFLA). In 2006, Eusuff and Lansey created it.
The advantages of particle swarm optimization and memetics are combined in the population-based
metaheuristic algorithm known as SFLA. Because of its simplicity of usage and small number of
variables, it has been applied in many fields, particularly engineering challenges. The algorithm has
undergone numerous enhancements to mitigate its shortcomings, whether these were produced by
alterations or hybridizations with other well-known algorithms, for more details see [5]. Also, one
of the more recent metaheuristic swarm intelligence techniques is the Chimp Optimization Algorithm
(ChOA). Because it has fewer parameters than other swarm intelligence techniques and doesn’t require
derivation knowledge for the first search, it has been widely adapted for a wide range of optimization
tasks. Additionally, it is straightforward, user-friendly, adaptable, scalable, and possesses the unique
capacity to achieve a favorable convergence by striking the correct balance between exploration and
exploitation throughout the search. As a result, in a relatively short period of time, ChOA has attracted
enormous audiences from a variety of areas and a great deal of research interest, see [6].

In reliability and lifetime studies, it is often impractical to observe the failure times of all units in
a sample, particularly when the process is time-consuming or expensive. Type II censoring addresses
this by terminating the experiment after a predetermined number of failures r from a total sample of
size n. The Discrete Alpha Power Extended Inverted Weibull (DAPEIW) distribution is particularly
suitable for modeling such censored discrete lifetime data. Its flexible shape parameters allow it to
capture a wide range of failure behaviors, including over-dispersion, which is common in censored
datasets. In this context, the likelihood function and estimation procedures (maximum likelihood and
Bayesian) explicitly account for the censoring, ensuring unbiased parameter estimates and reliable
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predictive inferences. Consequently, the DAPEIW distribution provides a practical and statistically
robust framework for analyzing discrete lifetimes under type II censoring, for more information on
this subject, see [7].

More papers used the discretization strategy to introduce discrete distribution as follows: Discrete
Poisson Quasi-XLindley distribution by [8]; discrete expansion of the Lindley distribution by [9];
bivariate exponentiated discrete Weibull distribution by [10]; overview of discrete distributions in
modelling COVID-19 data by [! 1]; discrete binomial exponential II distribution by [12], etc.

There are various ways for discretizing continuous distributions (see [12] for further details). The
most popular approach for calculating the discrete equivalent of a continuous distribution is shown
below. To understand more about this subject, go to [13]. If the survival function is present in the
underlying random variable X (SF), Sy(x) = P(X > x), then the probability mass function (pmf) of
the random variable (Y = [X], 1 argest integer less than or equal to X) exists.

PY =) =p(y <X <y+1)=pX = )—p(X > y+1) = S_X(3)—S_X(+1),y=0,1,2,.... (I)

The method described above generates a discrete distribution with the same functional form of
the SF as its continuous counterpart. This feature has an impact on a variety of reliability criteria.
This method is suitable for generating a discrete modification of the current continuous distributions.
Acquiring the entire data set may be difficult since time and cost constraints can cause issues with
data collection. Censored data is an example of incomplete data. The literature describes a range of
censoring approaches for these data sets. For more information on censoring systems, their extensions,
and analysis, see [14]. To derive relevant study conclusions and develop appropriate inferences, a precise
analysis of randomly censored lifespan data is required. These data are widely used in domains such as
biology, dependability research, and medical science. These data are frequently right-censored because
it is impossible to observe patients or study subjects until they die, or because patients may withdraw
from the study.

The DAPEIW model has several advantages over conventional one- or two-parameter distribu-
tions. Here are the primary objectives:

e Discrete distributions allow for numerous hazard rate forms, including decreasing and increas-
ing. The proposed model’s hazard rates make it suitable for modeling various data sets.

e This model can accurately model a variety of pmf forms, including positively skewed, negatively
and skewed data that other models may not. The article introduces many statistical and
reliability features, such as moments, probability functions, reliability indices, hazard functions,
and order statistics.

e The DAPEIW distribution performed well in the real-world application, performing other
discrete distribution models in literature.

e The proposed parameters are estimated using maximum likelihood and bootstrapping methods
with type II censored data.

e The proposed parameters are estimated using a Bayesian method with type II censored data.
e The four methods of the optimal test plan and the sensitivity analysis of the proposed model.

e Monte Carlo simulations evaluate the performance of acquired estimators based on accurate
metrics such as mean squared errors, mean absolute biases, and average interval length. Type 11
censoring is recommended for estimating unknown parameters, which appears reasonable.

The remainder of the essay is organized in this fashion. Section 2 explains the two-parameter
DAPEIW. In Section 3, we look at several significant distributional and reliability properties. In
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Section 4, we use maximum likelihood (ML) to estimate the DAPEIW distribution parameters with
type II censoring. Section 5 additionally includes the appropriate test approach for the given model’s
censoring technique. Section 6 includes a sensitivity analysis that presents an ideal technique based
on the asymptotic variances of maximum likelihood estimators. The Bayesian strategy for deriving
non-classical estimators is discussed in Section 7. Section & discusses a simulation investigation, which
supports the theoretical findings. While the concluding remarks are indicated in Section 10.

2 Discrete Alpha Power Extended Inverted Weibull
The continuous DAPEIW distribution’s SF is supplied by

S(x) =

“1(1—w”wﬂ,m¢>axzo. )

o —

Applying Eqs. (2) in (1) yields the probability mass function (pmf) of the DAPEIW distribution.

1 —(x - —x

p(x):—[ote<,+1><ﬂ_ae~V’]’xzo,]’z’,_‘, (3)
a—1

where o, ¢ > 0, are the shape parameters. The accuracy of the proposed PMF, > p (X =x) = 1, is

easily demonstrated.

F(x) = 1 - L (1 _a(ﬁ(‘wrl)i(ﬂil) >a>‘ﬂ > O,X == 0’ 1’2"“' (4)
a—1

3 The Distribution’s Structural Characteristics of the DAPEIW
3.1 Shape of the pmf

Valt is noted Fig. | that pmf has different types of shapes such as decreasing at « = 0.5and ¢ =
0.95, flat to slowly decreasing shape at « = 50 and ¢ = 1, highly concentrated at « = 20 and ¢ = 50,
strong right skewed shape at « = 2and ¢ = 10, right skewed shape at « = 3and ¢ = 2 and very flat
shapeatow = 0.1and¢ = 0.2.
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Figure 1: Pmf of the DAPEIW distribution with various
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3.2 Quantiles, Random Number Generation, Skewness, and Kurtosis
If x, is the ™ quantile of a discrete random variable, X, then P(X < x,) > uand P (X < x,) > l—u
are comparable; for further information, see [15]. The following follows from this outcome:

Theorem 1: The u"quantile Qu(u) has the distribution DAPEIW (a, ¢) given by

~1/¢
D) — x. H_ln(ln(l — A= (a—1) +1)] - 1],0< it )

Ina

where x, stands for the lowest integer that is greater than or equal to x,,.

Eq. (5) makes it easy to sample a uniform random number on U(0, 1), represented by
u, from the proposed distribution. In particular, the median is given as Qu(0.5) = x,5 =

—1/¢
[[_ln (ln(l ~ 0 @-1) 1)] ~ 1].
Ina

The well-known quantile-based formulas for skewness and kurtosis were created by [16,17]. What
sets these measures apart is their ability to be computed even for distributions lacking moments and
their reduced susceptibility to outlier effects. Reference [17] provided the following representation of
the skewness (Sk):

_ 0u(0.75) + Qu (0.25) — 2Qu (0.5)
N Qu (0.75) — Qu (0.25) ’

Sk

The Moors kurtosis (MKu), as proposed by [17], can be expressed as
~ Qu(0.875) — Qu(0.625) + Qu (0.375) — Qu (0.125)
N Ou (0.75) — Qu (0.25) '

MKu

The Sk and MKu for the DAPEIW distribution are easily calculated by applying Eq. (5) in the
previously described formulas.

3.3 Moments

According to [18,19] A probability distribution’s mean, variance, skewness, kurtosis, and other
characteristics are determined using the distribution’s moments. The following method can be used to
find the " raw moments of the DAPEIW distribution.

M, =E(x)=> (x+1" =x)(1-Fx)
=3 (=) (1= S (1)), ©

The first four raw moments of the DAPEIW distribution can be found using Eq. (6).

iM=Ew=3" (1 - (- a)) , ()
M,=E (xz) _ Zio Qx+1) (1 __* (1 _ ae—(x+1)—w_1)) ’ (8)

oa—1

N o] o —(x+1)7¢ _
M3:E(x3):Zx:0(3x2—|—3x+1) (l_a—l (1_af( b 1)), (9)
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< 00 o —(+1) 7Y
M= E(x) = (4 +6x" +4x+1) (1 - (1—a" 1)) (10)

o —

The variance of the DAPEIW distribution is

o= Zecen (1525 - ) [E( 550 ) |

x=0 x=l

We can rapidly find the skewness and kurtosis by using the raw moments from the following

relations (Egs. (7) and (10)):

M, — 3M,M, + 2M> M, — 4M, M, + 6 M, M> — 3M*

fo= 22 T2t S Mk = PRt T OSRA — O
[Var (x)] [Var (x)]

A method for figuring out if data is uniformly, unevenly, or too spread is the index of dispersion,
or ID. ID > 1 indicates over-dispersion, /D < 1 indicates under-dispersion, and /D = 1 indicates
equi-dispersion. The proposed model’s ID is as follows:

D Var (x) >, 2x+ 1) (1 - (1 _ aﬂwlrw_l)) _ [Zio (1 - (1 _ ae*(erl)*‘ﬂ_l))]Z
R s (- = (1ma ) -

When comparing the variability of two independent samples, the coefficient of variation (CV),
a relative measure of variability, is frequently utilized. Greater variability is indicated by a high CV
value. One may compute the CV for the DAPEIW distribution using
v — Var (x)*’
E(x)

[Z,‘fo et (15 (1)) = [20 (1 -2 (1 “H))H
> (1 s (1 _ ae—<x+l>*w,1))

Since the previously provided equations do not have a closed form, we use the R software to
statistically illustrate these properties. The DAPEIW distribution’s mean, variance, skewness, kurtosis,
ID, and CV for various parameter choices are shown numerically in Table 1.

Table 1: Data summarized of DAPEIW distribution

a @ min QI Median Mean SD Q3 Max SK KT
04 O 0 1 5149 6,6076 8 932,860 13.94467  196.2423
0.7 0 0 1 22 187 3 2578 12.96567  176.3107
1 0 1 1 4 19 2 244 11.04864  137.744
1.3 0 1 1 2 6 2 69 8.980285  99.50716
04 1.6 O 1 1 2 3 2 31 7.266351  70.53949
1.9 0 1 1 2 2 2 18 6.050247  52.41209
22 0 1 1 1 1 1 12 5.169665  40.48558
(Continued)
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Table 1 (continued)

a @ min Q1 Median Mean SD Q3 Max SK KT
25 0 1 1 1 1 1 9 4.672272  33.14254
2.8 1 1 1 1 1 1 7 4.183042  26.51089
04 0 0 2 15403 197,875 20 2,793,632 13.94566  196.2616
07 0 1 2 41 350 5 4825 12.97321  176.4585
1 0 1 1 6 29 3 379 11.06404  137.9992
1.3 0 1 1 3 8 2 96 8.979558  99.17135
09 1.6 0 1 1 2 4 2 41 7.295549  70.78636
1.9 0 1 1 2 2 2 23 6.029836  52.03819
22 0 1 1 2 1 2 15 5.119046  40.05089
25 0 1 1 1 1 2 11 4.525434  32.26369
2.8 1 1 1 1 1 2 8 3.745224  22.28402
04 0 1 4 28,680 368,542 35 5,203,159 13.94592  196.2667
07 0 1 2 59 499 7 6884 12.97522  176.4992
1 0 1 2 8 37 4 486 11.07319  138.1682
1.3 0 1 1 4 10 3 117 8.997849  99.44464
1.5 1.6 0 1 1 2 4 2 48 7.235074  70.21758
1.9 0 1 1 2 2 2 26 5.975518  51.1959
22 0 1 1 2 2 2 17 5.006059  38.67084
25 0 1 1 2 1 2 12 4.330437  30.30449
2.8 1 1 1 1 1 2 9 3.67214 22.72008
04 0 1 7 61,236 787,006 70 11,111,152 13.94606  196.2695
0.7 0 1 3 90 770 11 10,621 12.97611  176.5167
1 0 1 2 11 50 5 658 11.06653  138.0055
1.3 0 1 2 5 12 4 147 8.974529  99.05028
3 16 0 1 2 3 5 3 58 7.223306  69.93326
19 0 1 1.5 2 3 2 30 5.733662  47.8913
22 0 1 1 2 2 2 19 4.833843  36.20182
25 1 1 1 2 1 2 13 4.043865  26.72298
28 1 1 1 2 1 2 10 3.528242  21.35026

3.4 The Survival and Hazard Rate Functions
The SF and hrf of the DAPEIW distribution are supplied by

S(x)=p(sz)=L(1—ae“*_‘”-l),xzo,l,z,...,
oa—1

1 |: —x+)T? XY
— 1 o — :|
h(x)=p(X =x]X > x) =<

)
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SCIPEDIA

Itisclearin Fig. 2 that hrf has different types of shapes such as decreasingat o = 0.5and ¢ = 0.95,
gradually decreasing shape at « = 50and¢ = 1, extremely peaked at « = 20and¢ = 50, very
steep peak at « = 2and ¢ = 10, right skewed shape at « = 3and¢ = 2and small peak shape at
a=0.landyp =0.2.
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Figure 2: Hrf of DAPEIW distribution with different values

The proposed distribution is more flexible to evaluate a wide range of data than both traditional
and recently published models because of the different forms of hrf. The second rate of failure (srf)
and reversed hazard rate function (rhrf) of the proposed model are also analyzed.

1 I:aef(.wrl)*‘/’ _ a(fxf‘ﬂ]
rh(x)=p(X =x|X <x)=2=1% —Cix =012,

— e -1

! a—1 (1 * )
o _——

l—a" !

S(x) o[—l( )

=] | = x=0,1,2,....

oa—1

Table | reports summary statistics for the DAPEIW across selected parameter values. Figs. 3 and 4
show that the central location (mean/median) is relatively stable, while dispersion and tail metrics
(SD, CV, skewness, kurtosis, ID) change markedly with the parameters: smaller parameter values
produce larger variance and pronounced right-skewed heavy tails, whereas larger values yield more
concentrated, less skewed behavior.
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Figure 4: Data summarized (SK, KT, ID) of DAPEIW

3.5 Mean Past Life Function

The anticipated inactivity time function, also known as the mean past life function (MPL), is
represented by the symbol M* (7). If the system failed before ¢, this function calculates the amount of
time that has passed since X failed. Among its uses are forensic science, survival analysis, actuarial
research, and dependability theory. In a discrete context, the MPL function is defined as

M*(t):E(t—X|X<t):ﬁZF(j—l);tzl,Z,l...

It just takes to obtain the MPL for the proposed model to change the cdf in Eq. (4) to M* (¢) in
the formula.

3.6 Parameter of Stress-Strength

The stress-strength (SS) parameter is defined as the probability R = P[X > Z] and is used as
a measure of component reliability. The SS model describes the life of a component with random
strengths X and random stresses Z. A component fails quickly if the applied stress exceeds its strength;
else, it functions as intended. The SS system paradigm is useful in many domains, such as psychology,
engineering, and medical science. The analysis of SS models provided by [20] is extensive. The SS

https://www.scipedia.com/public/Alotaibi_et_al_2026 9
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reliability for discrete independent random variables, X and Z, is defined as
R=p(X>2)=2 pr0Fx.

When X and Z, the independent discrete random variables, are represented as py (x) and F, (x),
respectively, by the pmf and cdf. It is necessary to consider the real values X ~ DAPEIW («,, ¢,) and
X ~ DAPEIW (w,, ¢,). Next, we apply Eqs. (3) and (4) as follows:

o 1 DT 07
R:szom[aIH —a ] (11)

We used the R, “base” programme to measure this feature because it was challenging to specify
the SS dependability, R, in this case. Refer to Fig. 5 for additional details.

Figure 5: Stress-strength reliability of DAPEIW

3.7 Entropy

According to information theory, a random variable’s entropy is the average amount of “infor-
mation,” “surprise,” or “uncertainty” included in the various outcomes. According to [21], the Renyi
entropy (RE) is an important entropy. In many domains, including physics, econometrics, statistical
inference, pattern recognition in computer science, and econometrics, it is a crucial indicator of
complexity and uncertainty. The RE for DAPEIW distribution can be expressed as (§ > 0,8 # 1).

1

RE (p) = +—log >~ p(x).

) = 1 A —
:mlog;{m[a T o ”

As a special example of RE, the well-known Shannon entropy (SE) can be calculated as § — 1,
where SE = —E[logp (x)].

3.8 Order Statistics
Particularly in survival analysis, order statistics are crucial for evaluating population traits
and determining tolerance intervals for distributions. X}, X5, ..., X, are random sample (RS) taken
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from the DAPEIW («, ¢) is assumed. Assign the corresponding order statistics’ representation to
Xy, Xy, - -+ » Xi- Let us thus argue that the cdf of the " order statistic is given by & = X|,,.

por= X () ron-ror =3 () () o
XL () ) "

The PMT that corresponds to the r* order statistics is

n n—i i (n n—i o DT el
F,(z?)=Fr(z§‘)—F,(z9—1)=Zi:rzl_:0(—1) (l)( i )|:a—1 (1_a (e+) )]
n n—i cfn\ (n—1i o D™ a
XL () () [FE 0] 0

Bysettingr = landr = nin Eq. (13), (X4, Xo), - . ., X)) and max (X, X, . .., X, ), respectively,
have pmfs that we can acquire.

4 Maximum Likelihood Method

The maximum likelihood approach is one of the most often used traditional point estimate
methods. The location in the parametric space where the likelihood function is maximized is known
as the maximum likelihood estimate. Its logic is so adaptable and simple that statistical inference now
follows this standard process. This section provides the maximum likelihood estimators (MLEs) of
the model parameters. The cdf in Eq. (4) and the related pmf in Eq. (3) are used to determine the
probability function of the two parameters based on the type-II censored sample.

L) [ peiser,

Lo o[ e e ] [ (1)) (14

The logarithm of «, and ¢, or £ of the probability function, is as follows:

r 1 —(x+1 ¢ X o XY _
chlnH”a_l[of(” —af w]+(n—r)ln|:a_1(1—a <pl)],

£ o —riln (O( — 1) + z' In |:ae(~“,'+1)w _ ae—xi_‘/’:| + (n — }") In |: @ ; (1 — a(’—x;'_“’_l)] . (15)
i=1 o —

Regarding the unknown parameters, we have the following derivatives of £:

— —(x; —v_ _ —x; TP —
o r_ L Z o Cir) e () T e e n (n—r)
oo - (a — 1) i=1 ae—(x,-+l)7<p . aefxi*(ﬂ o
A
_ e Xr _ 1
_=n oy (e ) (16)
a—1

(1 — a“*"'"_w”) ’
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¢ (i)™ ~(xt1)7* -9 it ()7 —
W e e (xi+ D7 log(x; + 1) —a" e (x))" log (x;)
8(p i=1 ayi(xi+1)_(p _ aef'vi_(p

" _ _ —)® —0
+oc mn—r@—-1e (x,)“log (x,.)' (17)

o (1 — ae_x’w*l)

We currently possess a set of nonlinear equations where the parameters o and ¢ are unknown. It
is evident that finding the closed-form solution is challenging. As a result, an iterative technique like
Newton-Raphson may be able to find a numerical solution for the nonlinear system mentioned above.

Bootstrap Confidence Interval

The bootstrap methodology is a generic resampling technique for estimating statistical distri-
butions based on independent observations. It was first established by [22]. As an alternative to
asymptotic methods, the bootstrap methodology is becoming increasingly popular due to its shown
effectiveness in a range of settings. Here, we use the following methods to generate the percentile
bootstrap and bootstrap-t confidence intervals for o and ¢:

1) Percentile Bootstrap Confidence Interval (B-P)
1. Determine 7 = («, ¢)’s MLE.

ii. To get the bootstrap estimate of « say @’, and ¢ say ¢’, a bootstrap sample was generated

using 7.
iii. To obtain (&"",&"?,...,a"®) and (¢"","®,...,@"®), repeat step (ii) B times.
iv. As (a",&"®,...,&"®)and (¢"",9"?, ..., ¢"®) inascending order as (&"", &', ..., &"?)

and ( b(l) ()517(2)’ o, (pbua))’ respectively.

: o ’ ) . !
v. For the unknown parameters « and the two side percentile bootstrap confidence
interval is as follows: {@"#@/21, GME(=2/21} and {HE@/], gHea-2/1}

2) Bootstrap-t Confidence Interval (B-T)
1. like Boot-p’s steps (i—ii)

ii. After obtaining the Fisher information matrix, compute the t-statistic of 7 = («, ¢) as
T = (7" —7)/y/V (#) where V' (") is the asymptotic variances of 7".
iii. To obtain 7", T, ..., T, repeat step ii B several times.
iv. 7O, T, ..., T® should bearranged as 7", T, . .., T® in ascending order. 100 (1 — @) %.
v. For the unknown parameters « and ¢, the two-side 100 (1 — @)% percentile

bootstrap-t confidence interval is {& + TEER [V (&), 6 + T2 [V (&)} and

{(/3 + 1R [V (§),¢ + Twa-2m [y (@)}-

5 Optimal Test Plan

Finding the best censoring strategy has received a lot of attention lately in statistical literature; for
further information, read [23]. Finding the type II censoring scheme that offers the most information
about the unknown parameters among all the schemes that are available is the first step towards
choosing the optimal sampling method for a given n and r. The creation of unknown parameter
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information measures based on type II censored data and the comparison of two different information
measures based on two different type II censoring procedures are the first and second issues,
respectively; for further details, refer to [24]. Some of the optimality criteria applied in this case are
discussed in the next section of the study. Refer to [25] for more information. Our goal is to choose
the filtering approach that yields the most insights into the unknown parameters. In this case, Table 2
offers a variety of commonly used metrics to help us choose the best censoring strategy, Op; Technical
Requirements.

Table 2: Demonstrates several useful best practices for censoring plans

Criteria Techniques

Op, Maximize trace [I,,, (.)]

Op, Minimize trace [1,., ()]

Op; Minimize det [, ()]

Op, Minimize Var [log (7,)] .0 <u <1

For Op,, it is optimal to maximize the observed Fisher information, I,,, (.) values. Moreover, we
like to decrease the determinant and trace of [I,,, (.)]”' for criterion Op, and Op;. Scale-invariant cri-
teria may be used to determine the best censoring strategy for distributions with multiple parameters.
Scale invariant criteria can be used to compare numerous criteria when working with single-parameter
distributions, however comparing the two Fisher information matrices becomes more difficult when
dealing with unknown multi-parameter distributions Op,. The p-dependent criteria tend to reduce
the variance of the logarithmic MLE of the p-th quantile, log (?u) , Op, Consequently, at time 7,, the
logarithmic of the DAPEIW distribution is determined by

—-1/e
log (3,) = H—ln (l”(l —d-we-, 1)] _ 1] O<u<l, (18)

Ino

Using the delta technique to Eq. (4), one may determine the approximation variance for log (?p)
of the DAPEIW distribution.

Var (log (1,)) = [Viog (?l,)]T L (a,¢)[Vieg(1,)].

where

[Viog (?u)]r = [% log (2.) » % log (?w)]

(it

The optimal censoring for i = 2, 3, and 4 is represented by the maximum value of criterion Op;
and the lowest value of criterion Op,. On the other hand, the optimal censoring is represented by the
largest value of the criterion Op, and the lowest value of the criteria Op;, where i = 2, 3, 4.

6 The Sensitivity Analysis

The best time to change stress is shown in this section. It is based on the asymptotic variances
of maximum likelihood estimators. The inverse Fisher information matrix’s diagonals are used to
compute these variances. Rather than depending on the sum of parameter variances which reference
[26] suggested and used, we use the sum of coefficients of variations (SCV) as the best criterion. The
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technique presented by [26] minimizes the expected value of SCV to create an optimal plan, because
the sum of variances can change based on the scale of parameter values.

Thus, E (¢ (x)) is maximized, where
/F—l /F—l
(l) (X) — &ll + @22 .

On the other hand, it might not be possible to compute exact closed forms for the posterior
variances of parameters. Reference [26] advised computing using the following Gibbs sampling
method:

First, create samples U with the specified n and parameter values.

Step 2: Create the selected sample using the specified r size.

Step 3: Calculated parameters using Type-II cenosred samples ().

Step 4: Determine the target function ¢ (X).

Step 5: N times through Steps 1 through 4, you will obtain ¢' (x), ¢* (X), ..., d" (x).

Step 6: Determine the objective functions’ median and write it as ¢ (X).

7 Bayesian Approach

Our primary interest in this case is the Bayes estimate for the unknown parameters. Prior to
initiating the Bayesian analysis, the unknown parameters must be specified. For the purposes of this
analysis, it is assumed that the parameters ¢ and « have independent gamma priors and are statistically
independent. The form of the linked joint prior is as follows.

T, (a’q)) 10’4 awl—l(pwz—le—ugaﬂ%(p’ (19)

where the pre-established hyperparameters, j = 1,2,3, and 4 represent the prior knowledge of
the unknown parameters, and w; > 0. The resulting unknown parameters’ cumulative posterior
distribution will be:

b4 (oz, <p|g) x 1 (o, @) H; H]n;lf (tf,») (1 —F ([U))"" ) (20)

It should be emphasized that inferring posteriors of the model parameter is difficult due to the
structure of the joint posterior in Eq. (20). We use Markov chain Monte Carlo (MCMC) techniques to
provide posterior samples of the unknown parameters required for posterior inference. The collected
samples will be utilized to construct the associated credible ranges for the highest posterior density
(HPD) and approximate Bayes estimates for the unknown parameters; see [27] for more information.
From the current analysis, the following Bayes estimates of the unknown parameters under the
symmetric squared loss function (SLF) were obtained:

C(@,@) = @—a) L9 =09, (21)
where the variables &, and ¢ display the predicted posterior means of «, and ¢.

Because the joint posterior for o, and ¢ have no closed-form expression, it cannot be sampled
directly by standard methods. Therefore, we implement a Metropolis—Hastings (M—H) sampler using
a Gaussian random-walk proposal to draw samples from the posterior density. The algorithm is as
follows:
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Start by initializing an initial estimate, denoted as ®© = (@, ¢).
e Initialize the iteration counter j<«1.
e Draw a proposal ®* from the Normal proposal distribution ¢(®) = N ((:), var(©)).
e Evaluate the acceptance probability for the proposed ©*, as

7 (o, @' |data) q (o) i
" (2, @ |data) g (@)

A (o', o) = min
7 (¢*, " |data) q (¢*) |

A, ¢") = mi
e =min | 1 dataya 5

and repeat this probability for all parameters to obtain A (o', a*), and 4 (¢!, ¢*).
e Generate a sample from a uniform distribution, i.e., u ~ U (0, 1).

L <4 (aﬂ"’l,a*) accepto* = of nd 1t <4 (gof",go*) accept ¢* = ¢/
u<A(e' o) acceptar =ao"’ u<A(@ ") accepty = ¢!

e Increment the iteration index: j =j + 1, and repeat steps 2—5 M times until obtaining M samples,
resulting in (&', ") fort =1, 2,..., M. We'll discuss simulation study next.

8 Simulation

In this section, we conduct Monte Carlo simulations (MCS) to evaluate the performance of

the proposed estimators for the parameters «, and ¢ introduced in Sections 4-7. We will conclude
by outlining the simulation setup. Subsequently, the results of the simulations will be presented for
discussion.

8.1 Simulation Scenario

In this subsection, we conduct several MCS studies to evaluate the effectiveness of the obtained

maximum likelihood estimates and Bayesian estimation for the parameters o, and ¢ of DAPEIW basde

on Type-II censored samples. We propose the following steps to obtain a sample from the DAPEIW

model:

e Set o, and ¢ to their actual values as follows:

InTable3:a =2, p =05and o =2,¢ = 2.
InTable4:a =12, =0.5and o = 3,¢ = 0.5.

e Determine specific values for n (total test units) as 50, 100, 200, and the censored size for r as
30, 40, 50 when n = 50, r = 70, 90, 100 when n = 100, and r = 150, 180, 200 when n = 200.

e Generate a uniform random variable within the range of 0 to 1. Utilize the quantile function
described in Eq. (5) to generate a random sample from the DAPEIW distribution. Then, round
the number of samples to the nearest whole number.

e Calculate the maximum likelihood estimates and $100(1-\gamma)$\% confidence intervals
using the ‘optim’ function in R with the Fisher information matrix (Hessian Matrix).

e Use the ‘coda’ package to obtain Bayesian inferences by running the MCMC sampler 12,000
times with a burn-in of 2000 iterations.
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e Repeat the above steps 15,000 times.

e Compute the relative bias (RB), mean squared errors (MSE), average lower and upper bounds,
and coverage probability (CP) of the parameters for each group ($n$ or actual value of
the parameter). We specifically determine these metrics to compare interval estimates, with
emphasis on meeting the CP requirement in our evaluations.

All numerical analyses are conducted using the R 4.2.2 programming language. Tables 3 and 4
present the numerical findings for «, and ¢, respectively, and Tables 5 and 6 indicate the optimal
censoring test plan of our suggested model at various values of o and ¢.

Table 3: RB, MSE, and CI for parameters of DAPEIW distribution based on Type-II censored samples

a=2
a=2 MLE Bootstrap Bayesian
¢ n m RB MSE LACI CP LBP LBT RB MSE LCCI
30 ¢ 0.0168 0.1261  1.7198  94.62%  0.2010  0.2012  0.00358  0.03213  0.84138
¢ 0.0049 0.0008 0.1486 95.19%  0.0198 0.0200 0.00179  0.00054  0.13044
s0 40 © 0.0061 0.0383  0.7575 95.61%  0.1880 0.1927 0.00149 0.01139 0.37624
¢ 0.0017 0.0002 0.0589 95.90% 0.0144 0.0145 0.00049 0.00008 0.03575
50 ¢ 0.0026  0.0102 0.3109 96.10% 0.1166  0.1164 0.00059 0.00414  0.24318
¢ 0.0008 0.0001 0.0303 96.70% 0.0113 0.0112  0.00008  0.00005  0.01250
0 Y 0.0114 0.0554 0.9443 95.30% 0.1196 0.1195 0.00328 0.02563  0.59197
¢ 0.0032 0.0003 0.0826 94.12%  0.0106 0.0105 0.00130 0.00025 0.06469
05 100 90 0.0048  0.0200 0.4272 95.40% 0.1101 0.1115 0.00126  0.00794  0.26473
’ ¢ 0.0011 0.0001 0.0323 94.70%  0.0079 0.0078  0.00030  0.00003  0.01689
100 ¢ 0.0028  0.0100 0.2617  96.60%  0.1038  0.0990 0.00056  0.00415 0.19642
¢ 0.0006 0.0000 0.0211 95.30% 0.0077 0.0076  0.00007 0.00002  0.00828
150 ¢ 0.0123  0.0461 0.8818 94.58%  0.1123  0.1117 0.00315 0.02310 0.43735
¢ 0.0029 0.0002 0.0552 95.30% 0.0071 0.0070 0.00110 0.00017  0.03826
200 180 © 0.0053  0.0193  0.4096 95.70%  0.1029 0.1003 0.00124 0.00746  0.22873
¢ 0.0012 0.0001 0.0261 96.20%  0.0066 0.0066 0.00030 0.00003  0.01320
200 @ 0.0019  0.0052 0.2013  96.70%  0.0750  0.0745 0.00053 0.00311 0.14561
¢ 0.0005 0.0000 0.0141 96.58% 0.0053 0.0053 0.00006 0.00002 0.00568
30 Y 0.0175 0.4940 3.6677 93.62% 0.2629 0.2613  0.00715  0.13898  0.99425
¢ 0.0074 0.0025 0.3317 95.10% 0.0520 0.0519 0.00098 0.00181 0.16718
s0 40 ¢ 0.0095 0.2969 2.6102 94.20%  0.2533  0.2527 0.00334 0.09397 0.50704
¢ 0.0052 0.0014 0.1010 96.10%  0.0310 0.0305 0.00036 0.00049  0.06657
50 ¢ 0.0062 0.1907 19712 96.28%  0.2344  0.2324 0.00188  0.05198  0.36310
¢ 0.0020 0.0009 0.0744 97.64% 0.0306 0.0305 0.00007 0.00041 0.03305
0 Y 0.0150  0.4065 3.4952  94.50%  0.6655 0.6606 0.00815 0.09411 0.97520
¢ 0.0061 0.0015 0.1278 93.67%  0.0294 0.0281 0.00083  0.00116  0.09242
5 10090 ® 0.0087 0.2928  2.5197 95.60%  0.6518 0.6508 0.00390 0.08527 0.51712
¢ 0.0025 0.0007 0.0842  96.96%  0.0263 0.0263  0.00026  0.00025  0.04424
100 “ 0.0056 0.1694 13766 97.36%  0.6414 0.6408 0.00232 0.02865 0.36570
¢ 0.0011 0.0005 0.0517 97.57% 0.0239 0.0238  0.00007 0.00013  0.02233

(Continued)
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Table 3 (continued)

a=2 MLE Bootstrap Bayesian
 n m RB MSE LACI CP LBP LBT RB MSE LCCI
150 @ 0.0174 0.3970 3.4533  96.00%  0.9230 0.9151 0.00784  0.09129  0.96936
¢ 0.0003 0.0012 0.0620 93.20%  0.0109 0.0104 0.00067 0.00092  0.05557
200 180 © 0.0087 0.2834 2.5148 96.90%  0.8013 0.7956  0.00384 0.06188  0.47600
¢ 0.0002 0.0004 0.0540 94.70% 0.0107 0.0102 0.00023 0.00022  0.03085
200 @ 0.0057 0.1236  1.0419 97.30%  0.7479  0.7207 0.00233  0.02344  0.33069
¢ 0.0002 0.0002 0.0394 96.80% 0.0097 0.0096 0.00006 0.00003 0.01729

Table 4: RB, MSE, and CI for parameters of DAPEIW distribution based on Type-II censored samples
¢ =0.5

¢ =0.5 MLE Bootstrap Bayesian

o n m RB MSE LACI CP LBP LBT RB MSE LCCI
30 ¢ 0.0223 0.0858  1.4238 94.08% 0.1803 0.1788 0.00219 0.00543  0.52402
¢ 0.0054 0.0010 0.1736  94.60%  0.0218 0.0216  0.00053  0.00066 0.07527
50 40 © 0.0091 0.0297 0.6224  94.60%  0.1582 0.1597 0.00097 0.00210 0.24054
¢ 0.0019 0.0003 0.0688 95.40% 0.0169 0.0171 0.00018 0.00016 0.02637
50 “ 0.0046 0.0124 0.3609 95.40%  0.1405 0.1392 0.00061 0.00133 0.16191
¢ 0.0009 0.0001  0.0351 95.70% 0.0141 0.0139 0.00009 0.00006 0.01353
0 ¢ 0.0164 0.0421 0.8598 94.40% 0.1143  0.1150 0.00195 0.00412 0.45491
¢ 0.0041 0.0005 0.1108 95.30% 0.0146 0.0144 0.00040 0.00031 0.04444
12 10090 0.0078 0.0192 0.4124 96.10% 0.1061 0.1055 0.00088 0.00170 0.20289
) ¢ 0.0016 0.0001  0.0365 95.82%  0.0090 0.0089 0.00014 0.00007 0.01499
100 ¢ 0.0046 0.0109 0.2894 96.70%  0.1047 0.1048 0.00054 0.00108 0.13666
¢ 0.0009 0.0001  0.0247 96.90% 0.0089 0.0088 0.00008 0.00005 0.00903
150 ¢ 0.0183 0.0418 0.7319 94.26%  0.0934 0.0933 0.00189 0.00355 0.38546
¢ 0.0041 0.0004 0.0675 94.00% 0.0087 0.0087 0.00035 0.00002 0.02805
200 180 ¥ 0.0076 0.0168 0.3247 94.50%  0.0838 0.0839 0.00080 0.00130 0.16038
¢ 0.0016 0.0001  0.0300 95.30% 0.0080 0.0080 0.00013 0.00001 0.01131
200 ¢ 0.0041 0.0093 0.2904 97.10% 0.0711 0.0701 0.00053 0.00091 0.12064
¢ 0.0007 0.0001 0.0223  98.20% 0.0079 0.0078 0.00007 0.00001 0.00716
3 50 30 o 0.0920 2.8922  1.0748 90.00%  0.1487 0.1429 0.00529 0.06744 1.02261
¢ —0.0015 0.0026 0.2590 89.30% 0.0327 0.0312 0.00040 0.00081 0.08820
a0 ¢ 0.0459 1.4882 1.0152 94.87% 0.1389 0.1392 0.00249 0.03015 0.50094
¢ —0.0004 0.0007 0.1306 96.40% 0.0323 0.0304 0.00014 0.00025 0.07172
50 “ 0.0338 1.1854 0.7863 95.38% 0.1293 0.1293 0.00146 0.01616  0.37690
¢ 0.0003 0.0007 0.1110 96.57%  0.0314 0.0300 0.00014 0.00021 0.03910

(Continued)
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Table 4 (continued)

¢ =0.5 MLE Bootstrap Bayesian

@ n m RB MSE LACI CP LBP LBT RB MSE LCCI
70 ¢ 0.0778 2.6169 1.0575 90.00% 0.8630 0.8726 0.00601 0.05847 0.95415
¢ —0.0017 0.0025 0.2455 91.00% 0.0657 0.0652 0.00038 0.00080 0.12284
100 90 0.0607 1.4566  0.9806 93.80% 0.3891 0.3901  0.00295 0.02941  0.50607
¢ 0.0003 0.0004 0.1038  94.20%  0.0259 0.0258  0.00009 0.00010 0.04469
100 © 0.0415 1.0800 0.7167 95.20% 0.3891 0.3879 0.00186 0.01248  0.35552
¢ 0.0002 0.0004  0.0802  95.40% 0.0250  0.0241  0.00002  0.00009  0.02549
150 ¢ 0.0829 2.3907 1.0063 93.30% 0.2647 0.2660 0.00717 0.05118  0.93278
¢ —0.0018 0.0021 0.1234 93.20% 0.0159 0.0157 0.00031 0.00052 0.07185
200 180 ¥ 0.0497 1.0820 0.9391 94.00% 0.2577 0.2562 0.00361 0.02600 0.46767
¢ 0.0002 0.0002 0.0815 94.40% 0.0142 0.0141 0.00010 0.00010 0.03119
20 ¢ 0.0374 0.9672  0.5961  96.10% 0.1954 0.1946 0.00228 0.01136  0.32369
¢ 0.0001 0.0001  0.0567 95.70% 0.0132  0.0130 0.00004 0.00005 0.01843

Table 5: Optimal censoring plan o = 2

0 n r Op, Op; Op, Op, SCv
30 5.7093 0.0781 75.4750 2,155,286.3797 0.1122
50 40 3.5000 0.0284 132.2146 1,400,544.4415 0.0622
50 2.1232 0.0113 182.8653 1,277,617.5400 0.0333
70 2.0915 0.0097 210.9447 1,303,100.2700 0.0738
0.5 100 90 1.6317 0.0050 322.6098 1,182,794.3518 0.0437
100 1.3617 0.0036 367.9124 948,854.2386 0.0313
150 1.1919 0.0025 481.4671 1,258,549.9318 0.0661
200 180 1.0044 0.0016 638.8245 1,183,115.4067 0.0426
200 0.3903 0.0005 753.4463 752,456.1509 0.0228
30 61.3673 4.3070 15.1875 10.1720 0.1842
50 40 60.2662 4.2465 15.2731 4.0170 0.1439
50 58.6610 3.7184 15.7423 3.3524 0.1160
70 19.2058 0.6009 31.3285 7.3782 0.1661
2 100 90 19.1538 0.5997 30.7211 4.0141 0.1406
100 18.8302 0.5610 32.1371 3.2365 0.1080
150 19.0962 0.3364 58.2060 4.7797 0.1634
200 180 18.9151 0.3162 60.2733 3.6073 0.1370
200 17.9342 0.2804 63.9527 3.0915 0.0905
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Table 6: Optimal censoring plan ¢ = 0.5

o n r Op, Op; Op, Op, SCV
30 3.8287 0.0694 55.7216 659,802.273 0.0996
50 40 2.6070 0.0262 103.9510 462,005.082 0.0582
50 1.5337 0.0105 148.2875 242,707.374 0.0371
70 1.2489 0.0077 157.1100 409,492.757 0.0704
1.2 100 90 1.1037 0.0043 254.5057 200,057.926 0.0454
100 0.8409 0.0028 301.3008 181,024.348 0.0340
150 0.7394 0.0020 362.1736 177,005.758 0.0675
200 180 0.5645 0.0011 508.6632 120,432.550 0.0426
200 0.4435 0.0007 606.9660 84,848.183 0.0311
30 69.7930 7.3355 8.1393 3.6355 0.4385
50 40 69.4744 6.4700 8.4035 1.9975 0.3174
50 68.6542 6.3923 8.9610 1.9670 0.2890
70 29.2131 1.7858 17.9948 3.5025 0.4241
3 100 90 27.1606 1.1074 18.2653 1.1894 0.3025
100 27.0680 1.0912 18.5019 1.0115 0.2674
150 16.1247 0.3457 35.9806 2.9437 0.4004
200 180 15.8958 0.3455 36.5092 1.1212 0.2616
200 14.5072 0.3261 36.9464 1.0039 0.2478

8.2 Simulation and Algorithms Conclusion

The primary focus of this subsection is to evaluate the performance of the proposed algorithms
for both point and interval estimates based on type II censored sample. From Tables 3 and 4, we can
deduce the following observations:

e The estimated values for the unknown parameters «, and ¢ generally demonstrate strong
performance in terms of minimized Mean Squared Error (MSE), Relative Bias (RB), and
narrow Confidence Intervals (CI) with high Coverage Probability (CP).

e As the sample size n increases, the MSE, RB, and CI width of «, and ¢ tend to decrease.
This trend aligns with the consistency property of the DAPEIW distribution based on Type-
IT censored sample associated estimates, indicating improved performance with larger sample
sizes.

e Asthe censored sample size r increases, the MSE, RB, and CI width of &, and ¢ tend to decrease.

e With an increase in the true value of «, the MSE, RB, and CI width of «, and ¢ generally
increase.

e Conversely, as the true value of ¢ increases, the MSE, RB, and CI width of all unknown
parameters «, and ¢ tend to increase within each set.

e The credible interval for Bayesian estimation typically narrows with increasing sample size.

e Across various sample sizes, Bayesian estimation using the SE loss function consistently yields
minimal RB and MSE values.
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e In each case, the bootstrap results were consistently superior in terms of CI length, exhibiting
the shortest length of CI compared to the other methods.

9 Application

In this section, the superior performance of the DAPEIW Distribution with two parameters over
traditional distributions such as discrete Marshall-Olkin inverted Topp-Leone (DMOITL) [28], dis-
crete Buur (DB) [¢], binomial (binom), and discrete alpha power IW (DAPIW) [29], are demonstrated.
Tables 7 and 8 present statistics for all fitted models based on real datasets, including Kolmogorov-
Smirnov discrete (KSD) with p-value of KS (PVKS), Akaike information criterion (AIC), Bayesian
information criterion (BIC), consistent AIC (CAIC), and Hannon and Quinn’s information criterion
(HQIC). The MLEs of the parameters for the examined models are also provided in these tables.
Additionally, Figs. 6 and 7 display the fitted DAPEIW distribution using probability mass function
(PMF), cumulative distribution function (CDF), PP-plot, and QQ-plot for the two datasets. Firstly,
the dataset pertains to COVID-19 new cases in Zimbabwe from 30 June 2020 to 25 July 2020, with the
following values: 7, 17, 14, 12, 8, 73, 18, 18, 53, 98, 41, 16, 40, 3, 49, 30, 25, 273, 58, 58, 133, 102, 107,
214,90, 172.

Table 7: MLE, StEr, KSD, PVKS, AIC, BIC, HQIC, CAIC for each discrete distribution

o P “ KSD PVKS  AIC CAIC BIC HQIC

DAPEIW  Estimates  1.16E+09  0.9543 0.1136  0.8828  278.1503  278.6721  280.6665  278.8749
StEr 3751.4995  0.0666

DAPIW Estimates  29.2318 123966  1.1216  0.1149  0.8827  278.6395  279.7304  282.4138  279.7264
StEr 78.9822 10.6428  0.1638

DMOITL  Estimates  348.4498 1.9046 0.1533 05739  278.5726  279.0943  281.0888  278.9272
StEr 98.4176 0.1355

DB Estimates  6.5684 0.9596 03923  0.0007 3157284 3162502  318.2446  316.4530
StEr 1.1052 0.5913

Binom Estimates  0.2811 04621  0.0000  614.3214  614.4881  615.5795  614.6837
StEr 8.40E—05

Table 8: Bayesian estimation

Estimates StEr
o 1.164990e+09 3.808099e+01
) 9.542908e—01 6.654605e—08

The dataset has been provided by the World Health Organization, accessible at https://covid19.
who.int/ (accessed on 01 September 2025). Fig. 6 illustrates the trend line, showing a consistent
increase over time. Additionally, Fig. 6 examines the normality check, revealing a significantly large
CV, ranging from a minimum of 7 cases to a maximum of 273 cases.

Fig. 7 exhibits the Empirical CDF together with the fitted CDF, along with the Quantile-Quantile
(QQ) plot and Probability-Probability (PP) plot for the DAPEIW distribution. It offers a visual
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comparison between the observed data and the theoretical quantiles of the distribution, facilitating
the evaluation of the DAPEIW distribution’s goodness-of-fit to the empirical data.
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Figure 6: Trend plot and boxplot of COVID-19 data
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Figure 7: Emprical CDF, QQ, and PP for DAPEIW distribution

Non-parametric diagnostics were added in Figs. 6 and 7, including the empirical PMF (bars) with
the fitted PMF overlaid as points; the ECDF and the fitted CDF at integer values; Q-Q and P-P
plots; and a boxplot plot. The parametric tests are complemented by these diagnostics, and overall
agreement between the empirical data and the fitted DAPEIW model is indicated, with minor upper-
tail deviations noted.

The profile likelihood of DAPEIW distribution parameters involves creating a likelihood function

where certain parameters are set to specific values and then maximizing this function for the remaining
parameters in Fig. 8. This is done repeatedly for different fixed values of the parameters, generating a
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profile likelihood plot that illustrates how the likelihood changes as each parameter is adjusted while
the others are kept constant. This method is frequently employed in statistical inference to evaluate
the uncertainty linked to parameter estimates and to pinpoint areas of parameter space that align best
with the observed data.
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Figure 8: Likelihood profile of «, and ¢ for DAPEIW distribution

To verify that the reported maximum-likelihood estimates correspond to a true maximum of the
log-likelihood function, we performed several diagnostics. Fig. & displays the profile log-likelihoods for
a and ¢, each showing a single, well-defined peak. The Hessian matrix of the log-likelihood evaluated
at the estimates was found to be negative-definite (hence the observed Fisher information, Hessian,
is positive-definite), confirming the second-order optimality conditions. In addition, the numerical
optimization was repeated from multiple distinct starting values and a local grid search around the
solution was carried out; all runs converged to the same estimates. Taken together, these checks provide
strong evidence that the reported MLEs are not spurious local maxima.

Fig. 9 presents the trace plot and histogram of the posterior density for the MCMC results. The
trace plot illustrates the successive values of the parameters sampled during the MCMC simulation,
offering insight into the convergence and mixing properties of the chain. The histogram provides a
visual representation of the posterior density, depicting the distribution of parameter values sampled
by the MCMC algorithm. Together, these plots offer a comprehensive view of the posterior distribution
and the performance of the MCMC algorithm in exploring the parameter space. Fig. 10 visually
depicts the convergence lines and the Autocorrelation Function (ACF) test of the MCMC results. They
provide insight into the convergence behavior and autocorrelation structure of the MCMC sampling
process, aiding in the assessment of the reliability and efficiency of the MCMC algorithm in generating
representative samples from the target distribution.
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Figure 10: Convergence lines and ACF test of MCMC results

10 Concluding Remarks

In this paper, the classic optimum test approach for censored data with discontinuous alpha
power and an extended inverted Weibull distribution is obtained. Specifically, the statistical properties
of the model we propose are identified. These include order statistics, entropy, skewness, kurtosis,
moments, quantiles, medians, and other metrics. The model parameters were computed using the
maximum likelihood approach using type II censored samples. The asymptotic confidence intervals
for the parameters are calculated. It is noted that as the sample size increases, the credible interval for
Bayesian estimate tends to shorten. Also, Bayesian estimation with the SE loss function produces low
RB and MSE values for all sample sizes. In addition, bootstrap consistently produced the shortest
CI length compared to other approaches. Using a range of ideal criteria, four probable optimum test
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methodologies are examined. The sensitivity analysis of the best time to change stress is shown in this
study. It is based on the asymptotic variances of maximum likelihood estimators. Several simulations
were performed to assess the efficacy of the approaches described in this article. Finally, the medical
instance is given to help understand the preferred procedure. Such as the dataset pertains to COVID-19
new cases in Zimbabwe from 30 June 2020 to 25 July 2020.
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