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This paper is a sequel on the topic of localized Lagrange multipliers (LLM) for applications of fluid–struc-
ture interaction (FSI) between finite-element models of an acoustic fluid and an elastic structure. The
prequel paper formulated the spatial-discretization methods, the LLM interface treatment, the
time-marching partitioned analysis procedures, and the application to 1D benchmark problems. Here,
we expand on formulation aspects required for successful application to more realistic 2D and 3D prob-
lems. Additional topics include duality relations at the fluid–structure interface, partitioned vibration
analysis, reduced-order modeling, handling of curved interface surfaces, and comparison of LLM with
other coupling methods. Emphasis is given to non-matching fluid–structure meshes. We present bench-
mark examples that illustrate the benefits and drawbacks of competing interface treatments. Realistic
application problems involving the seismic response of two existing dams are considered. These include
2D modal analyses of the Koyna gravity dam, transient-response analyses of that dam with and without
reduced-order modeling, incorporation of nonlinear cavitation effects, and the 3D transient-response
analysis of the Morrow Point arch dam.

Published by Elsevier B.V.
1. Introduction

The prequel [35] to this paper presents the underlying theory
and analytical formulation for the first application of the method
of localized Lagrange multipliers (LLM) to treat the interaction be-
tween acoustic-fluid and elastic-structure finite-element (FE) mod-
els. That material includes proof-of-concept 1D examples with
known analytical solutions. No realistic benchmark application
examples were discussed, since those demand coverage of model-
ing with computer implementation and verification aspects that
would have lengthened and diluted the exposition. The present pa-
per addresses that gap. A methodology overview is given next in
the interest of self-sufficiency.

The LLM treatment introduces a kinematic frame at the fluid–
structure interface. Two multiplier fields separately connect the
frame to the fluid on one side and to the structure ‘‘wet surface” on
the other. Both multiplier spaces are discretized as delta functions
collocated at the fluid-interface and wet-surface structural nodes.
These can be physically interpreted as interaction point forces.
B.V.

ac.com (M.R. Ross).
The main goal of this new interface treatment is complete decou-
pling of fluid and structure models, in the sense that those can be
constructed separately by different teams, or with different mesh
generators. Consequently, finite-element meshes will not neces-
sarily match over the interface. This separation streamlines pre-
processing in design stages where one of the models, such as the
structure, is modified (e.g. by a design team) while the other is
fixed. Or, conversely, the fluid level could be changing while the
structure is fixed, as in reservoir filling or pumping operations. Full
decoupling also simplifies the production and use of reduced-order
models.

A second key goal is to allow processing by different programs.
For dynamic analysis by direct time integration, this is achieved
by combining the LLM method with a partitioned solution proce-
dure. The solution state is advanced separately on each program.
These programs exchange information through the interface as
they advance in time. The advancing sequence used here departs
from the well known predictor-based staggered schemes intro-
duced in [27]; in that, the interface state is solved implicitly for
frame accelerations and multiplier forces. The latter are back-
substituted into the fluid and structure solvers as if they were pro-
duced by an external force field. The stability analysis presented in
the prequel paper shows that if the same A-stable integration
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scheme, such as the trapezoidal rule, is chosen for the fluid and
structure with identical timesteps, the coupled system retains
unconditional stability. One obvious generalization pertains to
the use of different time-integration schemes for the fluid and
structure, e.g. implicit in the structure and explicit in the fluid
for resolving cavitation. In such cases, solutions may not necessar-
ily match in time either.

While the LLM method can provide modeling flexibility, new
challenges may be introduced. Even if separate non-interacting
models are satisfactory as regards to stability and accuracy, the
introduction of interaction can have adverse effects on the coupled
response. Furthermore, if the coupled components have widely dif-
ferent physical characteristics (stiffness, mass, etc.), the coupled
system may be scale-mismatched by orders of magnitude. This
can worsen the condition number of the algebraic interface system
and produce unacceptable errors, particularly under long-term
cyclic loading. Accuracy monitoring requires measures to assess
interface-energy conservation, whereas ill-conditioning effects
may be alleviated through multiplier scaling. Error measuring is
one of the practical implementation aspects omitted in the prequel
paper but covered here.

To assess the LLM treatment, as well as two competing methods
(Mortar and direct force–motion transfer) a realistic benchmark
application class is chosen: concrete dams subject to seismic exci-
tation. The computational models represent three physical compo-
nents: structure, soil and fluid. The structure and soil are
formulated as displacement-based elasticity energy equations,
which are discretized as conventional solid elements. The reservoir
water is modeled as a linear acoustic fluid since no significant flow
develops during the response timespan of interest. The displace-
ment potential is chosen as the response variable of the governing
fluid equations. This choice has the advantage of reducing the
number of degrees of freedom to one per node while automatically
enforcing irrotationality.

Two actual dam–reservoir configurations are studied: the
Koyna gravity dam in Maharashtra, India, and the Morrow Point
arch dam in Colorado, USA. A 2D plane-strain model is used for
the former and a 3D model is used for the latter. Both config-
urations involve the interaction of the structure, near-field soil
and entrained fluid. Silent boundaries are used to truncate the
fluid and soil meshes. In the gravity-dam example, the analysis
optionally includes inertial cavitation. This is a highly nonlinear
phenomenon whereupon the water elastic modulus drops to
near zero in the cavitation volume, and re-pressurizes produc-
ing traveling closure shocks. The gravity-dam problem is used
also to illustrate the analysis of coupled-system vibrations and
the construction and performance of reduced-order dynamic
models.

In addition to the two dam configurations, two additional
benchmark problems are included. First, the problem of Chopra
[7], which involves the 2D interaction of an unbounded acoustic
medium with a rigid wall (with prescribed motion) is used to val-
idate the pressure calculations and the silent boundary. Second,
the Bleich and Sandler [6] 1D fluid–structure interaction (FSI)
problem is used to validate the cavitation treatment.
2. Localized Lagrange multipliers

2.1. Equations of motion

Finite-element discretization of a linear acoustic fluid coupled
to an elastic structure with the interface treated by the LLM meth-
od yields the following semi-discrete matrix equations of motion
(EOM) in terms of displacements and interface forces as discussed
in [35] (damping and silent boundaries omitted for brevity):
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For the structure model, uS is the array of structural node displace-
ments, whereas MS;KS and fS denote the master mass matrix, stiff-
ness matrix and applied-force vector, respectively, associated with
uS. For the fluid model, uF is the array of fluid node displacements,
whereas MF ;KF and fF denote the master mass matrix, stiffness ma-
trix and applied-force vector, respectively, associated with uF . Over
the LLM-treated FSI interface, uB is the array of frame-node dis-
placements, kS is the array of frame-to-structure interaction forces
at wet structural nodes, kF is the array of frame-to-fluid interaction
forces at fluid nodes, BSn and BFn are Boolean matrices that map kS

and kF onto the full set of structure and fluid node forces, respec-
tively, LSn and LFn are matrices that map frame displacements uB

to structure node freedoms and fluid node freedoms, respectively.
Structure and fluid nodes need not coincide over the interface. A
superposed dot denotes differentiation with respect to time, t.

Fluid irrotationality is enforced by the transformation uF ¼ DFw,
where w collects displacement potential degrees of freedom at
fluid mesh nodes; DF is a generally rectangular transformation ma-
trix. (Since the displacement potential is a scalar field, there is only
one w freedom per node.) A congruential transformation on fluid
freedoms yields
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in which MFw ¼ DT
F MFDF ;KFw ¼ DT

F KFDF ;BFwn ¼ DT
F BFn and fFw ¼ DT

F fF ,
where this equation corresponds to Eq. (22) in [35].

2.2. Reduced-order modeling

The reduced-order model (ROM) formulation considered here
reduces the number of normal coordinates by truncating modes
of the uncoupled problems. The resultant free-vibration eigenprob-
lems, both of generalized symmetric type, are

KSvSi ¼ x2
SiMSvSi; ði ¼ 1; . . . ;mSÞ; KFwvFi ¼ x2

FiMFwvFi;

ði ¼ 1; . . . ;mFÞ: ð3Þ

(The left system in (3) is sometimes called the dry-structure eigen-
problem.) The eigenvectors are mass orthonormalized. The retained
‘‘dry” eigenvectors for the structure are vSi; ði ¼ 1; . . . ; kS; kS < mSÞ,
which are collected as columns of matrix USr . The retained eigen-
vectors for the fluid are vFi; ði ¼ 1; . . . ; kF ; kF < mFÞ, which are
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collected as columns of matrix UFwr . The corresponding normal
coordinates qiðtÞ and uiðtÞ are collected in vectors qr and ur , respec-
tively. The truncated expansions of the uncoupled structure and
fluid state vectors are

uSrðtÞ ¼
XkS

i

vSiqiðtÞ ¼ USrqrðtÞ; wrðtÞ ¼
XkF

i

vFwuiðtÞ ¼ UFwrurðtÞ:

ð4Þ

Inserting these into the semi-discrete equations of motion (2) and
performing the change of basis yields
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in which KSr ¼ UT
SrKSUSr and KFr ¼ UT

FwrKFwUFwr are diagonal. Inclu-
sion of damping is straightforward. The transient response analysis
by direct time integration can be carried out as discussed in [35].

It should be noted that the selection of modes to be retained in
(4) may not necessarily fit the usual strategy of keeping all modes
below a certain ‘‘cutoff” frequency. For example, fluid slosh modes
may be of very low frequency but have a negligible effect on the
structural response. A robust approach would be to pick selected
coupled modes, but this strategy has not been investigated.
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2.3. Interface functionals

In the following, the variational framework of [35] is recalled
for the reader’s convenience. The LLM treatment is analyzed in
further detail, ending with interface-energy conservation and
patch-test conditions. Two other interface methods developed for
coupling non-matching mesh interfaces, the Mortar and direct
force–motion transfer (DFMT) methods, are covered in Sections
3.1 and 3.2, respectively, insofar as needed for the application
examples of Section 4.

The boolean and connection matrices BSn; . . . ; LFn in the global
stiffness matrix of (1) are obtained from a variational formulation
of the interface equations. This has the significant advantage of
maintaining symmetry. Consider the fluid–structure boundary CB

shown in Fig. 1a. Since an acoustic fluid is inviscid, only the normal
displacements uFn and uSn, as well as normal tractions tFn and tSn, ap-
pear in the strong interaction conditions: uFn ¼ uSn and tFn þ tSn ¼ 0,
illustrated in Fig. 1b and c. (Note that tFn ¼ �pB, in which pB is the
hydrodynamic fluid pressure on CB, positive if compressive.) Two
weak forms, originally proposed for elasticity problems by Prager
[31], Pian and Tong [30] and Atluri [2], can be stated in terms of
the following interface functionals

PM
B ½kBn� ¼

Z
CB

ðuFn � uSnÞkBn dC;

PL
B½kFn; kSn;uBn� ¼

Z
CB

fðuFn � uBnÞkFn þ ðuSn � uBnÞkSnÞgdC;
ð6Þ

(these correspond to Eqs. (6) and (5), respectively, in [35]). Here,
independently varied fields are identified in square brackets on
the left-hand side. In PM

B ; kBn is a global Lagrange multiplier function
that connects directly the fluid and structure faces, as shown in
Fig. 2a. In PL

B; kFn and kSn are localized Lagrange multiplier functions
that link the independently varied normal displacement uBn of a
frame introduced between the two partitions, as shown in Fig. 2b.
The LLM treatment of the interface is based on PL

B whereas the var-
iational-based Mortar method outlined in Section 3.1 derives from
PM

B . Substituting
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into PL
B reduces it to PM

B . (The replacements in (7) must be adjusted
at ‘‘interface crossings” where more than two partitions meet.)
Thus, PL

B embodies PM
B as a special case.
2.4. Discrete interface equations

To produce matrix-connection equations, functionals (6) are
discretized by assuming shape functions for the independently
varied fields: either kBn in PM

B , or kFn; kSn and uBn in PL
B. Boundary

normal displacements uSn and uFn come from elements used for
the structure and fluid models, respectively, and are prescribed
data in both interface functionals (6). Restricting attention to the
more general PL

B, assume kFn ¼ NkFkF ; kSn ¼ NkSkS and uBn ¼ NBuB.
For the boundary displacements, take uFn ¼ NFBuF and
uSn ¼ NSBuS, where NFB and NSB are shape functions for fluid and
structure elements, respectively, evaluated on CB and projected
over the normal n. Insert these interpolations into PL

B, and inte-
grate over CB to get the discretized functional

PL
B½kF ; kS;uB� ¼ kT

F ðB
T
F uF � LF uBÞ þ kT

S ðB
T
S uS � LSuBÞ; ð8Þ
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R
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FBNkF dC;BS ¼
R
CB

NT
SBNkS dC; LF ¼

R
CB

NT
kF NB dC

and LS ¼
R

CB
NT

kSNB dC, these are derived in Section 3.5 of [35]. Some
notational simplifications have been made in the interest of brevity:
subscript n is dropped throughout while CB denotes the discretized
interface surface, which may differ from the original one for curved
geometries.

The integral evaluations in (6) are greatly simplified by assum-
ing that NkF and NkS are delta functions collocated at the fluid and
structure interface nodes, respectively. If so, BF and BS become Bool-
ean matrices that select and normal-project node boundary free-
doms from the complete state vectors: uBF ¼ BT

F uF and
uBS ¼ BT

S uS. The shape functions for NB will be piecewise-linear,
C0-continuous, with nodes placed according to distribution rules
discussed in [28,29,34,35]. Setting the first variation dPB ¼ 0 yields
the three matrix equations

uBF ¼ BT
F uF ¼ LFuB; uBS ¼ BT

S uS ¼ LSuB; �LT
FkF � LT

SkS ¼ 0: ð9Þ

When adjoined to the fluid and structure uncoupled EOMs, these
appear as the last 3 rows of the coupled EOM (1) in displacement
coordinates. For future use, introduce the matrices

Q FF ¼ LFLT
F ; Q SS ¼ LSLT

S ; RFF ¼ LT
F LF ; RSS ¼ LT

S LS: ð10Þ

Inverses of the Q and R matrices appear in ensuing derivations.
Since LF and LS are generally rectangular for non-matching meshes,
one or more of (10) could become singular, in which case ordinary
inverses do not exist. In the equations below A�G denotes the
Moore-Penrose generalized inverse of A, also popularly known as
the pseudoinverse [32].
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Fig. 3. Example to illustrate interface patch test and the zero-moment rule (ZMR): (a) in
multipliers.
2.5. Interface force–motion relations

Solving the last equation of (9) by least-squares methods yields

kS ¼ �TSFkF ; kF ¼ �TFSkS; ð11Þ

in which TSF ¼ Q�G
SS LSLT

F and TFS ¼ Q�G
FF LFLT

S are called force transfer
matrices. Here pseudoinverses should be replaced by ordinary in-
verses as appropriate. Products TFSTSF and TSFTFS are orthogonal pro-
jectors. Eliminating uB from the first two equations of (9):
uBF ¼ LFuB and uBS ¼ LSuB, yields the corresponding transformations
between boundary displacement vectors:

uBS ¼ USFuBF ; uBF ¼ UFSuBS: ð12Þ

Here USF ¼ ðLT
S Þ
�GRSSR�G

FF LT
F ¼ TT

FS and UFS ¼ ðLT
F Þ
�GRFFR�G

SS LT
S ¼ TT

SF are
called motion transfer matrices. To prove that USF ¼ TT

FS from linear
algebra, start from the identity R�G

SS LT
S ¼ LT

S Q�G
SS , pre-multiply both

sides by LT
F ðL

T
F Þ
�GRFF and use projector properties. Likewise for

UFS ¼ TT
SF . The transformation duality (12) can be established more

directly from work theorems, noting that no energy is gained or lost
at the interface, as follows. The complementary virtual work dW�

B of
interface displacements on their conjugate multiplier variations is

dW�
BS ¼ uT

BSdkS; dW�
BF ¼ uT

BFdkF ; dW�
B ¼ dW�

BF þ dW�
BS ¼ 0:

ð13Þ

Setting dkF ¼ �TFSdkS and uT
BS ¼ uT

BFUT
SF in dW�

B ¼ 0 gives
uT

BFðU
T
SF � TFSÞdkS ¼ 0 for arbitrary uBF and dkS, whence TFS ¼ UT

SF . Set-
ting dkS ¼ �TSFdkF and uT

BF ¼ uT
BSUT

FS gives uT
BSðU

T
FS � TSFÞdkF ¼ 0 for

arbitrary uBS and dkF , whence TSF ¼ UT
FS.

2.6. Interface patch tests

The duality (12) holds for any LF and LS, even if those matrices
were filled with random numbers. It is thus independent of the
choice of frame discretization, or even of whether a frame is
present. This generality can be used to an advantage for other
non-matching mesh treatments, e.g. the Mortar and DFMT meth-
ods described in Sections 3.1 and 3.2, respectively. The placement
of frame nodes may affect, however, the results of the interface
patch test (IPT) as shown by the following example, which is a
variant of one given in [29].

Consider the two simple non-matching 2D meshes pictured in
Fig. 3a. The interface CB of height H connects three bilinear
rectangular fluid elements of height 1

3 H to two bilinear rectangular
structural elements of height 1

2 H. All elements have uniform out-
of-plane thickness h. Of the four frame nodes, nodes 1 and 4 are
placed at both ends and nodes 2 and 3 are symmetrically located
at distance aH from the middle structure boundary node as illus-
trated. Here � 1

3 6 a 6 1
6 is a dimensionless free parameter; conven-

tionally a > 0 if the middle frame nodes lie in the center thirdspan,
(S) 
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as shown in the figure. If a ¼ 1
6 frame nodes 2 and 3 coalesce and

the frame has 3 nodes. If a ¼ � 1
3 nodes 2 and 3 coalesce with the

end nodes and the frame has 2 nodes. The only displacement de-
grees-of-freedom (DOF) considered are the interface displace-
ments shown in Fig. 3b. These are collected in vectors

uT
BS ¼ uS1 uS2 uS3½ �; uT

BF ¼ uF1 uF2 uF3 uF4½ �;
uT

B ¼ uB1 uB2 uB3 uB4½ �:
ð14Þ

The interface multiplier DOF, shown in Fig. 3c, are collected in
vectors

kT
S ¼ kS1 kS2 kS3½ �; kT

F ¼ kF1 kF2 kF3 kF4½ �: ð15Þ

The connection and force-transfer matrices for arbitrary a, exclud-
ing the node-coalescence cases a ¼ � 1

3 and a ¼ 1
6, are
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3a

1þ3a
1

1þ3a 0 0

0 0 1
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3a
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2
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3
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0 1=2 1=2 0
0 0 0 1

2
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3
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0 1
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1
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3
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1
2

2 �3a 0
0 1þ 3a 0
0 1þ 3a 0
0 �3a 2

2
6664

3
7775: ð16Þ

To check the constant-stress interface patch test (IPT), one assumes
that the three fluid elements are under uniform pressure p, positive
if compression. If displacement shape functions vary linearly along
the edge, as in the case of a bilinear fluid element, the consistent
interface fluid node forces are ~fBF ¼ � 1

6 phH½1 2 2 1 �T . Assum-
ing a similar linear shape function variation over the structural ele-
ments and uniform stress rxx ¼ �p, others zero, the consistent
structural node forces are ~fBS ¼ 1

4 phH½1 2 1 �T . To apply the IPT,
set ~kF ¼ ~fBF ; ~kS ¼ ~fBS and use the multiplier transformation (11) to
compute

kS ¼�TSF
~kF ¼

pHh
6ð1þ3aÞ

1þ9a
4

1þ9a

2
64

3
75; kF ¼�TFS

~kS ¼�
pHh

4

1�3a
1þ3a
1þ3a
1�3a

2
6664

3
7775:

ð17Þ

The IPT is passed if kS ¼ ~kS and kF ¼ ~kF . Clearly this happens if and
only if a ¼ 1

9. This is the only 4-node-frame configuration that satis-
fies the zero-moment rule (ZMR) [28,29].

The rigid-motion IPT tests whether a linearly varying fluid
boundary displacement field is correctly transmitted to the
structure and vice-versa. If d denotes uniform translation
along x and h the rotation about z, the correct node displace-
Fluid
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Matching meshes:
only one multiplier normal
to interface needed since
acoustic fluid is inviscid
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several possibilities for 
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Fig. 4. Mortar interface treatment with nod
ment values are ûBF ¼ d½1 1 1 1 �T þ 1
6 hH ½ �3 �1 1 3 �T

and ûBS ¼ d½1 1 1 �T þ 1
2 hH ½ �1 0 1 �T . Application of the

displacement transformations (12) gives uBS ¼ USF ûBF that
reproduces ûBS exactly for any a. The converse transformation,
however, is exact only for a ¼ 1

6.
3. Alternative interface-coupling methods

3.1. Mortar method

Since its inception in 1990 [5] the Mortar method has gained
popularity as an interfacing scheme for multiphysics capable of
handling non-matching meshes [3,4,14,39]. With growing accep-
tance the name has come to designate a set of loosely related
mesh-coupling techniques. Their common feature is the use of a
single ‘‘gluing” Lagrange multiplier field that links directly the
two sides of the interface (i.e. without a kinematic frame). For cou-
pling of an inviscid fluid (in particular, an acoustic fluid) to an elas-
tic structure, the gluing field is a scalar (kBn in Section 2.3).

Mortar interface equations have been constructed typically
from Galerkin or other weighted-residual methods (see e.g. [20]).
This is inevitable for general fluid models that are not derivable
from variational principles. In the present context we will restrict
Mortar interface equations to be based on the functional PM

B of
(6), a variational framework that preserves symmetry. The only
field to be discretized is the scalar multiplier function kBn on CB.
Physically, this is the normal-to-the-interface surface traction, i.e.
wall pressure.

In most of the published literature on Mortar methods, multipli-
ers are distributed functions interpretable as surface tractions. To
make a fair comparison with LLM we take the multiplier space
for kBn to be that of delta functions, as pictured in Fig. 4, which
can be viewed as interaction point forces. For an alternative Mortar
formulation without the use of delta functions, please see
[17,19,40], which is based on discretization spaces for continuous
multipliers that are orthogonal to the primal variables allowing
an easy condensation of the dual variables.

The key question is: Where should the point forces in our
description be placed? For matching meshes, point forces are lo-
cated at the coincident nodes; see Fig. 4a. For non-matching
meshes, e.g. Fig. 4b, there are several reasonable options for
point-force locations. One option is to declare either the fluid or
structure face as master (typically that pertaining to the finer
mesh, as explicitly recommended in Section 4.5.2) and to collocate
point forces at the master nodes. This is illustrated in Fig. 4c with
the fluid face picked as master. A dual-master scheme (see, e.g.
[18]) collocates multipliers at all interface nodes as shown in
Fig. 4d; this avoids master vs. slave decisions, but may lead to sin-
Non-matching meshes:
multipliers at master 
face nodes (fluid chosen 
as master in figure)

Non-matching meshes:
multipliers at each 
face node (dual
master faces)

Fluid

Structure

ter B B

Fluid

Structure

c d

Slave

e-collocated delta-function multipliers.
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gularity or ill-conditioning. Similar freedom placement decisions
may be necessary when using distributed Lagrange multiplier
spaces. Note that regardless of choice, a master mesh must know
about the boundary shape functions of the slave one, and the mod-
ularity of the LLM treatment is lost.

3.1.1. Equations of motion
From now on subscript n will be omitted for brevity. With the

discrete multiplier assumption written as kB ¼ NkBkB, insertion into
PM

B of (6) gives the discretized functional

PM
B ½kB� ¼ kT

BðbBT
F uF � bBT

S uSÞ; ð18Þ

where bBF ¼
R
CB

NT
FBNkB dC and bBS ¼

R
CB

NT
SBNkBdC. Since NkB consists

of delta functions, the integrals reduce to collocation on the master
face and interpolation on the other. For non-matching meshes bBF

and bBS are not Boolean and so will differ generally from the BF

and BS of the LLM treatment. Setting dPM
B ¼ 0 yields the matrix con-

nection equation bBT
S uS ¼ bBT

F uF . For interpretation, let fBS ¼ bBT
S kB and

fBF ¼ �bBT
F kB be the boundary force arrays conjugate to uBS and uBF ,

respectively. Further, we require that fBS þ fBF ¼ 0, which expresses
discrete interface force equilibrium. Adjoining this to the dynamic
equations of the uncoupled fluid and structure gives the matrix
equations of motion in terms of structural and fluid displacements.
If damping is neglected the EOM are

MS 0 0
0 MF 0
0 0 0

2
64

3
75

€uS

€uF

€kB

8><
>:

9>=
>;þ

KS 0 bBT
S

0 KF �bBT
FbBS �bBF 0

2
664

3
775

uS

uF

kB

8><
>:

9>=
>; ¼

fS

fF

0

8><
>:

9>=
>;:
ð19Þ

As before, fluid irrotationality is enforced by the transformation
uF ¼ DFw, where w collects displacement potential degrees of free-
dom at fluid mesh nodes. Carrying out a congruential transforma-
tion on fluid DOF yields

MS 0 0
0 MFw 0
0 0 0

2
64

3
75

€uS

€w
€kB

8><
>:

9>=
>;þ

KS 0 bBT
S

0 KFw �bBT
FwbBS �bBFw 0

2
664

3
775

uS

w

kB

8><
>:

9>=
>; ¼

fS

fFw

0

8><
>:

9>=
>;;
ð20Þ

where bBFwn ¼ DT
F BFn. A response analysis can be carried out by the

partitioned analysis procedure described in [35], where numerical
stability is studied in Appendix A.

3.1.2. Interface force–motion relations
As in Section 2.5, a relationship between the fluid boundary dis-

placements uBF and the structure boundary displacements uBS can
be found on solving bBT

S uBS ¼ bBT
F uBF by least squares methods.

Defining bQ FF ¼ bBF
bBT

F and bQ SS ¼ bBS
bBT

S we have

uBF ¼ bQ �G
FF
bBF
bBT

S uBS ¼ ÛFSuBS; uBS ¼ bQ �G
SS
bBS
bBT

F uBF ¼ ÛSFuBF : ð21Þ

The dual force transformations

fBS ¼ bTSFfBF ; fBF ¼ bTFSfBS; ð22Þ

follow from interface energy conservation as follows. The comple-
mentary virtual work dW�

B over CB is dW�
B ¼ uT

BFdfBF þ uT
BSdfBS ¼

uT
BS½ÛT

FSdfBF þ dfBS� ¼ uT
BS½ÛT

FS þ bTSF �dfBF ¼ uT
BS½ÛT

FS þ bTSF �bBT
F dkB ¼ 0 for

arbitrary uBS and dkB, whence bTSF ¼ �bUT
FS. Similarly bTFS ¼ �ÛT

SF .

3.1.3. Interface patch tests
The Mortar method based on delta-function multipliers (point

interaction forces) produces simpler interaction equations than
LLM, as a comparison of the coupled EOM (1), (2) versus (19)–
(20) makes obvious. For non-matching meshes, forming bBF andbBS involves more work than the Boolean BF and BS since shape-
function interpolation is generally needed in the former, but there
is no need for the LLM connection matrices LS and LF . This simplic-
ity, however, is counterbalanced by two features:

(i) The patch test may be violated if collocated face displace-
ments are used.

(ii) Interaction equations become singular at cross points (2D)
or cross lines (3D), which are places where multiple inter-
faces meet.

Weakness (i) is illustrated by the simple 2D example of Fig. 5a.
Two 4-node bilinear elements (1) and (2) are connected to a 9-
node Lagrangian biquadratic element (3) as shown. All elements
are elastic with material and geometric properties as shown. If ele-
ments (1) and (2) on one side and (3) on the other are linked by six
multipliers kx1 through ky3, the interface potential with collocated
displacements is

PM
B ¼ kx1ðux7 � ux4Þ þ ky1ðuy7 � uy4Þ þ kx2ðux8 � ux5Þ
þ ky2ðuy8 � uy5Þ þ kx3ðux9 � ux3Þ þ ky3ðuy9 � uy3Þ: ð23Þ

A stress patch test is run on this coupled model by applying con-
stant tractions q ¼ tx ¼ 10 on the y-normal faces, as pictured in
Fig. 5b. The computed stresses rxx;ryy and rxy are contour plotted
in Fig. 5c. Evidently the patch test is violated; in fact, the error of
rxx reaches ±32%. It can be verified that the displacement patch test
is also violated; thus, motion transfer is incorrect. To pass the patch
test, it is necessary to pair the multipliers with weighted node dis-
placements, which is contrary to intuition.

Weakness (ii) has no simple cure within the Mortar context and,
in fact, does not depend on whether multipliers are distributed or
lumped as point forces. This shortcoming does not affect the exam-
ples presented later, however, since their interfaces do not exhibit
crossing.

3.2. Direct force–motion transfer (DFMT) methods

The term direct force–motion transfer (DFMT) is introduced as a
collective label for a wide class of interfacing methods with histor-
ical and practical importance. Their common feature is that no
additional interface unknowns are introduced. Boundary forces and
displacements (or velocities) are moved directly from fluid to
structure and vice-versa. We examine two common DFMT meth-
ods, both of which are related to a consistent interpolation ap-
proach. It is also discussed how non-DFMT methods, such as
Mortar and LLM, can be implemented in a DFMT manner.

3.2.1. DFMT-CFA
Felippa et al. [15] introduced a DFMT method for coupling a

structure FE mesh to a matching fluid FE mesh for underwa-
ter-shock (UWS) FSI calculations where the fluid is acoustic
but subject to cavitation. There, fluid pressures were lumped
as nodal forces acting directly (and normally) on structure nodes.
Similarly, structure displacements were applied directly to fluid
nodes. We refer to this method as DFMT-CFA, since it was imple-
mented into the CFA (cavitation fluid analyzer) code [15]. A sim-
ilar approach was used in the CASE (cavitating acoustic spectral
element) code [36], in coupling fluid spectral finite-elements to a
non-matching structure mesh. This latter approach used
consistent interpolation (CI) [13], but with quantities averaged
over fluid and structure elements to reduce spurious structure
oscillations. In a CI coupling method, the structure forcing vector
is evaluated using its shape functions; fluid forces are typically
interpolated at structure quadrature points. Likewise,
interpolated structure displacements are transferred to the fluid
mesh.
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3.2.2. Conservative consistent interpolation: DFMT-CCI
While a consistent interpolation approach for coupling non-

matching meshes is straightforward, it is demonstrated in [13] that
energy may be lost at the interface. While consistent interpolation
can be non-conservative, it does not mean that the methods are
inaccurate [13], especially for short-duration simulations like those
for underwater shock analysis. To address this energy discrepancy,
[12,13] modified the standard CI as discussed below; we refer to
this approach as DFMT-CCI (conservative consistent interpolation).

As an illustrative example of CCI coupling, consider the system
shown in Fig. 3. First, the fluid displacements uBF are interpolated
from structure displacements with the structural element shape
functions. The motion transfer matrix in uBF ¼ UFSuBS for the exam-
ple problem is given by

UFS ¼

1 0 0
1
3

2
3 0

0 2
3

1
3

0 0 1

2
6664

3
7775: ð24Þ

Second, the transformation from fluid to structure forces,
fBS ¼ TSFfBF , follows from duality: TSF ¼ �UT

FS. This approach en-
forces interface energy conservation. The transformation matrix
TSF can be found equivalently by lumping fluid pressures into nodal
forces (as discussed in [13]) and calculating the structure force vec-
tor consistently. In typical aeroelastic problems the fluid mesh is
more refined than the structure. Thus, the DFMT-CCI method inter-
polates refined mesh values from coarse mesh values, which helps
to produce well conditioned coupling matrices.

To check the stress interface patch test, apply uniform pressure
p over the 3 fluid elements. Then fBF ¼ � 1

6 phH½1 2 2 1 �T and
fBS ¼ ð1=18ÞphH½5 8 5 �T . Since fBS–~fBS ¼ 1

4 phH½1 2 1 �T , the
test is not passed. Notice that the transformation matrices in (24)
are the same as those provided by LLM treatment in the example
of Section 2.6 if a ¼ 1

6. This configuration does not satisfy the
ZMR and thus it is not surprising that the stress IPT fails. Applying
this method to the example of Fig. 5, in which elements (1) and (2)
are taken to be fluid whereas (3) is an elastic solid, shows that the
stress IPT is again violated.
3.2.3. DFMT-Mortar and DFMT-LLM
Another subclass of DFMT is that of global DFMT methods,

which are constructed in two stages. First a multiplier based dis-
cretization such as LLM or point-force Mortar is carried out. Inter-
face unknowns are then eliminated by least squares methods as
described in Sections 2.5 and 3.1.2 to yield the force transfer matri-
ces TSF and TFS. The motion transfer matrices follow from duality.

The qualifier global indicates that transfer matrices are gener-
ally fully populated, meaning that each interface DOF is coupled
to every other one. By construction interface energy conservation
is satisfied a priori, but interface patch tests are not necessarily
passed, as previous examples make clear.

Do LLM and DFMT-LLM produce identical results? Only under
special conditions. For instance, if connection matrices LF and LS

are square and of full rank. Otherwise, the least-squares elimina-
tion of interface unknowns can be expected to work as a filter that
projects interface patterns on the column span of the ‘‘Q” matrices.
This will typically mollify the computed response. A similar remark
applies to Mortar versus DFMT-Mortar. Whether this kind of filter-
ing is acceptable or desirable can be expected to be problem
dependent.
3.3. Computational cost: LLM vs. DFMT

A simple decision on which method to use can be realized by
evaluating the number of steps required in the procedure. In the
following, it is assumed that the interface equation has been LU
factored. This up-front cost would be similar to the cost of creating
the interface transfer matrices for the other methods. It is also as-
sumed that the interface frame is discretized with the same num-
ber of degree of freedoms as the refined interface mesh boundary,
say the structure Ns. The fluid interface boundary has Nf degrees of
freedom. According to [21], the cost (in standard floating-point
operation units) of solving a matrix equation with factorization
for m time steps is C ¼ 1

2þm
� �

ðNeÞ2, where Ne is the number of
equations. Accordingly, the cost for the interface equation is
CLLM ¼ 1

2þml

� �
ð2Ns þ Nf Þ2. where ml is the number of time steps

for the LLM method.



M.R. Ross et al. / Comput. Methods Appl. Mech. Engrg. 198 (2009) 986–1005 993
The cost of using interface transfer matrix operations in each
time step would be CDFMT ¼ með2NsNf Þ where me is the number
of time steps for DFMT. Here, there are two instances in which ma-
trix vector multiplication needs to happen, once for the displace-
ment relation and once for the force relation.

If cavitation effects are not included, then the partitions coupled
with LLM may be time-integrated implicitly. Assuming that other
partitioned integration procedures use an explicit time integration
method with me time steps, it is of interest to find out when the
LLM method incurs less operations. This leads to CLLM 6 CDFMT , or

mlð4N2
s þ 4NsNf þ N2

f Þ þ ð2N2
s þ 2NsNf þ

1
2

N2
f Þ 6 2meNf Ns;

ml 6
2meNf Ns

4N2
s þ 4NsNf þ N2

f

� 1
2
: ð25Þ

As a simplification, if we assume that the number of DOF of the two
partitions are the same, then the number of steps for the LLM meth-
od should be less than approximately 2

9 of the time steps of the ex-
plicit staggered partitioned procedure: ml 6

2
9 me � 1

2. If the DFMT is
cheaper, the LLM discretization can be used to handle non-match-
ing meshes to produce the DFMT-LLM transfer matrices.
4. Application problems

4.1. Overview of methods

Table 1 summarizes the labels introduced for interface-coupling
methods in the application examples. The methods are listed in or-
der of increasing complexity. The class of DFMT methods has the
advantage of not carrying additional interface unknowns during
the computations. Mortar introduces one set of multipliers
whereas LLM brings two sets of multipliers as well as an interface
frame. In comparing the various interface-coupling methods, we
consider the following to be desirable attributes:

(1) Passes force and displacement interface patch tests.
(2) Satisfies interface energy conservation conditions.
(3) Maintains full locality of separate meshes.
(4) Provides an error measure for transient analysis.
(5) Properly handles crossing interfaces.

As can be expected, there is a tradeoff between complexity and
fulfilling these desirable attributes. The LLM is able to handle all
five; it is unknown at this point if the same can be said for
DFMT-LLM. However, the importance of these attributes is largely
problem dependent. For example, while energy conservation is
important in long-term cyclic-type response simulations, it is
much less important in early-time calculations such as those in
shock-response analysis.
Table 1
Summary of labels used to identify the various interface-coupling methods examined.
Methods are listed in order of increasing complexity.

Label Fluid–structure interface treatment

DFMT-CFA Local DFMT procedure used in CFA code [15]
DFMT-CCI Local DFMT based on conservative consistent interpolation [13]
Mortar Point-force Mortar with transient step-by-step solution of interface

equations
DFMT-

Mortar
Global DFMT with Mortar-derived transfer matrices (21) and (22)

LLM LLM with transient step-by-step solution of interface equations
DFMT-LLM Global DFMT with LLM-derived transfer matrices (11) and (12)
4.2. Time-response error measures

Assessment of the temporal accuracy of the computed response
is of interest to compare interface discretization choices. Three er-
ror measures are used in our studies:

(1) The comprehensive error factor of Geers [16,36].
(2) Energy balance at the LLM interface frame.
(3) Energy balance between partition boundaries.

These are briefly described in the following subsections.

4.2.1. Comprehensive error factor
The comprehensive error factor [16,36], or C-error, quantifies

the error of a transient-response history, called a candidate solution,
with respect to a benchmark response. The measure is defined as

C ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ P2

p
, in which M is the magnitude error factor, which is

insensitive to phase discrepancies, and P is the phase error factor,
which is insensitive to magnitude discrepancies. These are given
by

M ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
#cc=#bb

p
� 1; P ¼ 1

p
arccos #bc=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
#bb#cc

p� �
; ð26Þ

where

#bb ¼
1

t2 � t1

Z t2

t1

b2ðtÞdt; #cc ¼
1

t2 � t1

Z t2

t1

c2ðtÞdt;

#bc ¼
1

t2 � t1

Z t2

t1

bðtÞcðtÞdt:

ð27Þ

Here bðtÞ and cðtÞ are the benchmark and candidate response histo-
ries, respectively, and t 2 ½t1; t2� is the time span of interest. Inte-
grals in (27) were evaluated with a composite Simpson’s rule.

4.2.2. Interface energy balance error
If the interface is viewed as a closed system, the energy gained

(released) on one side of the frame must equal the energy lost (ab-
sorbed) by the other side. Consequently, the difference of energies
on the two sides of the frame may be used for an error measure-
ment. Two variants of this measure are considered. The first is
the difference at the interface proper. At time station t ¼ tj

Wint
errorðtjÞ ¼ uT

Bjð�LT
S KSj � LT

FKFjÞ; ð28Þ

in which a j subscript denotes evaluation at time tj, and a super-
script int denotes the interface frame. This difference is used to fo-
cus on errors associated with the interface equation where Lagrange
multipliers are specifically solved. According to the third matrix
equation of (9), the coupled system is conservative, since boundary
forces are equal and opposite in accordance with Newton’s third
law. A substantial error indicated by (28) is a sign that the interface
matrix is ill-conditioned. A scaling methodology to improve condi-
tioning is discussed in [34].

The second variant is associated with the energy difference
evaluated from partition boundary forces and displacements. At
time station t ¼ tj

Wsub
errorðtjÞ ¼ KT

S ðB
T
SjuSÞ þ KT

F ðB
T
FjDFwÞ; ð29Þ

where superscript sub refers to partition boundaries. This measure
assesses energy conservation across the interface and as such is
influenced by the interface discretization as well as time integration
parameters. Errors associated with the fluid mesh gradient matrix
DF will also affect this measure. Note that the plus sign is used in
(29) because the Lagrange multipliers are equal and opposite at
the interface frame.
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4.3. 2D model wall-pressure and silent-boundary verification

A key verification of any 2D or 3D FSI code involves pressure-on-
wall calculations, since that is a key component of the interaction.
Few 2D problems that involve an acoustic fluid have exact analyti-
cal solutions for arbitrary base accelerations. The problem shown in
Fig. 6a pertains to that rare class. A prismatic rigid dam holds a body
of liquid of density qw and constant depth H extending to infinity in
the horizontal ðxÞ direction. The ground under the fluid is also rigid.
The system is at rest for t 6 0. A given horizontal ground accelera-
tion €uqðtÞ is applied for t P 0. The dynamic pressure field is pðx; y; tÞ
(deviation from the hydrostatic value). The dynamic pressure on
the dam wall is pwallðy; tÞ ¼ pð0; y; tÞ, and we focus on pressure re-
sponse histories at a distance b from the bottom.

This problem was solved analytically by Chopra [7] for the dam
wall pressure pwallðy; tÞ under the following simplifying assump-
tions. First, the liquid is acoustic. Second, the effect of the length
of the fluid is assumed to be negligible for L=H > 3, where L and
H are the length and depth of the fluid reservoir, respectively. Fi-
nally, the effect of surface waves on pwall may be ignored with little
loss of accuracy as long as the depth is greater than about 15 m for
a typical ground-motion period. Under these assumptions, the ana-
lytical pressure solution is given by the convolution series

pwallðy; tÞ ¼
4qwcw

p
X1
n¼1

ð�1Þn�1

2n� 1
cosðknyÞ

Z t

0

€uqðsÞJ0½kncðt � sÞ�ds; ð30Þ
where cw is the water sound speed, kn ¼ ð2n� 1Þp=ð2HÞ is a wave-
number, and J0 is the Bessel function of the first kind of order zero.
Test data are qw ¼ 1000 kg=m3; cw ¼ 1500 m=s; H ¼ 80 m; b ¼
40 m, and the simulation span is 0 6 t 6 8 s. Finite-element fluid
meshes with characteristic element lengths of Le ¼ 20, 10 and 5 m
were tested. Fig. 6b shows the coarsest mesh with Le ¼ 20 m. The
LLM interface discretization is used, and a plane-wave approxima-
tion (PWA) silent boundary truncates the fluid mesh at L ¼ 300 m.
An acoustic wave travels the domain length (300 m) in only 0.2 s;
calculated response histories at the wall can be influenced by reflec-
tions from the silent boundary.

The applied acceleration is a digital record of El Centro 1940
earthquake NS horizontal component taken from the COSMOS
database [1]. This is shown in Fig. 7a for the first 8 s. Computed re-
sponses for the 3 meshes are plotted in Fig. 7b–d, where they are
compared with the analytical solution. C-, M- and P-error factors
for the LLM-calculated response histories over 0 6 t 6 8 s are listed
at the top of each figure.

We see a clear improvement in LLM-computed responses with
decreasing characteristic element length. For the finest mesh, the
LLM response agrees well with the analytical solution for t < 3 s,
but exhibits significant late-time ringing, especially for t > 5 s. In
order to investigate potential sources for the late-time ringing,
we investigate the effectiveness of the PWA and the effects of
including fluid damping. Fig. 8a shows the LLM and analytical his-
H

y

x

Rigid
dam b

B

Rigid ground ..
q

Ground
acceleration u  (t)

rigid

a b

B

40 m

Fig. 6. Rigid dam benchmark problem for pressure-on-wall code ve
tories of Fig. 7c along with one calculated with no boundary con-
straints at the truncated end rather than a PWA. While solutions
with and without the PWA show good agreement for t < 5 s, there
is significantly more late-time ringing in the absence of the PWA.
This suggests that calculations may be improved through use of a
better silent boundary. Fig. 8b shows the response histories for
Le ¼ 5 m calculated with 0.1% stiffness-proportional damping.
The response solution is significantly better than that without
damping (Fig. 7d); late-time ringing is significantly reduced.

4.4. 1D-model cavitation validation

Under severe ground motions, the effective fluid pressure
(hydrostatic plus dynamic) may drop below the water vapor pres-
sure, producing inertial cavitation [10,36]. For a dam under seismic
action, the phenomenon is typically triggered by the wet face pull-
ing away from the fluid, which produces a rarefaction wave. As the
wave propagates upstream a main cavitation zone develops. The
zone eventually collapses on repressurization, producing closure
shocks. This event sequence has been reported in several articles
and confirmed experimentally [24]. Reference [9] observes that
dam stresses may increase by 20–40% from closure shocks. A
change of this magnitude in tensile stresses may cause crack
growth in a concrete structure.

Within a cavitating volume, the macroscopic bulk modulus K
drops to near zero, while the density qw remains sensibly constant,
and the pressure stays equal to the vapor pressure. A simple but
effective macroscopic constitutive model is a bilinear one, in which
K ¼ 0 if the effective pressure is less than the vapor pressure, and
K ¼ qwc2

w otherwise. The implementation of this model required
extensive changes to the fluid partition solver to handle the nonlin-
ear constitutive behavior. These included modification of element
stiffness computations, switching the time integrator to central
differences, and injection of appropriate numerical damping to
the fluid. The latter item is essential; if damping is not added, spu-
rious numerical oscillations can be observed to break out and
quickly fragment the main cavitation zone. This phenomenon, first
reported in [23] is termed frothing. Technical details may be found
in the prequel paper [35]. For reasons of space, only the validation
problem is presented here.

The Bleich-Sandler plate problem [6] was used for validation of
LLM interface coupling with cavitation. This 1D benchmark prob-
lem, defined in Fig. 9a, is the only known nontrivial cavitation
FSI problem that possesses an analytical solution, which was ob-
tained with the method of characteristics. A semi-infinite column
of acoustic fluid of constant cross section supports a rigid plate
of weight W per unit area. An exponentially-decaying pressure
wave (defined as shown in the figure) propagates upward through
the fluid and impinges on the plate at t ¼ 0 triggering a reflected
rarefaction wave and cavitation. Properties are as follows: water
density qw ¼ 989 kg=m3, sound speed cw ¼ 1451 m=s, gravity
g ¼ 9:81 m=s2, plate weight W ¼ 144:7 kg=m2, atmospheric pres-
20 m

L = 300 m

PWA silent 
boundary

H = 80 m

..
qu  (t)

rification: (a) cross-section schematic, and (b) discretized fluid.
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sure patm ¼ 0:101 MPa, incident-wavefront pressure p0 ¼ 0:710
MPa and characteristic decay time s ¼ 0:99610�3 s. With those
properties the cavitation zone closes after approximately 11 ms.

The fluid was modeled with 100 2D fluid elements, and was
truncated at D ¼ 3:81 m with a PWA silent boundary. To suppress
frothing, numerical Rayleigh damping with a damping matrix,
CFd ¼ aK KFd þ aMMFd, was included in the fluid EOM. Results using
the LLM treatment, with damping coefficients aK ¼ 10�5 and
aM ¼ 0 are shown in Fig. 9b and c. These results agree with the ana-
lytical solution in a manner expected at this fluid refinement level
[15].

4.5. 2D analyses: Koyna gravity dam

4.5.1. Model description
Koyna Dam, pictured in Fig. 10a, is a large concrete gravity dam

located in Maharashtra, India. Built over 1954–1963, it has a height
of 103 m, width of 808 m, volume of 1555 m3 and water storage of
2797 km3. In December 1967 a strong reservoir-induced earth-
quake shook the dam, which developed large downstream cracks
and required major repair work. Ref. [38] remarks: ‘‘The event is
unique because the Koyna Dam is the only concrete dam to be sig-
nificantly damaged due to ground shaking.” Accordingly, this event
has been studied frequently (see, e.g. [8,41]).

Koyna is chosen here as a representative gravity dam. Taking a
typical slice in plane strain allows the use of a 2D model, which
facilitates detailed parametric studies. Specific study goals include
vibration analysis for verifying kinematic continuity, transient
analysis with direct time integration, comparison of different inter-
face treatments, transient analysis with reduced-order modeling,
Fig. 10. Photograph of the Koyna dam (taken from <http://satara.nic.in/htmldocs/
landmarks.htm>).

Fluid

Dam

Interface Frame
Rock Foundation

Fluid silent 
boundary

157 m 

131 m 

Fig. 11. Representative 2D finite-element mo
and analysis of the LLM method in the presence of cavitation. Par-
ticular attention is given to non-matching meshes throughout.

Fig. 11 shows a representative coarse FE model of the coupled
system along with relevant dimensions. Note the use of non-
matching meshes at the fluid-solid interface. The dam and the rock
foundation are assumed linear elastic, isotropic, and homogeneous.
The water is assumed to be acoustic, but cavitation is considered in
Section 4.5.6. Both fluid and structure are modeled with four-node
quadrilateral elements. Meshes are truncated at non-reflecting
boundaries: a PWA silent boundary [34,35] and a viscous-damping
boundary (VDB) [22] are employed for the fluid and rock founda-
tion, respectively.

Physical parameters chosen for the system are as follows. For
the dam concrete: Ec ¼ 31:46� 109 Pa;mc ¼ 0:2 and qc ¼ 2690
kg=m3. For the rock foundation: Er ¼ 18� 109 Pa;mr ¼ 0:2 and
qr ¼ 1830 kg=m3. For the reservoir water: cw ¼ 1439 m=s and
qw ¼ 1019 kg=m3.

4.5.2. Vibration analysis and kinematic continuity
A free-vibration analysis was carried out using the model of

Fig. 11. The analysis of free vibrations is accomplished by removing
all external applied forces in (2), assuming harmonic motion, and
solving the resulting eigenproblem. We note that the global mass
matrix in (2) is singular, since the interface DOF have no mass.
The associated eigenvalues are infinite and have no physical rele-
vance [33]. Their presence causes no difficulties if an eigensolution
procedure such as shifted block Lanczos is used [26]. In addition,
the only non-infinity eigenvalues are the combined systems degree
of freedoms; not the total of the structure partition plus the fluid
partition, as these partitions share some degree of freedoms. These
are resolved by the connection and boolean extraction matrices in
the global stiffness matrix.

Fig. 12 shows representative mode shapes and associated fre-
quencies with the interface treated with LLM and frame nodes
placed to satisfy the ZMR. The lowest frequencies pertain to
fluid-surface gravity waves called ‘‘sloshing modes” of which the
two modes pictured in Fig. 12a and b (6th and 20th, respectively)
are typical instances. (Despite their low frequency, sloshing modes
have a negligible effect on the structure response.) The spectrum
eventually displays more variety with the appearance of acoustic
modes, typified by Fig. 12d,f,i and FSI modes, typified by
Fig. 12c,e,g,j.

Vibration modes that exhibit strong fluid–structure coupling
offer an effective way of visualizing kinematic continuity issues
at the fluid–structure interface. Not maintaining kinematic conti-
nuity increases the risk for spurious interface energy dissipation
[18]. This will be indicated by the interface energy balance errors
listed in Section 4.2.2. In the models studied, normal-displace-
ment continuity at the interface was met when the LLM frame
was discretized either with nodes placed as per the ZMR, or
matching the coarse (structure) mesh nodes. Continuity was vio-
50 m 

Soil silent
 boundary

66 m 
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70 m 

del of the Koyna dam–reservoir system.
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Fig. 12. Representative mode shapes calculated with LLM interface coupling for 10 natural frequencies for the Koyna dam model.
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lated for certain meshes when the LLM frame nodes were collo-
cated to coincide with the refined (fluid) mesh nodes. This viola-
tion with the interface discretized as the refined mesh occurs
when the refined mesh is further refined within a coarse element
such that the refined mesh has an integer number of elements
ðP 2Þ within one coarse element. At the current time, this has
only been studied for linear elements. Fig. 11 depicts a mesh un-
der this condition. Once again, this condition only violates conti-
nuity when the refined mesh is chosen as the discretization for
the interface.

A vibration analysis with the model of Fig. 11 was then done
with point-force Mortar in which multipliers were collocated at
nodes of either the coarse (structure) mesh or the fine (fluid) mesh.
The governing equations were discussed in Section 3.1.1. The basic
findings were:

� Interface kinematic compatibility was verified when the refined
mesh was chosen as master. In fact, the vibration results were
identical to those produced by LLM with frame nodes collocated
at the coarse mesh.
� Interface kinematic compatibility was violated for certain
meshes when the coarse mesh was chosen as master. A typical
result is pictured in Fig. 13. This violation with the coarse mesh
chosen has the master will happen when the refined mesh is fur-
ther refined within a coarse element; such that the refined mesh
has an integer number of elements ðP 2Þ within one coarse ele-
ment. At the current time, this has only been studied for linear
elements.

Reference [18] notes this kind of incompatibility for the Mortar
method in the context of structure-structure interaction (SSI). It
should be observed that the previous result renders dubious the
use of ZMR for point-force Mortar, since that reduces to the
coarse-mesh-as-master choice for certain configurations, e.g. that
of Fig. 11.

A final comparison was done with the DFMT-CCI interface treat-
ment. A kinematic compatibility violation was discovered when
the coarse-mesh displacements were interpolated with the re-
fined-mesh shape functions. This is identical to the results pro-
duced by the LLM method when the frame interface nodes are



Fig. 13. Representative mode shape calculated with the Mortar method where interface kinematic continuity is violated.
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collocated at refined-mesh node locations. The results obtained
with DFMT-CCI when the coarse-mesh displacements were inter-
polated from the refined-mesh displacement were identical to
those produced by LLM when frame interface nodes are collocated
at refined-mesh node locations. This is not surprising since, in es-
sence, DFMT-CCI is effectively projecting the coarse-mesh dis-
placements onto the finer-mesh ones.

Based on the foregoing findings, we offer the following discret-
ization choice guidelines.

(1) If using point-force Mortar, choose the refined mesh as
master.

(2) If using DFMT-CCI, interpolate from the coarse mesh.
(3) If using LLM, collocate frame nodes as per the ZMR or (if that

is too demanding) from the coarse mesh. Avoid frame node
collocation at refined mesh nodes.

4.5.3. Benchmark transient solution
Passing to response simulations, we seek first to obtain con-

verged benchmark solutions with matched meshes for the selected
seismic input. Those are used to validate and assess the error in-
volved in using non-matching meshes as well as to study the effect
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of different interface treatments. For the converged benchmark
solution, two interface treatments are considered:

� LLM with frame nodes collocated at matching boundary nodes.
Trapezoidal rule (TR) time integration is used for both fluid
and structure-soil partitions.

� DFMT-CFA with fluid pressure lumped to structure node forces
and structure node motions directly transferred to the matching
fluid mesh. Central-difference time integration is used for the
fluid whereas the structure-soil partition is integrated by the
TR. Identical time increments are used for the partitions.

An acceleration-scaled version of the 1940 El Centro earth-
quake is chosen as input. The horizontal excitation normal to
the dam is taken to be the North-South (180� Component)
whereas the vertical excitation is that of the Up Component. Both
are taken from the COSMOS database [1]. Unscaled displacement
and acceleration records of the NS component are shown in
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Fig. 16. Example non-matching mesh tested with several interface treatments.
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dam structure as seen in Fig. 12c–f. Fig. 14d shows that the Up
(vertical) acceleration power has a broader frequency range that
is significant up to 20 Hz, with a maximum at about 8 Hz. The
dominant frequencies in the veritcal direction correspond to ver-
tical motions in the foundation as depicted in Fig. 12g–j. As can
be seen, we have selected an earthquake that will significantly
excite the structure.

An examination of mode shapes and associated frequencies
from Fig. 12 indicates that the dominant horizontal frequency be-
gins to affect the dam–fluid system instead of just the sloshing
modes of the fluid, while only the first few dominant modes of
the structure are excited. Hence, we chose this particular earth-
quake as likely to trigger significant FSI effects. The acceleration
data, however, is amplified by 50% to emphasize better differences
between LLM and other coupling methods.

In both LLM and DFMT-CFA interface treatments, spatial FE
meshes were sufficiently refined such that calculated horizontal
dam-crest displacements (relative to the base displacement) were
insensitive to further mesh refinement. Both methods yielded suf-
ficiently converged solutions with the mesh partially depicted in
Fig. 15a. This has a total of 3598 DOF for the coupled system. A
time stepsize of 5 ms for the solution calculated with LLM was cho-
sen; solutions were insensitive to further temporal refinement.
Alternatively, calculations with DFMT-CFA were restricted by the
CFL condition of the central-differences time integration; a time
stepsize of 0.1 ms was employed. The DFMT-CFA treatment em-
ploys artificial damping as described in [15,36] with coefficient
of b ¼ 0:25 used in this study.

Relative and total horizontal crest displacements are shown in
Fig. 15b and c. While differences cannot be seen at plot resolution,
the C-error with the DFMT-CFA solution as the benchmark and LLM
solution as the candidate is 0.02. A C-error less than 0.1 indicates a
good agreement in engineering calculations [16,36].

4.5.4. Non-matching meshes
For the transient analysis with non-matching meshes, three

interface treatment methods are explored: LLM, DFMT-LLM and
DFMT-Mortar. For LLM and DFMT-LLM, three frame-node colloca-
tion variants described below are tried.

A specific example is presented before discussing advantages
and disadvantages. The non-matching mesh shown in Fig. 16 is
tested. Relative crest displacements are obtained under three
variants of the LLM interface treatment in Fig. 17a: frame nodes
(i) collocated at refined mesh (fluid) nodes, (ii) at coarse mesh
(structure) nodes, and (iii) placed as per the ZMR. C-errors are com-
puted using the converged benchmark response of the DFMT-CFA
discussed in Section 4.5.3. The difference between the three variants
is small and agreement with the benchmark solution is satisfactory.
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Fig. 15. Benchmark (a) matching FE mesh, and (b), (c) response simu
Energy conservation at the fluid–structure interface was
checked with the interface error measures introduced in Section
4.2. For the ZMR variant, the average energy error over the 8 s span
was 1:16� 10�7 N m. This is negligible compared to the average
total energy on the structural boundary at the interface, which is
6:78� 106 N m. The other interface treatments gave similar re-
sults. It was found that interface incompatibility was not an issue
even when taking the refined mesh as master for this particular
mesh. Other meshes did exhibit high energy error at the interface
depending on the interface treatment. The only interface treatment
that did not have energy conservation issues regardless of the
mesh was the ZMR method for the LLM and DFMT-LLM. This is ex-
pected due to the findings of kinematic compatibility in Section
4.5.2.

The same model is used with DFMT-LLM, which provides the
relative crest displacement history plotted in Fig. 17b. Again the re-
sults are similar and are in satisfactory agreement with the bench-
mark response. Results for the Mortar treatment are shown in
Fig. 17c for two choices of master face: refined (fluid) and coarse
(structure). No significant differences are observed.

The satisfactory agreement amongst all interface treatments
with the benchmark response is a general indication that the inter-
face equations for the example of Fig. 16 are well conditioned.
There are situations, however, in which a highly refined mesh is
paired with a very coarse mesh. In that case certain master-face
choices, such as that of the coarse mesh for the Mortar treatment,
may cause kinematic continuity problems as discussed in Section
4.5.2.

The foregoing example is but an instance of a systematic study
in which models ranging from roughly 200 to 3500 DOF were run
with the various interface treatments. The results of this extensive
study are summarized in Fig. 18. Each figure shows the C-error
versus the total DOF for a specific treatment. The solid lines are
least-squares best-fit exponential functions. Any simulation that
exhibited a high interface energy balance error is not included in
these results (see Section 4.5.2 for meshes and interface treatments
that cause high interface energy balance errors). Clearly, mesh
refinement reduces the C-error, since refining the structure has
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Fig. 17. Dam crest relative-displacement histories for the non-matching mesh model of Fig. 16 with three interface treatments.
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more influence on the crest displacement error than refining the
fluid, the choice of overall number of DOF for plots can be expected
to be only roughly indicative of the general trend. A frequency re-
sponse analysis indicates that the structure has more influence
over the assembled system for the horizontal frequency excitation
of the input [34].

4.5.5. Reduced-order modeling
The reduced-order model (ROM) technique explained in Section

2.2 is applied to the non-matching mesh model shown in Fig. 19,
Fig. 19. Example non-matching mesh for ROM evaluation.
using the uncoupled fluid and structure eigenmodes as the basis.
The excitation is again the amplified earthquake of Fig. 14.

To evaluate the relative contribution of fluid and structure
modes, three reduction schemes were evaluated. Fig. 20a and b
shows the C-error of ROM calculated response histories with re-
spect to the benchmark DFMT-CFA history. Here, the horizontal
axes indicates the maximum modal frequency, below which all
modes are maintained. Fig. 20a shows C-error for responses cal-
culated with all structure modes, but with a subset of fluid
modes. Likewise, Fig. 20b shows C-error for responses calculated
with all fluid modes, but with a subset of structure modes. Both
figures exhibit convergence to the full-model C-error of about
0.06. Clearly, employing fluid and structure modes with frequen-
cies above 40 Hz and 125 Hz, respectively, has little influence on
calculated response histories. This is expected as the frequency
of the excitation is below 20 Hz. Finally, a transient-response
analysis was carried out with reducing both uncoupled structure
and fluid eigenvectors to 20% of their original number; this in-
cludes fluid and structure modes with frequencies below
15.3 Hz and 111 Hz, respectively. A representative result, plotted
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Fig. 21. Dam crest relative horizontal displacement histories calculated with (a) DFMT-CFA and (b) LLM interface treatments, with and without cavitation effects admitted.
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in Fig. 20c, shows excellent agreement with the benchmark
response.

4.5.6. Cavitation effects
We now present selected results for the transient-response

analysis of the Koyna Dam accounting for cavitation effects. To
trigger significant cavitation, it was found necessary to scale the
El Centro horizontal acceleration data so the maximum horizontal
acceleration reaches approximately 1.5 g. Both the LLM and DFMT-
CFA interface treatments were used, where both employed central-
difference time integration for the fluid as discussed in Section 4.4.
In both cases frothing is suppressed by injection of numerical
damping in the fluid. The DFMT-CFA treatment employs artificial
damping as described in [15,36] with coefficient of b ¼ 0:25,
whereas LLM treatment employs Rayleigh damping of the form
CFd ¼ aK KFd þ aMMFd with aK ¼ 10�3 and aM ¼ 0.

Fig. 21 compares dam-crest displacement histories (relative to
the base displacement) obtained with the two methods, with and
without cavitation admitted. The methods provide similar results;
in fact, by tuning the artificial damping parameters the two could
produce nearly identical displacement histories. Evolution of the
cavitation zone over the 8 s timespan is shown for the LLM calcu-
lations in Fig. 22 with snapshots taken at one-second intervals. The
event sequence as displayed is physically reasonable, since cavita-
(a)  Downstream photo (b) Modeled portion (ro
rigid; fluid not s

Fig. 23. The Morrow Point arch dam: (a) photograph (taken from <http://www.nps.gov/
[11].
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Fig. 24. The Morrow Point dam: (a) dimensions and (b) seis
tion starts near the dam wet face and near the free surface, where
the hydrostatic pressure is lowest, and propagates upstream as
guided by the rarefaction shock.

It can be seen that the LLM and DFMT-CFA treatments produce
similar results. However, the use of the central-difference time-
integrator for the fluid limits the stable step size. This implies that,
assuming the same time stepsize, the LLM interface treatment is
more computationally expensive, because of the additional cost
in solving the interface equations.

4.6. 3D transient analyses: Morrow point arch dam

This section addresses the application of the LLM interfacing
method to a 3D problem with either matching or non-matching
meshes on a curved surface. The benchmark problem is the Mor-
row Point arch dam, pictured in Fig. 23a–c, which has been exten-
sively studied in the literature [11,25,37]. The main focus of the
section is the formation of the interface connection matrices on
the curved surface of the dam–fluid interface.

A detailed model description of the dam can be found in [34].
The FE model is shown Fig. 24a. As input excitation, we selected
the Taft earthquake (Kern County, 21 July 1952) as recorded in
the COSMOS database [1]. The largest acceleration data is applied
in the horizontal downstream direction. Its acceleration and power
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Fig. 25. Morrow Point dam: isoparametric interface mapping used to construct a ZMR-conforming frame.
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calculated with non-matching meshes relative to that calculated with a matching mesh.
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spectrum are shown in Fig. 24b. The other two components are ap-
plied in the vertical and cross-stream directions. Unconventionally,
a one element thick model was used. The one element thick model
is not recommended for an analysis of the dam; however, it was
sufficient to illustrate that the LLM method will work on a curved
surface using the process discussed next.

4.6.1. Interface connection matrices
The generalization of the ZMR to arbitrary non-matching

meshes in 3D connected by delta-function multiplier spaces and
a LLM frame remains an open problem. The ZMR can be readily
used, however, when the interface surface is rectangular and
plane, and element boundary faces are aligned plane rectangles.
If so, the rule is applied in tensor product form along each rectan-
gular direction. Frame elements are taken to be 4-node bilinear
elements.
This simple recipe can be extended to curved surfaces and reg-
ular meshes that can be mapped onto plane rectangles by isopara-
metric mapping. This is applicable to our Morrow Point dam model
since both the structure and fluid volume meshes are fairly regular.
The mapping process is illustrated in Fig. 25, for the case where
structure and fluid boundary meshes have 6� 5 and 8� 6 ele-
ments, respectively. Frame nodes determined by applying the
ZMR along the n and g natural directions are subsequently mapped
back onto the curved interface.

Although the foregoing process appears intricate, the advantage
of constructing a ZMR-conforming frame is the likelihood of having
well conditioned interface equations as well as satisfying a priori
interface-energy conservation. Should the process become too in-
volved for more complicated interface geometries or meshes, there
is always the possibility of picking one face as master to collocate
LLM frame nodes, or using Mortar or DFMT-CCI. The recommenda-
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tions of Section 4.5.2 in regard to master-face selection should be
kept in mind.

4.6.2. Response calculations
The transient-response analyses follow the same process used

in the Koyna dam analyses, as described in Section 4.5.3. First, a
benchmark solution was obtained over a timespan of 15 s with
matching meshes by refining the model in both space and time un-
til the relative crest response did not change to plot accuracy.

The fluid mesh was then modified so that non-matching
meshes occurred at the interface, and the computed responses
were compared to the converged benchmark response. The LLM
scheme with the tensor product form of the ZMR illustrated in
Fig. 25 was used to treat the interaction. Fig. 26 shows four re-
sponses in which the number of fluid nodes at the interface indi-
cates the degree of non-matching. The structure has 63 interface
nodes whereas the fluid ranges from 42 to 108 interface nodes.
The maximum difference between the converged benchmark and
the non-matched simulation over the simulated timespan is is
noted in the figure, as well as the C-error measure. As can be seen,
there is little difference between the matched and non-matched
results.
5. Conclusions

The main objective of the paper is to apply the formulation of
Localized Lagrange multipliers of the prequel paper [35] to the
simulation of actual structures experiencing significant FSI effects,
using 2D and 3D models. In addition, several theoretical and imple-
mentation issues left out of [35] because of space reasons, are re-
viewed and explained in further detail. The additional theory
topics include procedures for reduced-order modeling and a de-
tailed look at the interface treatment by competing dual methods.
In addition to the LLM method, attention is focused on the point-
force Mortar and several direct force–motion transfer (DFMT)
methods. To our knowledge, this is the first study that compares
such a wide range of interfacing techniques, and considers their
relative merits as well as equivalence under certain choices of mul-
tiplier spaces. Of the methods investigated, the LLM with the zero-
moment rule is the only method to possess all of the following
desirable attributes:

(1) Passes force and displacement interface patch tests.
(2) Satisfies interface energy conservation conditions.
(3) Maintains full locality of separate meshes.
(4) Provides an error measure for transient analysis.
(5) Properly handles crossing interfaces.

However, the LLM is one of the most complex methods consid-
ered in the study.

A 2D problem was used to validate the LLM-coupling of an
acoustic fluid to a rigid structure with prescribed displacements.
It was also found that truncating the unbounded fluid domain with
a PWA boundary and adding artificial damping significantly im-
proved fluid calculations. A 1D problem was used to validate the
treatment of cavitation. Because of the small temporal and spatial
scales associated with cavitation, an explicit time-integrator must
be used for the fluid. Coupled with an implicit time-integrator for
the structure, and in the absence of time-step subcycling, calcula-
tions with the LLM can become costly.

Vibration and transient analyses were performed with a 2D
plane-strain model of the Koyna gravity dam. Vibration analyses
with a focus on kinematic continuity at the fluid–structure inter-
faces provided relatively simple selection guidelines for each inter-
face method as follows:
(1) If using point-force Mortar, choose the refined mesh as
master.

(2) If using DFMT-CCI, interpolate from the coarse mesh.
(3) If using LLM, collocate frame nodes as per the ZMR or (if that

is too demanding) from the coarse mesh. Avoid frame node
collocation at refined mesh nodes.

Transient analyses of the Koyna dam explored a comprehensive
range of non-matching mesh interface treatments, including LLM,
Mortar and various forms of DFMT coupling. The principle discov-
ery was that if the zero-moment rule is not used with the LLM
method or the DFMT-LLM coupling method, there is potential for
the occurrence of ill-conditioned interface equations, or energy
conservation violations. A simple reduced-order model (ROM) for-
mulation was tested using a subset of the fluid and structure
uncoupled eigenmodes. Transient analysis results showed that this
choice, when combined with the LLM treatment, to be highly
effective.

The nonlinear effect of fluid cavitation was briefly studied on
the Koyna dam problem. While cavitation had little effect on the
structure response, the primary conclusion is that the DFMT-LLM
scheme appears to be the most effective one in the case of non-
matching meshes. Further studies on the performance of other
combinations on handling nonlinear behavior in the fluid, struc-
ture or both, remain subject of further research.

The paper concludes with the 3D simulations of the Morrow
Point arch dam. Because of the higher computational and model
preparation costs, this analysis was limited to assessing the
effectiveness of the LLM interface treatment of a curved interaction
surface on the transient response to an actual earthquake. A
matched-mesh converged solution was obtained by space-time
refinement. For non-matching meshes, a ZMR-conforming frame
was constructed by appropriate isoparametric mapping and used
in conjunction with the LLM interface treatment. Results showed
satisfactory agreement with the converged solutions.
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