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Abstract This paper presents a set of Mathematica modules that organizes numerical
integration rules considered useful for finite element work. Seven regions are considered: line
segments, triangles, quadrilaterals, tetrahedral, wedges, pyramids and hexahedra. Information
can be returned in floating-point (numerical) form, or in exact symbolic form. The latter is useful
for computer-algebra aided FEM work that carries along symbolic variables. A few quadrature
rules were extracted from sources in the FEM and computational mathematics literature, and
placed in symbolic form using Mathematica to generate own code. A larger class of formulas,
previously known only numerically, were directly obtained through symbolic computations. Some
unpublished non-product rules for pyramid regions were found and included in the collection. For
certain regions: quadrilaterals, wedges and hexahedra, only product rules were included to
economize programming. The collection embodies most FEM-useful formulas of low and moderate
order for the seven regions noted above. Some gaps as regard region geometries and omission of
non-product rules are noted in the conclusions. The collection may be used “as is” in support of
symbolic FEM work thus avoiding contamination with floating arithmetic that precludes
simplification. It can also be used as generator for low-level floating-point code modules in Fortran
or C. Floating point accuracy can be selected arbitrarily. No similar modular collection applicable to
a range of FEM work, whether symbolic or numeric, has been published before.

1. Introduction
The use of symbolic computation in support of computational methods in engineering
and sciences is steadily growing. This is due to technical improvements in
general-purpose computer algebra systems (CAS) such as Mathematica and Maple, as
well as availability on inexpensive personal computers and laptops. (This migration
keeps licensing costs reasonable.) Furthermore, Maple is available as a toolbox of the
widely used Matlab system. A related factor is wider exposure in higher education:
many universities currently have site licences, which facilitate lab access and use of
CAS in course assignments and projects.

In finite element work, CAS tools can be used for a spectrum of tasks: formulation,
prototyping, implementation, performance and evaluation, and automatic code
generation. Although occasionally advertised as “doing mathematics by computer”
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the phrase is misleading: as of now only humans can do mathematics. But a CAS can
provide timely help. Here is a first-hand FEM example: the writer needed four months
to formulate, implement and test the 6-node membrane triangle in the summer and fall
of 1965 as part of thesis work. Using a CAS, a similar process can be completed in less
than a week, and demonstrated to students in 20 min.

The finite elements have developed with CAS support since 1984 – using the
venerable Macsyma for the free formulation elements presented in Bergan and Felippa
(1985) and Felippa and Bergan (1987). The development of templates as a unified
framework for element families (Felippa, 2000, 2003) would not have been possible
without that assistance.

Not all is good news, as can be observed when a beginner comes face-to-face with an
unfamiliar phenomenon: exact versus floating-point work. The dichotomy does not
exist in ordinary numerical computations, which are floating-point based. In computer
algebra work, inadvertent use of just one floating-point number can be the kiss of
death. Why? CAS algebraic expressions tend to “combinatorially explode” in
intermediate stages. The inversion of a symbolic 16 £ 16 matrix results in 16!¼
20922789888000 adjoint terms. How is then one able to get rules in minutes or hours?
Selective simplification. At any sign of combinatorial explosion the human intervenes,
requesting the program to carry out simplifications as appropriate. However a CAS
may, and often will, balk at simplifying expressions that contain a mixture of symbols
and floating-point numbers. A simple example: 3·a 2 3·a will simplify to 0, but
3·a 2 3·a will not.

From experience the following operational rule emerges: avoid mixing
floating-point numbers and symbols in CAS calculations. Proceed to floating-point
only when all expressions are numeric, or in display of final results.

2. General description
2.1 Integration regions
Numerical integration has been a staple of FEM work since the mid 1960s, as narrated
in Section 2.7. While comprehensive collections of formulas for a wide variety of
element regions are currently available, textbooks – and more recently Web sites –
usually tabulate abscissas and weights in floating-point form. As discussed in the
Introduction, this is undesirable for computer-aided symbolic manipulation.

This compilation is organized as a source library of Mathematica modules that store
formulas useful for seven element geometries shown in Figure 1: line segment, triangle,
quadrilateral, tetrahedron, wedge, pyramid and hexahedron. The regions may contain
non-corner geometric nodes as shown in Figure 2. However, one- and two-dimensional
regions must obey the restrictions listed in Table I.

2.2 Restrictions and omissions
The integration formulas collected here are restricted in the following sense:

(1) Formulas with exterior points or negative weights are excluded Only fully
symmetric formulas (in the sense discussed in Section 2.6) are accepted.

(2) Preference is given to formulas for which exact expressions of abscissas and
weights in rational or algebraic-quadratic form are either known or may be
derived. For some high order rules, however, this is not possible and a
“rationalization” procedure is used instead.
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Figure 1.
The seven integration

regions considered in this
compilation. Regions

shown are defined by
corner or end nodes only

Figure 2.
Tabulated rules may be

also used in regions
containing non-corner

geometric nodes. These
must obey, however, the

restrictions of Table I

Region Acronyma C+E+Fb Global coordinates Restrictions

Line segment Line 2 + 1 + 0 x Straight line, along x-axis
Triangle Trig 3 + 3 + 1 x, y Flat: in {x, y} plane, curved sides allowed
Quadrilateral Quad 4 + 4 + 1 x, y Flat: in {x, y} plane, curved sides allowed
Tetrahedron Tetr 4 + 6 + 4 x, y, z None
Wedge Wedg 6 + 9 + 5 x, y, z None
Pyramid Pyra 5 + 8 + 5 x, y, z None
Hexahedron Hexa 8 + 12 + 6 x, y, z None

Notes: aAcronym may be followed by a node count, e.g. Trig10 means a triangle with ten nodes;
bC – corners; E – edges; F – faces

Table I.
Global geometric

properties of integration
regions
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(3) For quadrilaterals, wedges and hexahedra only tensor-product formulas are
included to keep the logic of the modules simple and simplify the production of
anisotropic rules. Non-product formulas for those regions are available in the
literature but are not included in this compilation.

The compilation is admittedly incomplete as regards regions. It lacks polygons with
more than four sides, polyhedra with more than six faces, curved line segments and
non-flat surfaces (e.g. for doubly curved shell elements). It also omits non-product rules
for three regions as noted above.

There are transition polyhedra, produced in 3D mesh generation, that connect a
quadrilateral face on one side to a triangle, line, or apex point on the other. The latter
two regions (wedge and pyramid, respectively) are included. The first one (as yet
unnamed), shown in Figure 3, is excluded as being comparatively rare.

2.3 Organization, access and applications
The collection is organized as seven Mathematica modules, one for each region The
hierarchical organization is shown in Figure 4. Modules for the line segment, triangle,
tetrahedron and pyramid are self-contained. Modules for quadrilaterals, wedges and
hexahedra build formulas as tensor products of lower dimension rules. Information can
be extracted in exact (symbolic) form or in floating-point form, as specified by an input
argument.

All modules are encapsulated in a single Mathematica Notebook, which is an ASCII
file. The file is available from the author on e-mail request. The modules may be used
directly as such, in support of CAS computations, or converted to C, C++ or Fortran
procedures for use in numerical computations. The conversion may be done through

Figure 3.
Omitted transition region

Figure 4.
Hierarchical organization
of the seven integration
rule modules
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output filters such as //CForm and //FortranForm, or by hand. The availability
of exact expressions makes relatively easy to pass, for example, from 64-bit double
precision to 128-bit quadwords as PCs migrate to 64-bit CPUs over the next 10 years.
Expressions may be conveniently made into C macros, C++ inline functions, or
Fortran 90 parameters to force numerical evaluation of abscissas and weights at
compile time.

2.4 Natural coordinates, Jacobian, reference regions
Table II lists natural coordinates used for the different regions, as well as the geometry
definition. The natural coordinates selected are those in common use in the FEM
literature. The region geometry is defined isoparametrically, although element
formulations need not be so. The definition is in terms of n geometric nodes, which for
simple regions are the corners, and n shape functions Ni. The latter are part of shape

Region Natural coordinatesa
Range of natural

coordinates

Iso-P geometry definition in terms
of n geometric nodes and

shape functions Ni

Line segment j j21, 1j jxj ¼ x1 x2 . . . xn
��� ���

N 1

..

.

Nn

2
6664

3
7775

Triangle z1, z2, z3 j0, 1j

1

x

y

2
664

3
775 ¼

1 1 . . . 1

x1 x2 . . . xn

y1 y2 . . . yn

2
664

3
775

N 1

..

.

Nn

2
6664

3
7775

Quadrilateral j, h j21, 1j
x

y

" #
¼

x1 x2 . . . xn

y1 y2 . . . yn

" # N 1

..

.

Nn

2
6664

3
7775

Tetrahedron z1, z2, z3, z4 j0, 1j

1

x

y

z

2
666664

3
777775 ¼

1 1 . . . 1

x1 x2 . . . xn

y1 y2 . . . yn

z1 z2 . . . zn

2
666664

3
777775

N 1

..

.

Nn

2
6664

3
7775

Wedge z1, z2, z3, j zi : j0, 1j, j : j21, 1j same as tetrahedron
Pyramid j, h, m j 2 1, 1j same as hexahedron

Hexahedron j, h, m j 2 1, 1j

x

y

z

2
664

3
775 ¼

x1 x2 . . . xn

y1 y2 . . . yn

z1 z2 . . . zn

2
664

3
775

N 1

..

.

Nn

2
6664

3
7775

Note: aNC constraints: z1 þ z2 þ z3 ¼ 1 for triangles and wedges, z1 þ z2 þ z3 þ z4 ¼ 1 for
tetrahedral

Table II.
Natural coordinates and
isoparametric geometry

definition
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function modules and not covered here. The Jacobian matrices that relate Cartesian to
natural coordinates, and the associated Jacobian determinant J, are defined in Table III.

If J is constant, the integration region is said to be a constant metric region, or CMR.
If so J is directly related to the volume (area, length) measure of the region, as listed in
the last column of Table III. The presence of scaling factors is due to the [21, 1] range
of natural coordinates used in four of the regions; e.g. J ¼ ð1=4ÞA and J ¼ ð1=8ÞV for
constant-metric quadrilaterals and hexahedra, respectively. The pyramid cannot be a
CMR because j ¼ 0 at the apex.

A reference region or RR is one of particularly simple geometry over which the
integration rules are developed. For example, the quadrilateral RR is a rectangle of side
lengths a and b. For all RR except the pyramid J is constant. The reference pyramid,
defined in Section 8, has a J with simple polynomial dependence on the distance from
the apex.

If the dimensions of the RR are simple numbers, it is called a unit reference region or
URR. For example, the quadrilateral URR is the square of side 2.

Region Jacobian matrix Determinant J for CMR

Line segment J ¼ ½xi›Ni=›j� J ¼ det½J� 1
2 L

Triangle J ¼

1 1 1

xi›Ni=›z1 xi›Ni=›z2 xi›Ni=›z3

yi›Ni=›z1 yi›Ni=›z2 yi›Ni=›z3

2
664

3
775 J ¼ 1

2 det½J� A

Quadrilateral J ¼
xi›Ni=›j xi›Ni=›h

yi›Ni=›j yi›Ni=›h

" #
J ¼ det½J� 1

4 A

Tetrahedron J ¼

1 1 1 1

xi›Ni=›z1 xi›Ni=›z2 xi›Ni=›z3 xi›Ni=›z4

yi›Ni=›z1 yi›Ni=›z2 yi›Ni=›z3 yi›Ni=›z4

zi›Ni=›z1 zi›Ni=›z2 zi›Ni=›z3 zi›Ni=›z4

2
666664

3
777775 J ¼ 1

6 det½J� V

Wedge J ¼

1 1 1 1

xi›Ni=›z1 xi›Ni=›z2 xi›Ni=›z3 xi›Ni=›j

yi›Ni=›z1 yi›Ni=›z2 yi›Ni=›z3 yi›Ni=›j

zi›Ni=›z1 zi›Ni=›z2 zi›Ni=›z3 zi›Ni=›j

2
666664

3
777775 J ¼ 1

2 det½J� 1
2 V

Pyramid same as hexahedron N/A

Hexahedron J ¼

xi›Ni=›j xi›Ni=›h xi›Ni=›m

yi›Ni=›j yi›Ni=›h yi›Ni=›m

zi›Ni=›j zi›Ni=›h zi›Ni=›m

2
664

3
775 J ¼ det½J� 1

8 V

Notes: V¼volume of 3D region, A ¼ area of 2D region, L ¼ length of line segment. Pyramid cannot
be CMR. Summation convention over i assumed in expressions of J

Table III.
Jacobian matrices and
determinants
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2.5 Integration rule notation
Denote the domain of integration by V. The set of k natural coordinates is generically
written as array b ¼ {b1; . . .bk}:

An integration rule with p points is defined by p abscissas bi and corresponding
weights wi, for i ¼ 1; . . .p: The position located by the abscissas bi is called a sample
point or integration point.

Application of the rule to a function F(b) expressed in natural coordinates results in:Z
V

FðbÞ dV <
Xp
i¼1

wi J i FðbiÞ; ð1Þ

where J i ¼ J ðbiÞ is the Jacobian determinant evaluated at the ith sample point. In FEM
work F is usually a matrix (in stiffness or mass computations) or a vector (in force
computations).

A formula is said of degree d if it integrates exactly all natural-coordinate
monomials of the form b

i1
1 . . .b

ik
k ; i1 þ ��� ik # d; over a CMR.

If the region has no CMR multiple definitions of degree are possible. For the
pyramid two definitions are given in Section 8.

2.6 Symmetry and stars
All formulas implemented in the modules are fully symmetric in the sense of being
observer invariant. More precisely: the same result must be obtained if the geometric
nodes are cyclically renumbered, which changes the natural coordinates (Stated
mathematically: the integral (1) remains invariant under all affine transformations of
the region into itself). Translating this invariance requirement to the different regions
gives the conditions listed in Table IV.

To give an example, consider the triangle. Suppose the ith sample point has natural
coordinates z1i, z2i, z3i linked by z1i þ z2i þ z3i ¼ 1: Then all points obtained by
permuting the three indices must be also sample points and have the same weight wi.
If the three values are different this gives six sample points:

{z1i; z2i; z3i}; {z1i; z3i; z2i}; {z2i; z1i; z3i}; {z2i; z3i; z1i}; {z3i; z1i; z2i}; {z3i; z2i; z1i}:

ð2Þ

This set is said to form a sample point star or simple star, which is denoted by S111.
If two values are equal, the set (2) coalesces to three different points, and the star is

Region
If sample point
i has coordinates

These must be sample points
with same weight: Sample point stars

Line segment jI ^ji S2, S11

Triangle z1i, z2i, z3i P123(z1i, z2i, z3i) S3, S21, S111

Quadrilateral ji, hi ^j, ^h {S2, S11}£{S2, S11}
Tetrahedron z1i, z2i, z3i, z4i P1234(z1i, z2i, z3i, z4i) S4, S31, S22, S211, S1111

Wedge z1i, z2i, z3i, ji P123(z1i, z2i, z3i), ^ji {S3, S21, S111}£{S2, S11}
Pyramid ji, hi, mi ^ji, ^hi (no condition on m) {S2, S11}£{S2, S11}£Sm
Hexahedron ji, hi, mi ^ji, ^hi, ^mi {S2, S11}£{S2, S11}£{S2, S11}

Notes: P123(.): the set of 3! Permutations of natural coordinate subscripts 1, 2, 3. Likewise for P1234

Table IV.
Symmetry conditions on

integration rules

FEM integration
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denoted by S21. Finally if the three values coalesce, which can only happen for the
centroid z1i ¼ z2i ¼ z3i ¼

1
3 ; the set (2) reduces to one point and the star is denoted

by S3.
Possible stars for symmetric rules are enumerated in the last column of Table IV.

When stars are built as tensor products over individual natural coordinates, the
symbol £ is used.

2.7 Historical sketch, Web resources
Numerical integration came into FEM by the mid-1960s. Five triangle integration
rules were tabulated in Felippa’s (1966, pp. 38-9) thesis. These were gathered from
three sources: two early papers on simplicial integration rules (Hammer and Stroud,
1956, 1958) and Section 25.4 of the Handbook of Mathematical Functions
(Abramowitz and Stegun, 1964). They were adapted to FEM by converting
Cartesian abscissas to triangle natural coordinates. The table has been reproduced
as Table 8.2 of Zienkiewicz (1971) since its second edition and, with corrections and
additions, on Strang and Fix (1973, p. 184). Compilation of tetrahedral rules lagged
behind.

Gauss product formulas for quadrilaterals and hexahedra (bricks) were forcefully
advocated by Irons (1966) and Irons and Ahmad (1980) as key ingredient of the
isoparametric formulation he created. In doing so he converted the range of the natural
coordinates originally defined by Tiag and Kerr (1964) from [0, 1] to [21, 1] to simplify
fit to tables. Irons also recommended the use of non-product formulas for high order
hexahedra (Irons, 1971).

On the numerical analysis side, Stroud’s monograph (Stroud, 1971) is regarded as
“the bible” in the topic of numerical cubature. That book gathers most of the formulas
known by 1970, as well as references until that year (Only a small fraction of Stroud’s
tabulated rules, however, are suitable for FEM work). The collection has been
periodically kept up to date by Cools (1999a, b, 2003), who also maintains a dedicated
Web site: http://www.cs.kuleuven.ac.be/~nines/research/ecf/
ecf.html. This site provides rule information in 16- and 32-digit floating-point
accuracy for many geometries and dimensionalities – far more than those treated here
– as well as a linked “index card” of references to source publications.

3. Line segment
3.1 One-dimensional Gauss rules
The Mathematica module LineGaussRuleInfo listed in Figure 5 returns exact or
floating-point information for the first five 1D Gauss rules, whose sample points are the
zeros of the Gauss-Legendre polynomials. The basic properties of these rules are
summarized in Table V.

To extract information for the ith point of the pth rule, in which 1 # i # p and
p ¼ 1; . . .; 5; the module is invoked as:

{xi;w} ¼ LineGaussRuleInfo½{p;numer};i�

Here, logical flag number is True to get numerical (floating-point) information, or
False to get exact information in the form of rational or algebraic numbers.
LineGaussRuleInfo returns the sample point abscissa ji in xi and the weight wi

in w. For example, LineGaussRuleInfo[{3,False},2] returns {0, 8/9}.
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But LineGaussRuleInfo[{3,True},2], under default working precision of
10216, returns {0.0, 0.8888888888888889}. If p is not 1 through 5, the
module returns {Null,0}.

The p-point rule has degree d ¼ 2p2 1: Abscissas and weights are available in
handbooks. For example, Table 25.4 of Abramowitz and Stegun (1964) tabulates rules
with up to 96 points. For p ¼ 6 and 7 abscissas and weights can be exactly given in
terms of radicals but the expressions are exceedingly complex and difficult to simplify.
If p $ 8 only numerical values are available. Line rules with more than 5 points,
however, are rarely used in FEM work.

3.2 Application example
Suppose one wants the consistent translational mass matrix of a tapered,
Bernoulli-Euler, two-node plane beam element with transverse displacements w
defined by the standard cubic shape functions. The cross section A is interpolated
linearly from the end areas A1 and A2. The integrand rANNT, where r is the mass
density and N the shape function matrix, is of order 7 in the natural coordinate j. This
should be integrated exactly by line-segment Gauss rules of 4 or more points. The
Mathematica module listed in Figure 6 implements the symbolic computation of M (e)

using Gauss rules 1 through 5 points. The mass matrix returned by p ¼ 4 and 5 is
shown in Figure 7. The reproducing-matrix effect provides a good check of
implementation correctness.

Ident Stars Points Degree

1 S2 1 1
2 S11 2 3
3 S2 +S11 3 5
4 2S11 4 7
5 S2 + 2S11 5 9

Table V.
Line segment Gauss

formulas

Figure 5.
Line-segment Gauss

integration rule
information module

FEM integration
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4. Triangles
Symmetric integration rules over triangles must be of non-product type. Sample point
stars S3, S21 and S111 have 1, 3, or 6 points, respectively, as discussed in Section 2.6.
Consequently, symmetric rules can have i þ 3jþ 6k points, where i, j, k are
non-negative integers and i is 0 or 1. This restriction excludes low-order rules with 2, 5,
8, 10 and 11 points.

Table VI lists seven FEM-useful rules for the triangle geometry. All of them comply
with the requirements listed in Section 2.2. These rules are implemented in the
Mathematica module TrigGaussRuleInfo shown in Figure 8. The
implementation is self-contained.

The module is called as

{{zeta1;zeta2;zeta3};w} ¼ TrigGaussRuleInfo½{rule;numer};i�

ð3Þ

The module has three arguments: rule, numer and i.
The first two are grouped in a two-item list. Argument rule: 1, 3, 23, 6, 26, 7 or

12, identifies the integration formulas as follows. Abs [rule] is the number of
sample points. If there are two useful rules with the same number of points, the most
accurate one is identified with a positive value and the other one with a minus sign. In
the case of the triangle this happens for rules with 3 and 6 points. The degree 2 rule
identified as þ 3 has three interior points. The mid-point rule is identified as 23 also
has degree 2 but is less accurate. For six points rule ¼ 6 gives a formula of degree 4
whereas if rule ¼ 26 a degree 3 formula, which is a linear combination of the þ 3
and 23 rules, is selected.

Logical flag number is set to True or False to request floating-point or exact
information, respectively, for rules with 1-7 points. As regards the 12-point rule see
below.

Argument i is the index of the sample point, which may range from 1 through
Abs [rule].

Figure 7.
Exact transitional mass
matrix produced by rules
with 4 and 5 points

Figure 6.
Module for computing the
transitional mass matrix
of a tapered beam with
Gauss rule order as
parameter
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Ident Stars Points Degree Comments

1 S3 1 1 Centroid rule, useful for Trig3 stiffness
3 S21 3 2 Useful for Trig6 stiffness and Trig3 mass

23 S21 3 2 Midpoint rule, simpler but less accurate that þ3
6 2S21 6 4 Useful for Trig10 stiffness and Trig6 mass

26 2S21 6 3 A linear combination of þ3 and 23 rules
7 S3 + 2S31 7 5 Radon’s formula, also useful for Trig10 stiffness

12 2S21 + S111 12 6 Useful for Trig10 mass; exact form not available

Note: The 4- and 13-point symmetric rules, listed in some FEM books, have one negative weight.
There is a 12-point rule degree 7 with internal points, but it is fully symmetric

Table VI.
Triangle integration

formulas

Figure 8.
Triangle integration rule

information module

FEM integration
formulas
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The module returns the list {{z1, z2, z3}, w}. Here z1, z2, z3 are the triangular
coordinates of the sample point, stored in {zeta1, zeta2, zeta3}, and w is the
integration weight, placed in w. For example, the call TrigGaussRuleInfo[{3,
False},1] returns {{2/3,1/6,1/6},1/3}. If rule is not that of an
implemented formula the module returns {{Null, Null, Null},0}.

Exact data for the 12-point rule is not available because abscissas are roots of a
sixth order polynomial. Their values are given as floating-point numbers with 36-place
accuracy. If flag number is False, abscissas are converted to rational numbers that
represent them to 16 place accuracy, using the built-in function Rationalize. The
weights are recovered from the abscissas. The conversion precision can be adjusted
through the value of internal variable eps, which is set in the module preamble. This
rationalization procedure should be used with care since it may lead to unwieldy
fractions in the results; postprocessing those into simple fractions requires substantial
CAS expertise.

5. Quadrilaterals
Only Gauss product rules are implemented for quadrilaterals. Although symmetric
non-product rules can be useful to speed up high order element formation in numerical
FEM codes, they are omitted here to keep the logic simple, and to facilitate production
of anisotropic rules.

Product rules are obtained by applying the one-dimensional rules to each natural
coordinate direction: j andh, in turn. They are implemented in the Mathematica module
QuadGaussRuleInfo shown in Figure 9 as tensor products of one-dimensional rules
with 1-5 points. This module calls LineGaussRuleInfo twice. If the number of
points along j and h is the same, the rule is called isotropic, and anisotropic otherwise.
The five isotropic rules available from QuadGaussRuleInfo are listed in Table VII.

For an isotropic p £ p rule the module is called in either of two ways:

Ident Product rule Points Degree Comments

1 1 £ 1 1 1 Used is reduced and selective integration
2 2 £ 2 4 3 Useful for Quad4 stiffness and mass
3 3 £ 3 9 5 Useful for Quad9 stiffness and mass
4 4 £ 4 16 7 Useful for Quad16 stiffness and mass
5 5 £ 5 25 9 Rarely used

Note: Anisotropic rules, such as 2 £ 1, are requested using a two-entry identifier

Table VII.
Isotropic Gauss-product
formulas for
quadrilaterals

Figure 9.
Quadrilateral integration
rule information module

EC
21,8

878



{{xi;eta};w} ¼ QuadGaussRuleInfo½{p;numer}; {i;j}�

{{xi;eta};w} ¼ QuadGaussRuleInfo½{p;numer}; m�
ð4Þ

The first form is used to get information for point {i, j} for the p £ p rule, in which
1 # i # p and 1 # j # p: The second form specifies the sample point by a “visiting
counter” m that runs from 1 through p

2, if so i and j are internally extracted as
j ¼ Floor½ðm2 1Þ=p� þ 1 and i ¼ m2 p* ðj2 1Þ:

For an anisotropic rule with p1 points in the j direction and p2 points in the h
direction, the module may be called also in two ways:

{{xi;eta};w} ¼ QuadGaussRuleInfo½{{p1;p2};numer}; {i;j}�

{{xi;eta};w} ¼ QuadGaussRuleInfo½{{p1;p2};numer}; m�
ð5Þ

In the first form i runs from 1 to p1 and j from 1 to p2. In the second form m runs from
1 to p1p2; if so i and j are extracted by j ¼ Floor½ðm2 1Þ=p1� þ 1 and i ¼
m2 p1* ði2 1Þ:

In all four forms flag number is set to True if floating-point information is desired
and to False if exact information is desired.

The module returns ji and hj in xi and eta, respectively, and the weight product
wi wj in w. If the number of points is outside the range of the implementation, the
module returns {{Null, Null},0}.

For example: QuadGaussRuleInfo[{3,False},(2,3)] returns
{{0,Sqrt[3/5]},40/81}.

6. Tetrahedra
As in the case of the triangle, fully symmetric integration rules over tetrahedra must be
of non-product type. Sample point stars S4, S31, S22, S211 and S1111 have 1, 4, 6, 12 or 24
points, respectively. Thus possible rules can have i þ 4jþ 6kþ 12l þ 24m points,
where i, j, k, l, m are non-negative integers and i is 0 or 1. This restriction exclude rules
with 2, 3, 8 and 11 points. Table VIII lists nine FEM-useful rules for the tetrahedral
geometry, all of which comply with the requirements listed in Section 2.1.

The rules of Table VIII are implemented in a Mathematica module called
TetrGaussRuleInfo. Because of its length the module logic is split in two-figures:
Figures 10 and 11. The implementation is self-contained. The module is invoked as

{{zeta1;zeta2;zeta3;zeta4};w}¼TetrGaussRuleInfo½{rule;numer};i�

ð6Þ

The module has three arguments: rule, numer and i. The first two are grouped in a
two-item list.

Argument rule, which can be 1, 4, 8, 28, 14, 214, 15, 215 or 24, designates the
integration formula as follows. Abs [rule] is the number of sample points. If there
are two useful rules with the same number of points, the most accurate one is identified
with a positive value and the other one with a minus value. For example, there are two
useful 8-point rules. If rule ¼ 8 a formula with all interior points is chosen.
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Ident Stars Points Degree Comments

1 S4 1 1 Centroid formula, useful for Tetr4 stiffness
4 S31 4 2 Useful for Tetr4 mass and Tetr10 stiffness
8 2S31 8 3

28 2S31 8 3 Has corners and face centers as sample points
14 2S31 + S22 14 4 Useful for Tetr10 mass; exact form unavailable

214 2S31 + S22 14 3 Has edge midpoints as sample points
15 S4 + 2S31 + S22 15 5 Useful for Tetr21 stiffness

215 S4 + 2S31 + S22 15 4 Less accurate than above one
24 3S21 +S211 24 6 Useful for Tetr21 mass; exact form unavailable

Note: The five-point, degree-3, symmetric rule listed in some FEM textbooks has a negative weight

Table VIII.
Tetrahedra integration
formulas

Figure 10.
Tetrahedral integration
rule information module,
part 1 of 2
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If rule ¼ 28 a formula with sample points at the four corners and the four face
centers (less accurate but simpler and easy to remember) is picked.

Logical flag numer is set to True or False to request floating-point or exact
information, respectively, for rules other than +14 or +24. For the latter see below.

Argument i is the index of the sample point, which may range from one through
Abs [rule].

The module returns the list {{z1, z2, z3, z4}, w}, where z1, z2, z3, z4 are the natural
coordinates of the sample point, and w is the integration weight. For example,
TetrGaussRuleInfo [{4,False},2] returns {{(52Sqrt[5])/20,
(5+3*Sqrt[5])/20,(5 2 Sqrt[5])/20,(5 2 Sqrt[5])/20},1/4}.

If rule is not implemented the module returns {{Null,Null,Null,
Null},0}.

Exact information for rules +14 and +24 is either unknown or only partly known.
For these the abscissas are given in floating-point form with 36 exact digits. If flag
numer is False, the abscissas are converted to rational numbers that represent the
data to 16 place accuracy, using the built-in function Rationalize. Weights are
recovered from the abscissas. The conversion precision can be changed by adjusting
the value of internal variable eps, which is set in the module preamble.

Figure 11.
Tetrahedral integration

rule information module,
part 2 of 2
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7. Wedges
Wedge regions, also called pentahedra (an incorrect term, since the pyramid also has
five faces) and triangular prisms, appear in FEM meshes as transition elements. Wedge
integration rules are of product type. They are constructed as a tensor product of:

(1) triangle rules for the triangular cross sections, which have natural coordinates
{z1, z2, z3}, by invoking TrigGaussRuleInfo, and

(2) one-dimensional Gauss rules for the longitudinal (prismatic) direction, which
has natural coordinate j, by invoking LineGaussRuleInfo.

Module WedgGaussRuleInfo, shown in Figure 12, can return any combination of
the seven rules implemented in TrigGaussRuleInfo and the five rules in
LineGaussRuleInfo. It is invoked as

{{zeta1;zeta2;zeta3;xi};w}¼ WedgGaussRuleInfo½{{p1;p2};

numer};{i1;i2}�

{{zeta1;zeta2;zeta3;xi};w}¼ WedgGaussRuleInfo½{{p1;p2};

numer};i�

ð7Þ

The first argument is an integer pair: {p1,p2}. Here p1 ¼ 1; 3,23, 6,26, 7,
12 specifies the triangle rule and p2 ¼ 1; 2, 3, 4, 5 the line-segment rule,
respectively. The total number of points is Abs [p1]*p2. The degree of the rule is the
minimum of the degree of the triangle rule and of the line segment rule. For example, if
the argument is {7, 4}, the degree is minð5; 7Þ ¼ 5:

Argument numer is a logical flag specifying floating-point information if True
and exact information if False.

The last argument may be a two-integer list: {i1, i2}, or a single integer: i. In the
first form i1 is interpreted as triangular rule point index, which can vary from 1 to
Abs [p1], whereas i2 is the line-segment rule point index, which can vary from 1 to
p2. In the second case i is an overall “visiting index” which varies from 1 through Abs
[p1]*p2.

The module returns {{z1, z2, z3, j}, w} where {z1, z2, z3} are the triangular
coordinates over the cross section, and j the natural line coordinate in the longitudinal
direction.

If the rule argument does not match a pair of implemented rules, the module
returns {{Null, Null, Null, Null}, 0}.

Figure 12.
Wedge integration rule
information module

EC
21,8

882



8. Pyramids
Unlike the other regions, there is scant information as regards closed-form, low-order
integration rules for pyramids. For this reason this geometry is treated in more detail
than the others.

8.1 Pyramid geometry
Pyramid solid elements are useful as transitions between bricks and tetrahedra in
automated 3D mesh generation Figure 13 shows three configurations useful for such
objective:

Pyra5. A 5-node pyramid element useful as transition between Hexa8 and
Tetr4.

Pyra13. A 13-node pyramid element obtained from Pyra5 by adding eight
midside nodes. Useful as transition between Hexa20 (serendipity brick) and Tetr10.

Pyra14. A 14-node pyramid element derived from Pyra13 by injecting a node at
the center of the quadrilateral face. Useful as transition between Hexa27 (Lagrangian
brick) and Tetr10.

The geometry of a pyramid is shown in Figure 14. The region has five corners, eight
edges and five faces. One of the faces is a quadrilateral, called the base, which may be
warped. The corner opposite to the base is the apex. Four triangular faces, called apex
faces, meet at the apex. The apex faces are planar in Pyra5 but may be warped in
Pyra13 and Pyra14. By analogy to pyramidal monuments, the normal distance from
the quadrilateral base to the apex is called the height. The line joining the base center
with the apex is the apex axis. This apex direction is not generally normal to the base.
The shape functions for Pyra5 are:

N 1 ¼
1

8
ð1 2 jÞð1 2 hÞð1 þ mÞ; N 2 ¼

1

8
ð1 þ jÞð1 2 hÞð1 þ mÞ;

N 3 ¼
1

8
ð1 þ jÞð1 þ hÞð1 þ mÞ; N 4 ¼

1

8
ð1 2 jÞð1 þ hÞð1 þ mÞ;

and N 5 ¼
1

2
ð1 2 mÞ:

The reference pyramid (RP) has a flat rectangular base with side lengths a and b, and
apex direction normal to the base with height h. The Jacobian matrix and Jacobian
determinant of a RP are:

Figure 13.
Three useful nodal

configurations of pyramid
elements
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J ¼

1
4 að1 2 mÞ 0 0

0 1
4 bð1 2 mÞ 0

2 1
4 aj 2 1

4 bh
1
2 h

2
666664

3
777775;

J ¼ detJ ¼
1

32
abhð1 2 mÞ2:

ð8Þ

Unlike the other reference regions, J varies. It depends quadratically on 12m. At
m ¼ 1; J ¼ 0: Consequently the inverse Jacobian, which appears in the computation of
Cartesian derivatives of shape functions, is undefined at the apex.

8.2 Integration rules
The pyramid is the only region for which information on two types of rules is provided

Conical Product Rules, or CPR. These are tensor products of standard quadrilateral
rules along the {j, h} directions at sections m ¼ const, with one-dimensional Gauss
rules having kernel (1 2 m)2 along the apex direction. The latter appear as ingredient
of rules for general 3D cone-shaped regions; thus the name. A CPR is said to be
isotropic if the number of points in the j, h and m directions is the same, and
anisotropic otherwise.

Non-product rules. These comply with the symmetry requirements of Table IV but
cannot be classified as CPR. They are listed here since they are believed to be new.
Except for the 5- and 13-point rules, their usefulness for FEM work is still unclear.

Table IX lists the nine pyramid integration rules implemented here. Four of them
are CPR (one is anisotropic) whereas five are of non-product type. Two definitions of
degree are used in that table. The ordinary definition agrees with that given in Section
2.5: a formula has degree d if it integrates exactly all monomials of the form j ih jm k; i þ
jþ k # d; over a RP. A formula has degree �d if it integrates exactly all monomials of
the form j i h j m k, with minði þ j; kþ 2Þ # �d over a RP. The second definition
accounts better for the fact that J varies quadratically in m over a reference pyramid.

Module PyraGaussRuleInfo, shown in Figures 15 and 16, implements the nine
rules of Table IX. The module is invoked as:

{{xi;eta;mu};w} ¼ PyraGaussRuleInfo½{rule;numer}; i� ð9Þ

Figure 14.
Geometric information for
pyramid element
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Argument rule, which can be 1, 5, 6, 8, 28, 9, 13, 18 or 27, designates the integration
formula as follows. Abs[rule] is the number of sample points. If there are two
useful rules with the same number of points, the most accurate one is identified with a
positive value and the other one with a minus value. For the pyramid region this only
happens for the 8-point rules. If rule ¼ 8 an isotropic CPR formula is chosen.
If rule ¼ 28 a non-product formula is picked.

If the number of points is 1 through 18, numer is a logical flag specifying
floating-point information if True, and exact information if False. For the 27-point
rule see below.

Figure 15.
Pyramid integration

rule information module:
part 1 of 2

Ident Points Degreea Comments

1 1 1,1 Isotropic CPR: gives correct RP volume
5 5 2,3 Useful for Pyra5 stiffness and mass
6 6 2,3
8 8 3,3 Isotropic CPR: useful for Pyra13 and Pyra14 stiffness

28 8 2,3
9 9 2,3

13 13 2,3 Useful for Pyra13 and Pyra14 mass
18 18 3,3 Anisotropic CPR; ditto
27 27 5,5 Isotropic CPR

Note: aDegree given as pair d, �d: Refer text for definitions
Table IX.

Pyramid integration rules
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Argument i is the index of the sample point, which can vary from 1 through Abs
[rule].

If rule ¼ 27, exact information for the m coordinates of the abscissas is not given.
These are roots of a cubic Jacobi polynomial in m, cf. Table 25.8 of Abramowitz and
Stegun (1964), with three real roots; thus the exact expressions contain cubic roots of
complex numbers. Such forms are difficult to simplify in symbolic work. Instead the m
abscissas are listed in floating-point form with 36 exact digits. If flag numer is
False, those abscissas are converted to rational numbers that represent the data to 16
place accuracy, using the built-in function Rationalize. Weights are recovered
from the abscissas. The conversion precision can be changed by adjusting the value of
internal variable eps, which is set in the module preamble.

8.3 Application example
The example illustrates the computation of the lumped mass matrix of a reference
Pyra5 element using the HRZ mass lumping scheme (Hinton et al., 1976). The symbolic
computation of the lumped mass is implemented as shown in Figure 17. Five rules are
placed in a For loop: 1, 5, 8, 18 and 27 points. The lumped mass for the three
freedoms of the apex node is garabh while for the four base nodes is gbrabh. Here r is
the mass density whereas ga, gb are dimensionless coefficients to be determined. As an
implementation check, ga þ 4gb ¼ 1=3 because the total mass of the reference pyramid
is 1

3 rabh: The results are collected in Table X. The rules with 8, 18 and 27 points give

Figure 16.
Pyramid integration
rule information module:
part 2 of 2
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aa ¼ 3=13; which means that (9/13)th of the total mass (roughly 70 per cent) goes to the
apex node. Analytical integration, which is possible for the reference pyramid, gives
the same answer.

For a Pyra13 or Pyra14 element, a similar process only reaches exactness at 27
integration points.

9. Hexahedra
Only rules of product type are implemented for hexahedra. As in the case of
quadrilaterals, symmetric non-product rules can be used to speed up high order
element formation in numerical FEM codes. These are omitted here to keep the logic
simple, and to facilitate production of anisotropic rules.

Product rules are obtained by applying the one-dimensional rules to each of the three
natural coordinate directions: j, h and m, in turn. They are implemented in the
Mathematica module HexaGaussRuleInfo shown in Figure 18 as tensor products
of one-dimensional rules with 1-5 points. HexaGaussRuleInfo calls
LineGaussRuleInfo thrice. If the number of points along j, h and m is the same,
the rule is called isotropic, and anisotropic otherwise. Anisotropic rules are important in
thick shell elements constructed by degenerating hexahedra along a thickness direction.

Figure 17.
Module to form

lumped mass matrix of
reference Pyra5 element

using the HRZ scheme

Rule ga gb Check: ga + 4gb

1 4/15 1/60 1/3
5 12500/48631 11131/583572 1/3
8 3/13 1/39 1/3

18 3/13 1/39 1/3
27 3/13 1/39 1/3

Table X.
Results from the lumped

mass Pyra5 analysis
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The five isotropic rules available from HexaGaussRuleInfo are listed in
Table XI. For isotropic rules the module is invoked in either of two ways:

{{xi;eta;mu};w} ¼ HexaGaussRuleInfo½{p;numer}; {i;j;k}�

{{xi;eta;mu};w} ¼ HexaGaussRuleInfo½{p;numer}; m�
ð10Þ

The first form is used to get information for point {i, j, k} of the p £ p £ p rule, in which
1 # i # p; 1 # j # p and 1 # k # p: The second form specifies that point by a
“visiting counter” m that runs from 1 through p 3; if so i, j and k are internally extracted
from m.

If the integration rule has p1, p2 and p3 points in the j, h and m directions,
respectively, the module may be also invoked in two ways:

{{xi;eta;mu};w} ¼ HexaGaussRuleInfo½{{p1;p2;p3};numer};

{i;j;k}�{{xi;eta;mu};w} ¼ HexaGaussRuleInfo

½{{p1;p2;p3};numer}; m�

ð11Þ

In the first form i, j and k run from 1 to p1, p2 and p3, respectively. In the second form m
runs from 1 to p1 p2 p3; if so i, j and k are extracted from m as shown in the module logic.

In all four forms flag numer is set to True if floating point numerical information
is desired and to False if exact information is desired.

The module returns ji, hj and mk in xi, eta, and mu, respectively, and the weight
product wiwjwk in w. If the number of points is outside the range of the implementation,
the module returns {{Null, Null, Null}, 0}.

Ident Product rule Points Degree Comments

1 1 £ 1 £ 1 1 1 Useful in reduced and selective integration
2 2 £ 2 £ 2 8 3 Useful for Hexa8 stiffness and mass
3 3 £ 3 £ 3 27 5 Useful for Hexa20 and Hexa27 stiffness and mass
4 4 £ 4 £ 4 64 7 Rarely used
5 5 £ 5 £ 5 125 9 Rarely used

Note: Anisotropic rules, such as 2 £ 1 £ 3, are requested using a three-entry identifier

Table XI.
Isotropic Gauss-product
formulas for hexahedra

Figure 18.
Hexahedron integration
rule information module
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10. Conclusions
The present compilation is selective and far from exhaustive gaps and omissions are
noted in Section 2.2. The hierarchical configuration, however, supports extendibility in
the sense that adding more rules to individual modules (or additional modules for other
regions) is not a major undertaking. The organization also facilitates selective low-level
code generation using, for example, the //CForm or //FortranForm output
filters of Mathematica.

The contribution in terms of new results includes the following.

(1) Exact expressions are supplied for several rules only available numerically in
the literature. These tend to be of moderate degree, typically 3, 4 or 5. Exact
forms for higher degree rules may be either unavailable or too unwieldy for
CAS simplification. For those a rationalization procedure of controllable
accuracy (which can reach up to 36 places) is provided, although this technique
should be used with care since fraction components may explode.

(2) The non-product formulas for the pyramid are believed to be new. Of these, the
5-point and 13-point rules appear to be useful for FEM work.

(3) Automatic production of anisotropic rules for quadrilaterals, wedges and
hexahedra.

One useful extension to this collection may be integration rules for more general
polyhedral regions. These arise in automatic 3D “Delauney polyhedrization” in support
of meshfree Lagrangian methods.
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