140875

Date Submitted: 05/21/08	WASTE SITE RECLASSIFICATION FORM		
	Operable Unit(s): 100-FR-1	Control Number: 2008-021	
Originator: J. M. Capron	Waste Site Code: <u>100-F-46</u>		
Phone: <u>372-9227</u>	Type of Reclassification Action:	* 	
	Closed Out Interim Closed Out No Action RCRA Postclosure Rejected Consolidated		
	t among parties listed authorizing classification of the subject u		

on, RCRA Postclosure, Rejected, or Consolidated. This form also authorizes backfill of the waste management unit, if appropriate, for Closed Out and Interim Closed Out units. Final removal from the NPL of No Action and Closed Out waste management units will occur at a future date.

Description of current waste site condition:

The 100-F-46 french drain consisted of a 1.5 to 3 m (5 to 10 ft) long, vertically buried, gravel-filled pipe that was approximately 1 m (3 ft) in diameter. Also included in this waste site was a 5 cm (2-in.) cast-iron pipeline that drained condensate from the 119-F Stack Sampling Building into the 100-F-46 french drain. Confirmatory sampling of this site has been performed in accordance with remedial action objectives and goals established by the Interim Action Record of Decision for the 100-BC-1, 100-BC-2, 100 DR-1, 100-DR-2, 100-FR-1, 100-FR-2, 100-HR-1, 100-HR-2, 100-KR-1, 100-KR-2, 100-IU-2, 100-IU-6, and 200-CW-3 Operable Units, Hanford Site, Benton County, Washington (Remaining Sites ROD), U.S. Environmental Protection Agency, Region 10, Seattle, Washington. The selected action involved: (1) evaluating the site using available process information, (2) demonstrating through confirmatory sampling that cleanup goals have been achieved, and (3) proposing the site for reclassification to No Action.

Basis for reclassification:

In accordance with this evaluation, the confirmatory sampling results support a reclassification of this site to No Action. The current site conditions achieve the remedial action objectives and the corresponding remedial action goals established in the Remaining Sites ROD. The results of confirmatory sampling show that residual contaminant concentrations do not preclude any future uses (as bounded by the rural-residential scenario) and allow for unrestricted use of shallow-zone soils (i.e., surface to 4.6 m [15 ft] deep). The results also demonstrate that residual contaminant concentrations are protective of groundwater and the Columbia River. Site contamination did not extend into the deep-zone soils; therefore, institutional controls to prevent uncontrolled drilling or excavation into the deep zone are not required. The basis for reclassification is described in detail in the Remaining Sites Verification Package for the 100-F-46, 119-F Stack Sampling French Drain (attached).

Waste	Site	Contr	ols:

Engineered Controls: Yes No 🛛	Institutional Controls: Yes 🗖 No 🛛	O&M requirements: Yes 🗌 No 🛛
If any of the Waste Site Controls are check	ted Yes specify control requirements includin	g reference to the Record of Decision,
TSD Closure Letter, or other relevant docu		
R. F. Guercia	NA /	010/08
DOE Federal Project Director (printed)	Signature	Date
N/A		
Ecology Project Manager (printed)	Signature	Date
	11/10	5
R. A. Lobos		8-8-08
EPA Project Manager (printed)	Signature	Date
	// //	

REMAINING SITES VERIFICATION PACKAGE FOR THE 100-F-46, 119-F STACK SAMPLING FRENCH DRAIN

Attachment to Waste Site Reclassification Form 2008-021

April 2008

REMAINING SITES VERIFICATION PACKAGE FOR THE 100-F-46, 119-F STACK SAMPLING FRENCH DRAIN

EXECUTIVE SUMMARY

The 100-F-46 Stack Sampling french drain consisted of a 1.5 to 3 m (5 to 10 ft) long vertically buried gravel-filled pipe approximately 1 m (3 ft) in diameter. The upper portion of the pipe extended a few inches above grade (GE 1962, 1965). Also included in this waste site is the 5 cm (2-in.) cast-iron pipeline that drained condensate from the 119-F Stack Sampling Building into the 100-F-46 french drain.

The 100-F-46 french drain was located near the 105-F Reactor between the inlet and exhaust air ducts/tunnels associated with the 117-F Filter Building (132-F-5 waste site). Both the 100-F-46 french drain and the condensate pipeline are presumed to have been removed during decommissioning and demolition of the 117-F Filter Building (132-F-5) and associated air tunnels in 1983 (UNI 1983a). These structures were decontaminated, removed to a depth of 1 m (3 ft) below grade, and backfilled to grade. Uncertainty remained as to the disposition of the french drain and condensate pipe within the 100-F-46 waste site; therefore, a work instruction was prepared for confirmatory sampling.

Confirmatory sampling at the 100-F-46 french drain site was performed on November 29, 2007. A test pit was excavated to approximately 4.5 m (15 ft) depth, with no indication of either the french drain or the associated cast iron condensate pipeline. Confirmatory samples were collected from the excavator bucket of material that was taken from the bottom of the test pit. The 100-F-46 waste site was then backfilled.

One sample and one duplicate were collected based on site contaminants of potential concern (COPCs). Samples were analyzed by gamma energy analysis, and for gross alpha, gross beta, tritium, carbon-14, polychlorinated biphenyls, polycyclic aromatic hydrocarbons, total petroleum hydrocarbons, inductively coupled metals, mercury, and hexavalent chromium in accordance with the confirmatory work instruction. A summary of the cleanup evaluation for the soil results compared against the applicable criteria is presented in Table ES-1. The results of the confirmatory sampling are used to make reclassification decisions for the 100-F-46 waste site in accordance with the TPA-MP-14 (DOE-RL 2007) procedure.

In accordance with this evaluation, the confirmatory sampling results support a reclassification of this site to No Action. The current site conditions achieve the remedial action objectives and the corresponding remedial action goals established in the *Remedial Design Report/Remedial Action Work Plan for the 100 Area* (DOE-RL 2005b) and the *Interim Action Record of Decision for the 100-BC-1, 100-BC-2, 100-DR-1, 100-DR-2, 100-FR-1, 100-FR-2, 100-HR-1, 100-HR-2, 100-KR-1, 100-KR-2, 100-IU-2, 100-IU-6, and 200-CW-3 Operable Units, Hanford Site* (Remaining Sites ROD) (EPA 1999). The results of confirmatory sampling show that residual contaminant concentrations do not preclude any future uses (as bounded by the rural-residential scenario) and allow for unrestricted use of shallow-zone soils (i.e., surface to 4.6 m [15 ft] deep). The results also demonstrate that residual contaminant concentrations are protective of

groundwater and the Columbia River. Site contamination did not extend into the deep zone soils; therefore, institutional controls to prevent uncontrolled drilling or excavation into the deep zone are not required.

Regulatory Requirement	Remedial Action Goals	Results	Remedial Action Objectives Attained?
Direct Exposure Radionuclides	Attain 15 mrem/yr dose rate above background over 1,000 years.	The maximum all-pathways dose rate calculated by RESRAD is 0.30 mrem/yr over 1,000 years.	Yes
Direct Exposure Nonradionuclides	Attain individual COC/COPC RAGs.	All individual COC/COPC concentrations are below the direct exposure criteria.	Yes
Risk Requirements Nonradionuclides	Attain a hazard quotient of <1 for all individual noncarcinogens.	All individual hazard quotients are <1.	
	Attain a cumulative hazard quotient of <1 for noncarcinogens.	The cumulative hazard quotient (3.6×10^{-3}) is <1.	Yes
	Attain an excess cancer risk of $<1 \times 10^{-6}$ for individual carcinogens.	The excess cancer risk values for individual carcinogens are $<1 \times 10^{-6}$.	
	Attain a total excess cancer risk of $<1 \times 10^{-5}$ for carcinogens.	The total excess cancer risk value (2.8×10^{-7}) is $<1 \times 10^{-5}$.	
Groundwater/River Protection – Radionuclides	Attain single COC/COPC groundwater and river protection RAGs.	Tritium (the only detected radionuclide COC/COPC) is predicted to reach groundwater at a peak concentration of 4,900 pCi/L in the 1,000 years of the RESRAD model run, which is less than the MCL of 20,000 pCi/L. Therefore, groundwater and river protection RAGs are attained.	
	Attain national primary drinking water regulations: ^a 4 mrem/yr (beta/gamma) dose rate to target receptor/organs.	Because the only detected radionuclide COC/COPC is predicted to reach groundwater at concentrations below the groundwater protection RAG, it was not necessary to perform the calculation of cumulative organ specific dose via the groundwater (and river) pathway to determine that the 4 mrem/yr drinking water dose limit is met.	Yes
	Meet drinking water standards for alpha emitters: the more stringent of 15 pCi/L MCL or 1/25th of the derived concentration guide from DOE Order 5400.5. ^b	No alpha-emitting radionuclide COC/COPCs were detected.	
	Meet total uranium standard of 21.2 pCi/L. ^c	Uranium was not identified as a COC/COPC for this site.	

Table ES-1. Summary of Remedial Action Goals for the 100-F-46 StackSampling French Drain. (2 Pages)

Regulatory Requirement	Remedial Action Goals	Results	Remedial Action Objectives Attained?
Groundwater/River Protection – Nonradionuclides	Attain individual nonradionuclide groundwater and river cleanup requirements.	All the groundwater and river RAGs have been attained.	Yes

Table ES-1. Summary of Remedial Action Goals for the 100-F-46 StackSampling French Drain. (2 Pages)

^a "National Primary Drinking Water Regulations" (40 Code of Federal Regulations 141).

^b Radiation Protection of the Public and Environment (DOE Order 5400.5).

^c Based on the isotopic distribution of uranium in the 100 Areas, the 30 µg/L MCL corresponds to 21.2 pCi/L. Concentration-to-activity calculations are documented in *Calculation of Total Uranium Activity Corresponding to a Maximum Contaminant Level for Total Uranium of 30 Micrograms per Liter in Groundwater* (BHI 2001).

COC = contaminant of concern RAG = remedial action goal

COPC = contaminant of potential concern RESRAD= RESidual RADioactivity (dose assessment model)

MCL = maximum contaminant level

Soil cleanup levels were established in the Remaining Sites ROD (EPA 1999), based on a limited ecological risk assessment. Although not required by the Remaining Sites ROD, a comparison against ecological risk screening levels has been made for the site contaminants of potential concern and other constituents. Screening levels were not exceeded, with the exception of antimony, boron, manganese, and vanadium. Exceedance of screening values does not necessarily indicate the existence of risk to ecological receptors. It is believed that the presence of these constituents does not pose a risk to ecological receptors because concentrations of antimony, manganese, and vanadium are below site background levels, and boron concentrations are consistent with those seen elsewhere at the Hanford Site (no established background value is available for boron). A more complete quantitative ecological risk assessment will be presented in the baseline risk assessment for the river corridor portion of the Hanford Site and will be used to support the final closeout decision for this site.

REMAINING SITES VERIFICATION PACKAGE FOR THE 100-F-46, 119-F STACK SAMPLING FRENCH DRAIN

STATEMENT OF PROTECTIVENESS

The 100-F-46, 119-F Stack Sampling french drain, site confirmatory sample results demonstrate that the site achieves the remedial action objectives and remedial action goals (RAGs) established in the *Remedial Design Report/Remedial Action Work Plan for the 100 Area* (RDR/RAWP) (DOE-RL 2005b) and the *Interim Action Record of Decision for the 100-BC-1*, *100-BC-2*, *100-DR-1*, *100-DR-2*, *100-FR-1*, *100-FR-2*, *100-HR-1*, *100-HR-2*, *100-KR-1*, *100-KR-2*, *100-IU-2*, *100-IU-6*, *and 200-CW-3 Operable Units* (Remaining Sites ROD) (EPA 1999). These results show that residual soil concentrations support future land uses that can be represented (or bounded) by a rural-residential scenario. The results also demonstrate that residual contaminant concentrations support unrestricted future use of shallow-zone soil (i.e., surface to 4.6 m [15 ft]) and that contaminant levels remaining in the soil are protective of groundwater and the Columbia River. Site contamination did not extend into the deep zone soils; therefore, institutional controls to prevent uncontrolled drilling or excavation into the deep zone are not required.

Soil cleanup levels were established in the Remaining Sites ROD (EPA 1999), based on a limited ecological risk assessment. Although not required by the Remaining Sites ROD, a comparison against ecological risk screening levels has been made for the site contaminants of potential concern and other constituents. Screening levels were not exceeded with the exception of antimony, boron, manganese, and vanadium. Exceedance of screening values does not necessarily indicate the existence of risk to ecological receptors. It is believed that the presence of these constituents does not pose a risk to ecological receptors because concentrations of antimony, manganese, and vanadium are below site background levels, and boron concentrations are consistent with those seen elsewhere at the Hanford Site (no established background value is available for boron). A more complete quantitative ecological risk assessment will be presented in the baseline risk assessment for the river corridor portion of the Hanford Site and will be used to support the final closeout decision for this site.

GENERAL SITE INFORMATION AND BACKGROUND

The 100-F-46 french drain site consisted of a 1.5 to 3 m (5 to 10 ft) long, vertically buried, gravel-filled pipe approximately 1 m (3 ft) in diameter. The upper portion of this pipe extended a few inches above grade (GE 1962, 1965). Also included in this site is the 5 cm (2-in.) cast-iron pipeline that drained condensate from the 119-F Stack Sampling Building to the 100-F-46 french drain.

The 100-F-46 french drain (Figure 1) was located near the 105-F Reactor in the 100-FR-1 Operable Unit of the Hanford Site between the inlet and exhaust air ducts/tunnels associated with the 117-F Filter Building (132-F-5 waste site). The location is about 50 m (164 ft) northwest of the west wall of the 105-F Reactor interim safe storage structure at Washington State Plane coordinates E 580378.9, N 147617.4 (Figure 2). The influent end of the pipeline was located at coordinates E 580382.2, N 147614.2. Figure 3 is the french drain and pipeline location map.

The 100-F-46 french drain was associated with the 116-F Reactor Stack (132-F-4 waste site) and 119-F Stack Sampling Building. The reactor stack (132-F-4 waste site) exhaust gases were sampled by pulling moist stack off gases through a steam-heated pipe to the 119-F Stack Sampling Building where the gas stream was sampled. This building was a small structure on a concrete pad on the north side of the reactor stack (UNI 1985) (Figures 4 through 6). The condensate then drained via a 5 cm (2-in.) cast-iron pipeline into the 100-F-46 french drain.

In 1983, the 117-F Filter Building (132-F-5 waste site) and associated air tunnels were decontaminated and removed to approximately 1 m (3-ft) below grade. The remainder of the site structures were characterized, decontaminated, demolished in situ, and backfilled to grade (UNI 1983a). The 135-F-5 site was determined to meet remedial action objectives using Allowable Residual Contamination Level methodology (UNI 1983b) and reclassified to No Action (BHI 2003). The 100-F-46 french drain and condensate pipeline were likely removed in 1983 since they were located between the 117-F Filter Building (132-F-5 waste site) air tunnels. The french drain is clearly visible in a photograph during the demolition of 117-F (Figure 7). The features (concrete posts and lid) of the french drain are not visible in the post-demolition photograph of the same area (Figure 8). Additional site photographs are included in Appendix A.

CONFIRMATORY SAMPLING ACTIVITIES

Confirmatory sampling of the 100-F-46 site was performed on November 29, 2007, in accordance with *Work Instruction for Confirmatory Sampling of the 100-F-46 French Drain* (WCH 2007b), to determine whether the french drain and condensate pipe still existed and to collect data to determine if the RAGs had been met. RAGs are the specific numeric goals against which the cleanup verification data are evaluated to demonstrate attainment of the remedial action objectives for the site. The following subsections provide additional discussion of the information used to develop the confirmatory sampling design. The results of confirmatory sampling are also summarized to support the No Action decision for the site.

Nonintrusive Investigation Results

A formal site visit was not conducted at the 100-F-46 french drain site. Global positioning system (GPS) coordinates of the french drain site were available, and current field conditions were already known. In addition, the french drain was not visible in a photograph taken in 1993, nor was it located during a field walkdown in 2005. A geophysical survey was not performed at the 100-F-46 french drain site since the location was identified by Washington State Plane coordinates E 580378.9, N 147617.4.

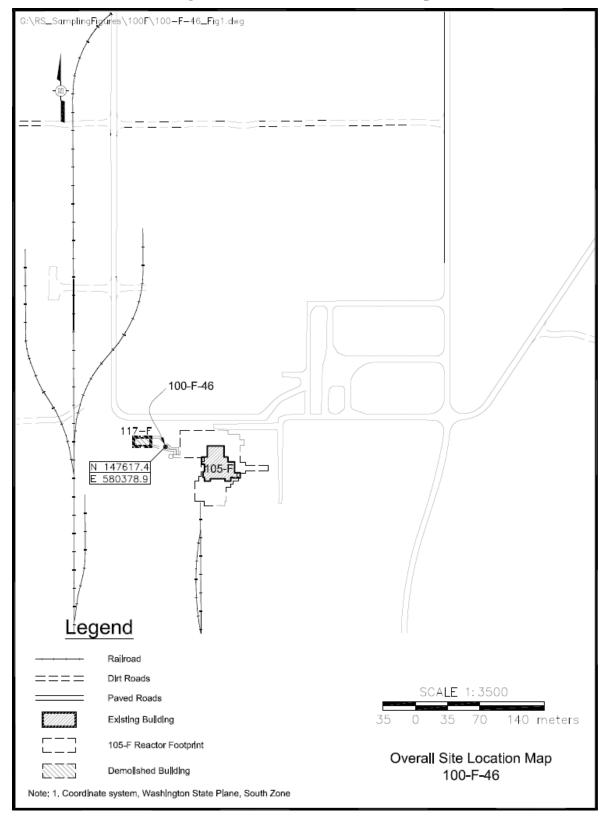


Figure 1. 100-F-46 Site Location Map.

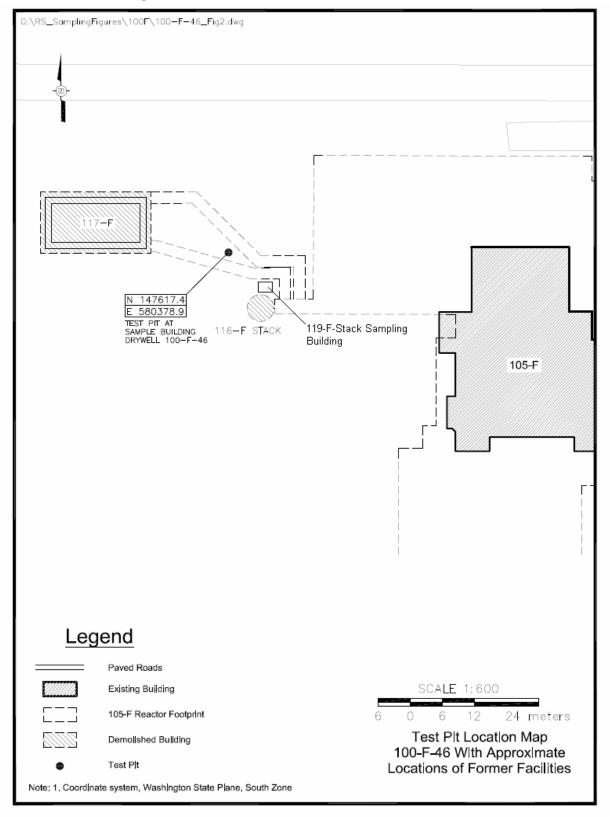


Figure 2. 100-F-46 French Drain Test Pit Location.

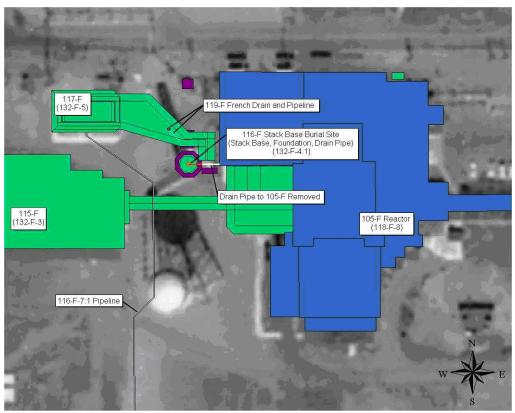


Figure 3. French Drain and Pipeline Location Map.

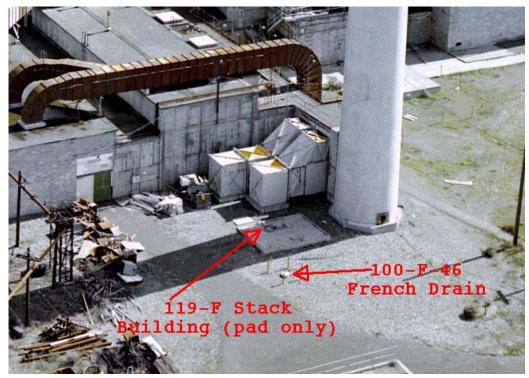

Figure 4. Aerial Photograph Showing the 119-F Stack Sampling Building Adjacent to Stack (July 12, 1965).

Figure 5. Closeup View of the 119-F Stack Sampling Building (August 12, 1960).

Figure 6. Aerial Photograph After the 119-F Stack Sampling Building Removed.

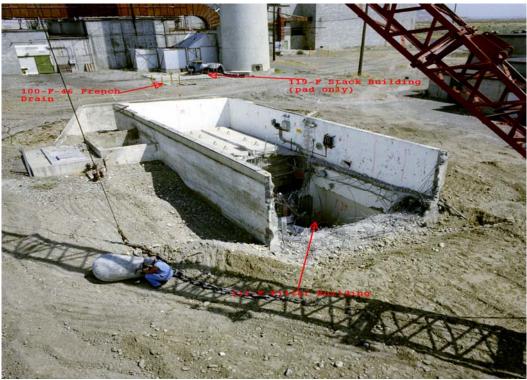


Figure 8. The 119-F Building Pad Following Demolition of the 117-F Building and Reactor Stack (September 23, 1983).

Contaminants of Potential Concern

Contaminants of potential concern (COPCs) for the 100-F-46 waste site were developed from information contained in the Waste Information Data System (WIDS) report (WCH 2007b). Past processes pulled exhaust gases from the 116-F Reactor Stack (132-F-4 waste site) through the 119-F Stack Sampling Building where they were sampled. Residual condensate then drained through the cast iron pipeline to the 100-F-46 french drain. The COPCs are tritium, carbon-14, strontium-90, cobalt-60, cesium-137, europium-152, and plutonium-239/240. Based on further evaluation of contaminants potentially discharged to the 100-F-46 french drain, europium-154, europium-155, the expanded list of inductively coupled plasma metals, mercury, hexavalent chromium, polychlorinated biphenyls, polycyclic aromatic hydrocarbons, (PAHs), and total petroleum hydrocarbons (TPH) were added as COPCs.

Confirmatory Sampling

Confirmatory sampling activities at 100-F-46 site were performed on November 29, 2007, (Figures 9 through 11) with details recorded in the field logbook (WCH 2007a). Miscellaneous concrete and pipe debris were encountered during excavation; however, no traces of the 100-F-46 french drain or associated condensate pipe were found. The location of the former french drain is well established, and this location is known to be between the intake and exhaust ducts for the 117-F Filter Building (Figure 2). Excavation at the established location of the former french drain located the exhaust ducts (Figure 12), confirming that excavation was performed at the correct location. It is reasonable to conclude that the 100-F-46 french drain was removed during previous decommissioning and demolition activities in the area. Confirmatory samples of material from the bottom of the excavation at 4.6 m (15 ft) were collected from the bucket of the excavator.

Radiological field screening was conducted during the confirmatory sampling activities at the 100-F-46 french drain. Field screening was used to guide the excavation to quickly assess the presence and level of contamination. Field screening at the site included using hand-held sodium iodide (NaI) detectors. No radiation was detected above background levels.

Confirmatory Sampling Design

The confirmatory sampling design for the 100-F-46 french drain was developed per the *100 Area Remedial Action Sampling and Analysis Plan* (DOE-RL 2005a). The site consisted of a 1 m (3 ft) diameter french drain and an associated 5 cm (2-in.) cast-iron condensate line that went from the 119-F Sampling Stack Building to the 100-F-46 french drain. The primary objective of sampling was to determine if constituents associated with the former 100-F-46 french drain present an adverse risk to human health or the environment and to evaluate if the site meets the remedial action goals specified in the Remaining Sites ROD (EPA 1999).

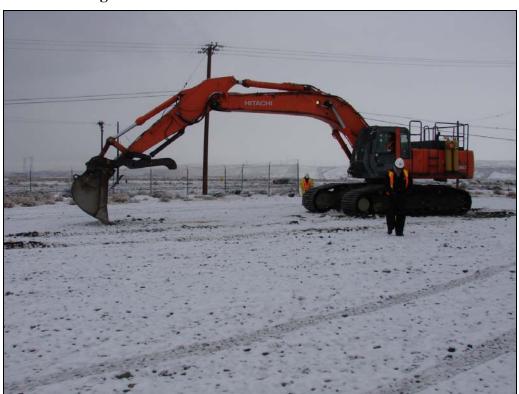


Figure 9. 100-F-46 Waste Site Prior to Excavation.

Figure 10. Excavation of the 100-F-46 Waste Site.

Figure 11. Confirmatory Sampling Activity at the 100-F-46 Excavation.

Figure 12. Intake and Exhaust Ducts to the 119-F Stack Filter Building During the 100-F-46 Excavation.

Confirmatory Sampling Results

Confirmatory samples were analyzed using analytical methods approved by the U.S. Environmental Protection Agency. The laboratory-reported data results for all constituents are stored in the Environmental Remediation System (ENRE) project-specific database prior to submission for archival in the Hanford Environmental Information System (HEIS) site-wide database and are summarized in Appendix B.

Comparisons of the confirmatory sampling data results for analytes with the shallow zone RAGs are summarized in Table 1. Contaminants of potential concern that were not detected by laboratory analysis are excluded from consideration. Calculated cleanup levels are not presented in the *Cleanup Levels and Risk Calculations Database* (Ecology 2005) under *Washington Administrative Code* (WAC) 173-340-740(3) for aluminum, calcium, iron, magnesium, potassium, silicon, and sodium; therefore, these constituents are not considered site COPCs. Potassium-40, radium-226, radium-228, thorium-228, and thorium-232 were detected in samples collected at the site, but are not considered within the following table, as these isotopes are not related to the operational history of the site and were detected below background levels (based on an assumption of secular equilibrium, the background activities for radium-228 and thorium-232 more equal to the statistical background activity of 1.32 pCi/g for thorium-232 provided in DOE-RL [1996]).

Table 2 summarizes samples collected, total depth, and required list of COPCs to be analyzed. Isotopic-Plutonium analysis was inadvertently requested in addition to gross alpha analysis. Data results from the Isotopic-Plutonium analysis were less than detectable and are included in Appendix B Data Tables.

DATA EVALUATION

Evaluation of the test pit data results listed in Table 1 indicates that all COPCs meet the direct exposure RAGS. One contaminant (tritium) exceeded the soil lookup value for groundwater and river protection. Analysis of the primary sample resulted in a tritium concentration of 33.8 pCi/g. Tritium was not detected in the duplicate sample. RESidual RADioactivity (RESRAD) modeling (ANL 2005) was used to predict maximum dose rate, excess lifetime cancer risk, and impact on groundwater and the river from residual tritium concentrations (DOE-RL 2005). A maximum radionuclide dose of 0.30 mrem/yr was predicted to occur in the present year (2008) corresponding to a carcinogenic risk of 1.22×10^{-6} . Both dose and risk are predicted to decline over time due to radioactive decay. The RESRAD calculations are provided in Appendix C.

		Generic	Site Lookup Val	ues ^a (pCi/g)	Does the	Does the Result Pass RESRAD Modeling?
COCs/COPCs	Maximum Result (pCi/g)	Shallow Zone Lookup Value	Groundwater Protection Lookup Value	River Protection Lookup Value	Maximum Result Exceed RAGs?	
Tritium	33.8	510	15.8	106.8	Yes	Yes ^b
		Remed	ial Action Goals	^a (mg/kg)	Does the	Does the
COCs/COPCs	Maximum Result (mg/kg)	Direct Exposure	Soil Cleanup Level for Groundwater Protection	Soil Cleanup Level for River Protection	Maximum Result Exceed RAGs?	Result Pass RESRAD Modeling?
Antimony	1.20 (<bg)< td=""><td>32</td><td>5^c</td><td>5^c</td><td>No</td><td></td></bg)<>	32	5 ^c	5 ^c	No	
Arsenic	1.9 (<bg)< td=""><td>20</td><td>20</td><td>20</td><td>No</td><td></td></bg)<>	20	20	20	No	
Barium	57.7 (<bg)< td=""><td>5,600</td><td>132^c</td><td>224</td><td>No</td><td></td></bg)<>	5,600	132 ^c	224	No	
Beryllium	0.51 (<bg)< td=""><td>10.4^d</td><td>1.51^c</td><td>1.51^c</td><td>No</td><td></td></bg)<>	10.4 ^d	1.51 ^c	1.51 ^c	No	
Boron ^e	3.9	16,000	320	^f	No	
Chromium (total)	8.5 (<bg)< td=""><td>80,000</td><td>18.5^c</td><td>18.5^c</td><td>No</td><td></td></bg)<>	80,000	18.5 ^c	18.5 ^c	No	
Cobalt	5.2 (<bg)< td=""><td>1,600</td><td>32</td><td>^f</td><td>No</td><td></td></bg)<>	1,600	32	^f	No	
Copper	12.0 (<bg)< td=""><td>2,960</td><td>59.2</td><td>22.0^c</td><td>No</td><td></td></bg)<>	2,960	59.2	22.0 ^c	No	
Hexavalent chromium ^e	0.28	2.1 ^d	4.8	2	No	
Lead	5.5 (<bg)< td=""><td>353</td><td>10.2^c</td><td>10.2^c</td><td>No</td><td></td></bg)<>	353	10.2 ^c	10.2 ^c	No	
Manganese	245 (<bg)< td=""><td>11,200</td><td>512^c</td><td>512^c</td><td>No</td><td></td></bg)<>	11,200	512 ^c	512 ^c	No	
Molybdenum ^e	0.86	400	8	^f	No	
Nickel	9.0 (<bg)< td=""><td>1,600</td><td>19.1^c</td><td>27.4</td><td>No</td><td></td></bg)<>	1,600	19.1 ^c	27.4	No	
Silver	0.38 (<bg)< td=""><td>400</td><td>8</td><td>0.73^c</td><td>No</td><td></td></bg)<>	400	8	0.73 ^c	No	
Vanadium	34.2 (<bg)< td=""><td>560</td><td>85.1^c</td><td>f</td><td>No</td><td></td></bg)<>	560	85.1 ^c	f	No	
Zinc	30.6 (<bg)< td=""><td>24,000</td><td>480</td><td>67.8^c</td><td>No</td><td></td></bg)<>	24,000	480	67.8 ^c	No	
Aroclor-1260	0.0048	0.5	0.017 ^g	0.017 ^g	No	
Benzo(a)anthracene	0.0039	1.37 ^h	0.015 ^g	0.015 ^g	No	
Benzo(a)pyrene	0.0029	0.137 ^h	0.015 ^g	0.015 ^g	No	
Benzo(b)fluoranthene	0.003	1.37 ^h	0.015 ^g	0.015 ^g	No	

Table 1. Comparison of Maximum Contaminant Concentrations to Action Levels for the100-F-46 French Drain Test Pit Confirmatory Sampling Event. (2 Pages)

Table 1. Comparison of Maximum Contaminant Concentrations to Action Levels for the
100-F-46 French Drain Test Pit Confirmatory Sampling Event. (2 Pages)

	Remedial Action Goals ^a (mg/kg				Does the	Does the
COCs/COPCs	Maximum Result (mg/kg)	Direct Exposure	Soil Cleanup Level for Groundwater Protection	Soil Cleanup Level for River Protection	Maximum Result Exceed RAGs?	Result Pass RESRAD Modeling?
Benzo(k)fluoranthene	0.0076	1.37 ^h	0.015 ^g	0.015 ^g	No	
Benzo(ghi)perylene	0.0042	2400	48	192	No	
Indeno(1,2,3- cd)pyrene	0.01	1.37	0.33 ^g	0.33 ^g	No	

^a Lookup values and RAGs obtained from the Remedial Design Report/Remedial Action Work Plan for the 100 Area (DOE-RL 2005b) or calculated per WAC-173-340-720, WAC-173-340-730, and WAC-173-340-740, Method B, 1996, unless otherwise noted.

^b Site-specific RESRAD evaluation determined that the mass of contamination was insufficient to cause the direct exposure limitation of 15 mrem/yr or RAGs for groundwater and river protection to be exceeded.

^c Where cleanup levels are less than background, cleanup levels default to background (WAC 173-340-700[4][d], 1996 and DOE-RL 2005b).

^d Carcinogenic cleanup level calculated based on the inhalation exposure pathway (WAC 173-340-750]) (1996) and an airborne particulate mass-loading rate of 0.0001 g/m³ (WDOH 1997).

^e No Hanford Site-specific or Washington State background value available.

^f No cleanup level is available from the Cleanup Levels and Risk Calculations (CLARC) Database (Ecology 2005), and no bioconcentration factor or ambient water quality criteria values are available to calculate cleanup levels (WAC 173-340-730(3)(a)(iii), 1996 [Method B for surface waters]).

^g Where cleanup levels are less than RDLs, cleanup levels default to RDLs (WAC 173-340-707(2)) (1996).

^h Cleanup level calculated with updated toxicity values using the appropriate formulas from WAC 173-340-740 (Ecology 1996). Updated toxicity values are available from the EPA Integrated Risk Information System (IRIS) at < http://www.epa.gov/iris > or from the Risk Assessment Information System database of the Oak Ridge National

Laboratory (ORNL) on the Internet at < http://risk.lsd.ornl.gov >.

		•	0	
	= not applicable		RAG	= remedial action goal
BG	= background		RESRAD	= RESidual RADioactivity (dose assessment model)
COC	= contaminant of concern		WAC	= Washington Administrative Code

COPC = contaminant of potential concern

Sample Location	Sample Media	HEIS Number	Coordinate Locations	Depth	Sample Analysis
	Soil	J16355		4 m	GEA, C-14, H-3, isotopic plutonium, gross alpha,
Test pit	Duplicate soil	J16356	N 147617.4 E 580378.9		gross beta, ICP metals, mercury, hexavalent chromium, PCBs, PAH, TPH
Equipment blank	Associated with J16355 and J16356	J16357	NA	NA	ICP metals ^a , mercury

See also field logbook EL-1601-2, pp. 2-3 (WCH 2007a).

GEA	= gamma energy analysis	PAH
HEIS	= Hanford Environmental Information System	PCB
ICP	= inductively coupled plasma	TPH

= polycyclic aromatic hydrocarbon

- = polychlorinated biphenyl
- = inductively coupled plasma
- TPH = total petroleum hydrocarbon

= not applicable NA

The vadose zone beneath the 100-F-46 excavation is approximately 12.4 m (40.7 ft) thick. The RESRAD model predicted that tritium from the 100-F-46 french drain site will reach groundwater (or the river) within the 1,000 years of the evaluation at a peak activity of 4,900 pCi/L, which is below the maximum contaminant level of 20,000 pCi/L. Therefore, residual activities of tritium are protective of groundwater. The only pathway for contamination to reach the Columbia River is via groundwater migration, so this contaminant activity is also protective of the river.

Assessment of the risk requirements for the 100-F-46 french drain site is determined by calculation of the hazard quotient and carcinogenic (excess cancer) risk values for nonradionuclides. These calculations are located in Appendix C. The requirements include an individual hazard quotient of less than 1.0, a cumulative hazard quotient of less than 1.0, an individual contaminant carcinogenic risk of less than 1 x 10^{-6} , and a cumulative excess carcinogenic risk of less than 1 x 10^{-5} . These risk values were conservatively calculated for the entire 100-F-46 french drain site using the highest values. Risk values were not calculated for constituents that were not detected or were detected at concentrations below Hanford Site or Washington State background values. The calculations indicated that all individual hazard quotient for the 100-F-46 waste site is 3.6×10^{-3} . All individual cumulative carcinogenic risk values are less than 1 x 10^{-6} . The cumulative carcinogenic risk value is 2.8×10^{-7} . Therefore, nonradionuclide risk requirements are met.

DATA QUALITY ASSESSMENT

A data quality assessment (DQA) was performed to compare the verification sampling approach and resulting analytical data with the sampling and data quality requirements specified by the project objectives and performance specifications. The DQA for the 100-F-46 french drain site established that the data are of the right type, quality, and quantity to support site verification decisions within specified error tolerances. All analytical data were found to be acceptable for decision-making purposes. The evaluation verified that the sample design was sufficient for the purpose of clean site verification. The detailed DQA is presented in Appendix D.

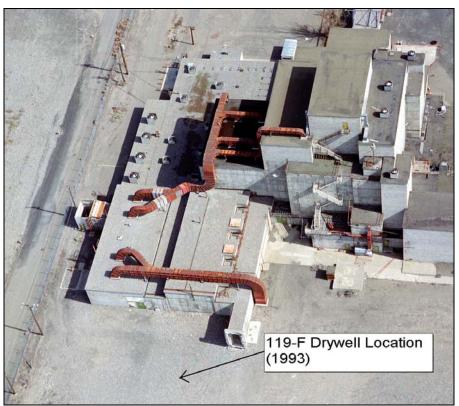
SUMMARY FOR NO ACTION DECISION

The 100-F-46 french drain site has been confirmed to have been previously removed. Confirmatory sampling demonstrates that residual contamination meets the cleanup criteria specified in the Remaining Sites ROD (EPA 1999) and the RDR/RAWP (DOE-RL 2005b). Accordingly, a No Action reclassification is supported for the 100-F-46 french drain site. The site does not have a deep zone or residual contaminant concentrations that would require any institutional controls.


REFERENCES

- 40 CFR 141, "National Primary Drinking Water Regulations," *Code of Federal Regulations,* as amended.
- ANL, 2007, *RESRAD for Windows*, Version 6.4, Argonne National Laboratory, Environmental Assessment Division, Argonne, Illinois.
- BHI, 2001, Calculation of Total Uranium Activity Corresponding to a Maximum Contaminant Level for Total Uranium of 30 Micrograms per Liter in Groundwater, 0100X-CA-V0038, Rev. 0, Bechtel Hanford, Inc., Richland, Washington.
- BHI, 2003, Waste Site Reclassification Form 2003-29, and Attachment *Waste Site Evaluation for 132-F-5, 117-F Filter Building*, Bechtel Hanford, Inc., Richland, Washington.
- DOE Order 5400.5, *Radiation Protection of the Public and Environment*, as amended, U.S. Department of Energy, Washington, D.C.
- DOE-RL, 1996, *Hanford Site Background: Part 2, Soil Background for Radionuclides,* DOE/RL-96-12, Rev.0, U.S. Department of Energy, Richland Operations Office, Richland, Washington.
- DOE-RL, 2005a, *100 Area Remedial Action Sampling and Analysis Plan*, DOE/RL-96-22, Rev. 4, U.S. Department of Energy, Richland Operations Office, Richland, Washington.
- DOE-RL, 2005b, *Remedial Design Report/Remedial Action Work Plan for the 100 Area*, DOE/RL-96-17, Rev. 5, U.S. Department of Energy, Richland Operations Office, Richland, Washington.
- DOE-RL, 2007, *Tri-Party Agreement Handbook Management Procedures*, RL-TPA-90-0001, Guideline Number TPA-MP-14, "Maintenance of the Waste Information Data System (WIDS)," Rev. 1, U.S. Department of Energy, Richland Operations Office, Richland, Washington.
- Ecology, 2005, *Cleanup Levels and Risk Calculations (CLARC) Database*, Washington State Department of Ecology, Olympia, Washington, available at: < http://www.ecy.wa.gov >.
- EPA, 1999, Interim Action Record of Decision for the 100-BC-1, 100-BC-2, 100-DR-1, 100-DR-2, 100-FR-1, 100-FR-2, 100-HR-1, 100-HR-2, 100-KR-1, 100-KR-2, 100-IU-2, 100-IU-6, and 200-CW-3 Operable Units, Hanford Site, Benton County, Washington, U.S. Environmental Protection Agency, Region 10, Seattle, Washington.
- GE, 1962, *Civil Plan Outside Lines, Water Supply and Drains*, H-1-19812, Sheet 1, Rev. 5, General Electric Company, Richland, Washington.

- GE, 1965, *Plot Plan 117-F Filter Building*, H-1-19803, Rev. 3, General Electric Company, Richland, Washington.
- UNI, 1983a, *Final Closeout Report for the 117-F Filter Building*, UNI-2692, UNC Nuclear Industries, Richland, Washington.
- UNI, 1983b, Radiological Characterization Activities Resulting in the Unrestricted Release of the 117-F Filter Building, UNI-2674, UNC Nuclear Industries, Richland, Washington.
- UNI, 1985, *ARCL Calculations for Decommissioning the 116-F Stack*, UNI-3492, UNC Nuclear Industries, Richland, Washington.
- WAC 173-340, 1996, "Model Toxics Control Act -- Cleanup," Washington Administrative Code.
- WCH, 2007a, *Miscellaneous Sampling*, Logbook EL-1601-2, pp. 2-3, and 13, Washington Closure Hanford, Richland, Washington.
- WCH, 2007b, *Work Instruction for Confirmatory Sampling of the 100-F-46, 119-F Stack Sampling French Drain*, 0100F-WI-G0044, Rev. 0, Washington Closure Hanford, Richland, Washington.
- WDOH, 1997, *Hanford Guidance for Radiological Cleanup*, WDOH/320-015, Rev. 1, Washington Department of Health, Olympia, Washington.


APPENDIX A

100-F-46 SITE PHOTOGRAPHS

View of the 119-F-Stack Sample Building Site. Only the Concrete Pad Remains. Photograph from 1983.

View of the 119-F-Stack Sample Building Site With the Concrete Pad Removed. Photograph from 1993.

Prior to Excavation of the 100-F-46 French Drain Location.

Radiological and Industrial Hygiene Field Screening in Progress at the 100-F-46 French Drain Location.

Another View of the 100-F-46 French Drain Excavation.

Radiological and Industrial Hygiene Technicians Continue Field Screening of Material Removed from the 100-F-46 French Drain Excavation.

Intake and Exhaust Ducts to 117-F Stack Filter Building Encountered During Excavation of the 100-F-46 French Drain Location.

Soil Sample Collection from the Excavator Bucket from the 100-F-46 French Drain Excavation.

APPENDIX B

100-F-46 CONFIRMATORY DATA TABLES

Remaining Sites Verification Package for the 100-F-46, 119-F Stack Sampling French Drain	
5, 119-F Stack Sampling French Drain	

on		
Package		
for		
the		
on Package for the 100-F-46, 119-F Stack Samplin		
119-F		
Stack		
Samplin		

Sample	HEIS	Sample	Americi	um-2	41 (GEA)	Ca	rbon	-14	Ces	sium-	137	Co	balt-	60	Euro	piun	n-152
Location	Number	Date	pCi/g	Q	MDA	pCi/g	Q	MDA	pCi/g	Q	MDA	pCi/g	Q	MDA	pCi/g	Q	MDA
Test Pit 1	J16355	11/29/07	0.147	U	0.147	0.136	U	3.400	0.020	U	0.020	0.021	U	0.021	0.059	U	0.059
Duplicate	J16356	11/29/07	0.344	U	0.344	1.000	U	3.250	0.035	U	0.035	0.039	U	0.039	0.095	U	0.095

Table B-1. 100-F-46 Radionuclide Data Results.

Sample	HEIS	Sample	Eur	opiui	n-154	Euro	piun	n-155	Plute	oniun	1-238	Plutoni	um-2	239/240	Pota	issiur	n-40
Location	Number	Date	pCi/g	Q	MDA	pCi/g	Q	MDA	pCi/g	Q	MDA	pCi/g	Q	MDA	pCi/g	Q	MDA
Test Pit 1	J16355	11/29/07	0.071	U	0.071	0.075	U	0.075	0.0	U	0.291	0.030	U	0.232	15.700		0.191
Duplicate	J16356	11/29/07	0.139	U	0.139	0.110	U	0.110	0.1	U	0.274	0.036	U	0.274	14.600		0.494

Sample	HEIS	Sample	Ra	dium	-226	Rac	lium	-228	Thoriu	m-22	8 GEA	Thoriu	m-23	2 GEA	Т	'ritiu	m
Location	Number	Date	pCi/g	Q	MDA	pCi/g	Q	MDA	pCi/g	Q	MDA	pCi/g	Q	MDA	pCi/g	Q	MDA
Test Pit 1	J16355	11/29/07	0.526		0.040	0.678		0.087	0.660		0.030	0.678		0.087	33.800		7.510
Duplicate	J16356	11/29/07	0.491		0.081	0.886		0.152	0.826		0.077	0.886		0.152	0.058	U	7.520

Sample	HEIS	Sample	Urani	um-2.	35 GEA	Uraniu	ım-23	8 GEA	Gro	oss alj	pha	Gr	oss b	eta
Location	Number	Date	pCi/g	Q	MDA	pCi/g	Q	MDA	pCi/g	Q	MDA	pCi/g	Q	MDA
Test Pit 1	J16355	11/29/07	0.11	U	0.11	2.4	U	2.38	9.6		8.00	20.9		5.33
Duplicate	J16356	11/29/07	0.17	U	0.17	4.9	U	4.86	15.7		8.39	17.4		5.61

Acronyms and notes apply to all of the tables in this appendix.

Note: Data qualified with B, C. and/or J are considered acceptable values.

В = blank contamination (organic compounds) С = blank contamination (inorganic compounds) GEA = Gamma Energy Analysis

HEIS = Hanford Environmental Information System

D = diluted

T

MDA = Minimum Detectable Activity PQL = Practical Quantitation Limit

- = interference during analysis
- J = estimate value ND = not detected

TPH = Total Petroleum Hydrocarbons QUAL = qualifier

= undetected U

Rev. 0

Sample	HEIS	Sample	Ab	uminu	um	Ar	ntimo	ny	A	rseni	ic	В	ariu	n	Be	ryllit	ım
Location	Number	Date	mg/kg	Q	PQL	mg/kg	Q	PQL	mg/kg	Q	PQL	mg/kg	Q	PQL	mg/kg	Q	PQL
Test Pit 1	J16355	11/29/07	5420		11.2	1.20		0.84	1.6		1.4	52.6	С	0.28	0.51		0.14
Duplicate	J16356	-11/29/07	5820		11.4	0.86	U	0.86	1.9		1.4	57.7	С	0.29	0.51		0.14
Equip Blank	J16357	11/29/07	45		3.7	0.28	U	0,28	0.5	U	0.5	1.4	С	0.09	0.05	U	0.05

Sample	HEIS	Sample]	Boroi	3	C٤	adunii	ım	C	alciu	m	Ch	romi	um	Hexaval	ent C	hromium
Location	Number	Date	mg/kg	Q	PQL	mg/kg	Q	PQL	mg/kg	Q	PQL	mg/kg	Q	PQL	mg/kg	Q	PQL
Test Pit 1	J16355	11/29/07	3.5		1.4	0.14	U	0.14	6240	С	11.2	7.7		0.56	0.2	U	0.21
Duplicate	J16356	-11/29/07	3.9		1.4	0.14	U	0.14	6550	С	11.4	8.5		0.57	0.28		0.21
Equip Blank	J16357	11/29/07	0.5	U	0.5	0.05	U	0.05	23.6	С	3.7	0.2		0.18			

Sample	HEIS	Sample		Cobal	lt	C	coppe	r		Iron			Lead		Ma	gnes	ium
Location	Number	Date	mg/kg	Q	PQL	mg/kg	Q	PQL	mg/kg	Q	PQL	mg/kg	Q	PQL	mg/kg	Q	PQL
Test Pit 1	J16355	11/29/07	4.9		0.56	11.7		0.56	13000	С	12.6	5.2	С	0.84	3810	С	7
Duplicate	J16356	11/29/07	5.2		0.57	12.0		0.57	15200	С	12.9	5.5	С	0.86	4130	С	7.1
Equip Blank	J16357	11/29/07	0.2		0.18	0.3		0.18	95	Ċ	4.1	0.5	C	0.28	9	С	2.3

Sample	HEIS	Sample	Ma	ngar	ese	М	ercu	ry	Mol	ybde	ոսու	r	Nicke	1	Po	tassi	ım
Location	Number	Date	mg/kg	Q	PQL	mg/kg	Q	PQL	mg/kg	Q	PQL	mg/kg	Q	PQL	mg/kg	Q	PQL
Test Pit 1	J16355	-11/29/07	221		0.11	0.01	С	0.01	0.84	U	0.84	8.7		0.56	844		11.2
Duplicate	J16356	11/29/07	245		0.11	0.01	U	0.01	0.86		0.86	9.0		0.57	907		11.4
Equip Blank	J16357	11/29/07	4		0.04	0.01	U	0.01	0.28	U	0.28	0.2	U	0.18	23		3.7

Sample	HEIS	Sample	Se	eleniu	m	5	Silico	n		Silver	r	s	odiu	n	Va	nadi	um
Location	Number	Date	mg/kg	Q	PQL	mg/kg	Q	PQL	mg/kg	Q	PQL	mg/kg	Q	PQL	mg/kg	Q	PQL
Test Pit 1	J16355	11/29/07	1.7	U	1.7	2470		11.2	0.28	U	0.28	211	С	5.6	30.0		0.39
Duplicate	J16356	11/29/07	1.7	U	1.7	1750		11.4	0.38		0.29	203	С	5.7	34.2		0.40
Equip Blank	J16357	-11/29/07	0.6	U	0.6	64		3.7	0.09	U	0.09	13	С	1.8	0.2		0.13

Sample	HEIS	Sample		Zinc			TPH	
Location	Number	Date	mg/kg	Q	PQL	mg/kg	Q	PQL
Test Pit 1	J16355	11/29/07	28.4		1.70	142.0	U	142.00
Duplicate	J16356	11/29/07	30.6		1.70	141.0	U	141.00
Equip Blank	J16357	11/29/07	1.9		0.55			

Table B-3. 100-F-46 Inorganic Data Results.									
J16355 J16356									
Constituents	T	est Pi	t 1	Duplicate of J16355					
Constituents	Sample	Date	11/29/07	Sample Date 11/29/07					
	µg/kg	Q	PQL	µg/kg	Q	PQL			
Polychlorinated Biphenyls									
Aroclor-1016	14	U	14	14	U	14			
Aroclor-1221	14	U	14	14	U	14			
Aroclor-1232	14	U	14	14	U	14			
Aroclor-1242	14	U	14	14	U	14			
Aroclor-1248	14	U	14	14	U	14			
Aroclor-1254	14	U	14	14	U	14			
Aroclor-1260	14	U	14	4.8	J	14			
Poly	aromatic Hyc	Irocai	rbons						
Acenaphthene	35.6	U	35.6	35.5	U	35.5			
Acenaphthylene	35.6	U	35.6	35.5	U	35.5			
Anthracene	3.56	U	3.56	3.55	U	3.55			
Benzo(a)anthracene	3.3	J	3.56	3.9		3.55			
Benzo(a)pyrene	2.9	J	3.56	1.5	J	3.55			
Benzo(b)fluoranthene	3	J	3.56	1.3	J	3.55			
Benzo(ghi)perylene	3.56	U	3.56	4.2		3.55			
Benzo(k)fluoranthene	1.6	J	3.56	7.6		3.55			
Chrysene	3.56	U	3.56	3.55	U	3.55			
Dibenz[a,h]anthracene	3.56	U	3.56	3.55	U	3.55			
Fluoranthene	3.56	U	3.56	3.55	U	3.55			
Fluorene	3.56	U	3.56	3.55	U	3.55			
Indeno(1,2,3-cd)pyrene	10		3.56	3.55	U	3.55			
Naphthalene	35.6	U	35.6	35.5	U	35.5			
Phenanthrene	3.56	U	3.56	3.55	U	3.55			
Pyrene	3.56	U	3.56	3.55	U	3.55			

APPENDIX C

100-F-46 CALCULATION BRIEFS

APPENDIX C

CALCULATION BRIEFS

The calculations in this appendix are kept in the active Washington Closure Hanford project files and are available upon request. When the project is completed, the file will be stored in a U.S. Department of Energy, Richland Operations Office repository. These calculations have been prepared in accordance with ENG-1, *Engineering Services*, ENG-1-4.5, "Project Calculation," Washington Closure Hanford, Richland, Washington. The following calculations are provided in this appendix:

100-F-46 Hazard Quotient and Carcinogenic Risk Calculations, Calculation No. 0100F-CA-V0347, Rev. 0.

100-F-46 French Drain Soils Confirmatory Sampling RESRAD Calculation Brief, Calculation No. 0100F-CA-V0346, Rev. 0.

DISCLAIMER FOR CALCULATIONS

The calculation that is provided in this appendix has been generated to document compliance with established cleanup levels. This calculation should be used in conjunction with other relevant documents in the administrative record.

						Acrobat	8.0
	C/	ALCULATI	ON COVE	R SHEET			
Project Ti	itle: 100-F-Field Remedia	ation			J	ob No. 14655	5
Area: 100							
Discipline			*Ca	lculation No: 01	100F-CA-V0347	7	
Subject: _	100-F-46 Hazard Quotier	nt and Carcinoge					-
	r Program: Excel			am No: Excel 20)03		-
The atta	iched calculations have been should be used in c	generated to docu conjunction with oth	ment compliance v ier relevant docum	vith established clea ents in the adminis	anup levels. The trative record.	se calculations	
Committe	ed Calculation 🔀	Prelimina	ry 🔽	Superseded		oided	
Rev.	Sheet Numbers	Originator	Checker	Reviewer	Approval	Date	
0	4	C.R. Martinez	L. D. Habel	N/A	J. M. Capron	03/19/08	210
		comanting	TIL	/	1th Ge	-	
			J				
		SUMM	ARY OF RE	VISION	1		
				••••••••••••••••••••••••••••••••••••••			

WCH-DE-018 (05/08/2007)

*Obtain Calc. No. from Document Control and Form from Intranet

	Washington Closure Hanford CALCULATION SHEET									
		ginator:	C. R. Martinez	Date:	3/19/08	Calc. No.:	0100F-CA-V0347	Rev.:	0	
_		Project:	100-F Field Remediation	Job No:	14655	Checked:	L. D. Habel 47	Date:	3/19/08	
	S	Subject:	100-F-46 Hazard Quotient and Ca	rcinogenic Ris	k Calculation	s		Sheet No.	1 of 3	
1 2	PU	IRPOS	SE:							
3	Pro	wide d	ocumentation to support th	e calculatio	on of the h	azard quoti	ent (HO) and car	inogenia		
4			sk values for the 100-F-46							
5			als (RAGs) in the remedial							
6					ontrienteur	at action w	ork plail (KDK/K.	AWF) (D	JE-KL	
	2005), the following criteria must be met:									
7	1) An HO of <10 for all individual noncorring cone									
8	 An HQ of <1.0 for all individual noncarcinogens A cumulative HQ of <1.0 for noncarcinogens 									
9			cess cancer risk of <1 x 10							
10										
11	4) A cumulative excess cancer risk of $<1 \times 10^{-5}$ for carcinogens.									
12	CI	X7TENT/	DEFEDENCES.							
13	GI	V EIN/I	REFERENCES:							
14	1)	DOF	DI 2005 Dame dial Desi	π ,,	1. 1 .	. 117 7	DI C (1 100			
15	1)		RL, 2005, Remedial Desig							
16			RL-96-17, Rev. 5, U.S. De	partment o	f Energy,	Richland O	perations Office,	Richland,		
17		wasn	ington.							
18		WAG	172 240 (04-1-1 Touris			·· · ·		<u> </u>	007	
19	2)	WAC	173-340, "Model Toxics (Control Act	- Cleanuj	p," Washing	gton Administrati	ve Code, I	.996.	
20		mon								
21	3)		, 2008, Remaining Sites Ve							
22	Drain, Attachment to Waste Site Reclassification Form 2008-021, March 2008, Washington Closure									
23		Hanto	ord, Richland, Washington.							
24										
25	ao									
26	SO	LUTI	ON:							
27	1)							-		
28	1)		late an HQ for each noncar			t detected a	bove background	and comp	pare it to	
29		the in	dividual HQ of <1.0 (DOE	-RL 2005).						
30		a .					<u>_</u>			
31	2)	Sum t	he HQs and compare to the	e cumulativ	e HQ crite	erion of <1.	0.			
32		0.1	1	1 6	· ·					
33	3)		late an excess cancer risk v						ground	
34		and co	ompare it to the individual	excess can	cer risk cri	terion of <	I x 10° (DOE-RL	. 2005).		
35	4	0	1						10-5	
36	4)	Sum t	he excess cancer risk value	es and comp	pare to the	cumulative	e cancer risk criter	rion of <1	x 10 ⁻⁵ .	
37										
38										
39										
40										
41										
42										
43										

	Washingto	on Closure Hanford	CALCULA	TION SHE	ET			
Ľ	Originator:	C. R. Martinez	Date:	3/19/08	Calc. No.:	0100F-CA-V0347	Rev.:	0
-	Project:	100-F Field Remediation	Job No:	14655	Checked:	L. D. Habel 🛤	Date:	3/19/08
L	Subject:	100-F-46 Hazard Quotient and Ca	arcinogenic Ris	k Calculation	18		Sheet No.	2 of 3
1 2	METHC	DOLOGY:						
3	HQ and o	carcinogenic risk calculatio	ns were cal	culated fo	or the entire	100-F-46 french o	drain site u	sing the
4	higher va	lue for each analyte from t	he primary	and dupli	cate sample	s. Boron, hexava	lent chrom	nium.
5	molybder	num, Aroclor-1260, and a r	number of s	emivolati	le organic c	ompounds require	ed the HO	and risk
6	calculatio	ons because these COPCs w	vere detecte	ed and a W	Vashington	State or Hanford S	Site backg	round
7	value eith	ner is not available, or is no	ot applicabl	e. All oth	er site nonra	adionuclide COPC	Cs were no	t
8		or were quantified below b						
9	presented		U		r	(
10	1							
11	1) For e	xample, the maximum resu	lt for molv	bdenum (().86 mg/kg), divided by the n	oncarcino	genic
12	RAG	value of 400 mg/kg (calcu	lated in acc	ordance v	with the non	carcinogenic toxi	c effects W	/AC
13	173-3	340-740[3]), is 2.2×10^{-3} .	Comparing	this value	and all oth	er individual valu	les to the	
14	requi	rement of <1.0 , this criteric	on is met.		,	ion man maaan aac	ies, to ine	
15	1							
16	2) After	the HQ calculations are co	mpleted fo	r the appro	opriate anal	vtes, the cumulati	ve HO is c	btained
17	bv su	mming the individual value	es. (To avo	oid errors of	due to inter	nediate rounding	the indivi	dual HO
18		s prior to rounding are use						
19		paring this values to the rec					15 5.0 X 10	•
20	1	8	1			5 11100.		
21	3) To ca	lculate the excess cancer ri	isk the may	cimum sta	tistical valu	e is divided by the	- carcinog	enic
22	RAG	value, then, multiplied by	1×10^{-6} F	or exampl	e the maxi	mum value for her	vavalent cl	romium
23	is 0.2	8 mg/kg; divided by 2.1 m	o/ko and n	ultiplied a	e, the maximum	13×10^{-7} Co	mparing t	his value
24	to the	requirement of $<1 \times 10^{-6}$,	this criteric	n is met	as maleuted	, 15 1.5 x 10 . CC	inparing t	ins value
25	to 1110	requirement of six io,		11 15 11100.				
26	4) After	these calculations are com	pleted for t	he carcino	oenic analy	tes the cumulativ		ancer
27	risk is	s obtained by summing the	individual	values T	he sum of t	he excess cancer t	isk values	is
28	2.8 x	10^{-7} . Comparing this value	e to the real	uirement c	$f < 1 \times 10^{-5}$	this criterion is n	net	15
29	2.0 /		e to the req				101.	
30								
31	RESULT	rs:						
32		~~•						
33	1) List in	ndividual noncarcinogens a	and corresp	onding H($D_{\rm S} > 1.0$ N	one		
34		he cumulative noncarcinog						
35		ndividual carcinogens and				$>1 \times 10^{-6}$. None		
36		he cumulative excess cance						
37	., בוסנים	ie camulative excess cane		aremozen	5×1/10 .	1,0110.		
38	Table 1 e	hows the results of the calc	rulation					
39	1000 1 3	no no mo resulto or the call	ananon.					
40								
40 41								
41								
42								

	Washingto	n Closure Hanford	CALCULA	TION SHEE	ET			
	Originator:	C. R. Martinez	Date:	3/19/08	Calc. No.:	0100F-CA-V0347	Rev.:	0
	Project:	100-F Field Remediation	Job No:	14655	Checked:	L. D. Habel 14	Date:	3/19/08
L	Subject:	100-F-46 Hazard Quotient and Ca	rcinogenic Ris	k Calculations	3		Sheet No.	3 of 3

1 2

Table 1. Hazard Quotient and Excess Cancer Risk Results for the100-F-46 French Drain Site.

Contaminants of Potential Concern	Maximum Value ^a (mg/kg)	Noncarcinogen RAG ^b (mg/kg)	Hazard Quotient	Carcinogen RAG ^b (mg/kg)	Carcinogen Risk
Metals					
Boron	3.9	16,000	2.4E-04		
Chromium, hexavalent ^c	0.28	240	1.2E-03	2.1	1.3E-07
Molybdenum	0.86	400	2.2E-03		
Semivolatiles					
Benzo(a)anthracene	0.0039			0.137	2.8E-08
Benzo(a)pyrene	0.0029			0.137	2.1E-08
Benzo(b)fluoranthene	0.003			0.137	2.2E-08
Benzo(k)fluoranthene	0.0076			0.137	5.5E-08
Benzo(ghi)perylene	0.0042	2,400	1.8E-06		
Indeno(1,2,3-cd) pyrene	0.01			1.37	7.3E-09
Polychlorinated Biphenyls					
Aroclor-1260	0.0048			0.5	9.6E-09
Totals					
Cumulative Hazard Quotient:			3.6E-03		
Cumulative Excess Cancer Risk:					2.8E-07

18 Notes:

19 RAG = remedial action goal

 $20 \qquad -- = \text{not applicable}$

a = From Table 1, WCH 2008

21 ^b = Value obtained from *Washington Administrative Code* (WAC) 173-340-740(3), Method B, 1996, unless otherwise noted.

22 ^c = Value for the carcinogen RAG calculated based on the inhalation exposure pathway (WAC) 173-340-750(3), 1996.

23

24

25

26

27

28

29 CONCLUSION:

30

This calculation demonstrates that the 100-F-46 french drain site meets the requirements for the hazard

32 quotients and carcinogenic (excess cancer) risk as identified in the RDR/RAWP (DOE-RL 2005).

33

Acrobat 8.0

CALCULATION	COVER	SHEET
-------------	-------	-------

Project 7	Fitle: Field Remo	ediation			Job	o No. 14655				
Area:	100-F									
Disciplin	Discipline: Environmental *Calculation No: 0100F-CA-V0346									
Subject:	Subject: 100-F-46 French Drain Soils Confirmatory Sampling RESRAD Calc Brief									
Compute	Computer Program: <u>RESRAD</u> Program No: <u>Version 6.4</u>									
The	The attached calculations have been generated to document compliance with established cleanup levels. These calculations should be used in conjunction with other relevant documents in the administrative record.									
Committed Calculation 🛛 Preliminary 🗌 Superseded 🗌 Voided 🗌										
Rev.	Sheet Numbers	Originator	Checker	Reviewer	Approval	Date				
0	Cover – 1 pg Summary – 4 pg Attm. 1 – 1 pg Attm. 2 – 18 pg Attm. 3 – 21 pg	RV. cond	Imsullo	lang	J.D.J.M	3/13/05				
	Attm. 4 - 10 pg Total - 55 pages	S. W. Clark	H. M. Sulloway	N/A	J. D. Fancher					
		SUM	MARY OF R	EVISION	1./// · · · · · · · · · · · · · · · · · ·	L				

WCH-DE-018 (05/08/2007)

*Obtain Calc. No. from Document Control and Form from Intranet

-	Wa	shing	aton Closure Hanford	CALC	ULATI	ON SHEE							
		nator:	S. W. Clark	Date:	711/08	Calc. No.:	0100F-CA-V0346	Rev.:	1.01 - 12				
-		roject: ibject:	100-F Field Remediation 100-F-46 French Drain Confirma	Job No: tory Sampli	14655	Checked: D Calculation	H. M. Sulloway	Date: 3 Sheet No.	$\frac{1000}{10f}$				
L				tory bumph		D Calculation			1 01 4				
1 2	PU	IRPO	SE:										
2 3	Ca	laulat	the soil and groundwate	· aan aant	unting a	daga and .	iale a antuilasti and as		1.5				
4			te the soil and groundwater										
5		1,000 years from the maximum activities of radionuclides in the soil analyses at the 100-F-46 French Drain soils confirmatory sampling site.											
6	renen Bram sons commutatory sampling site.												
7	GI	VFN	/REFERENCES:										
8	UI	. •	AEFERENCES.										
9	1)	Cont	firmatory sampling data fro	om Rema	inina Si	tos Vorific	ation Package for th	$100 - F_{-1}$	6				
10	1)		F Stack Sampling French),				
11			assification Form (WSFR)										
12			hington.	, 2000 02	, wasn			iuna,					
13	2)		edial Design Report/Reme	dial Actie	on Work	Plan for t	he 100 Area (RDR/	RAWP)					
14	_)		E/RL-96-17, Rev. 5, U.S. I			0			nd				
15			hington.	- F									
16	3)		the purpose of these RESR	AD calcu	ilations,	the only r	adioactive contamir	ant of cond	cern				
17			C) established in the 100-I										
18	4)	The	nonradionuclide COCs are	e discusse	d in the	100-F-46	RSVP. All nonradi	onuclide					
19		reme	edial action goals (RAGs)	are met fo	or direct	exposure	and protection of gr	oundwater	and				
20		the r				-							
21	5)	RES	idual RADioactivity (RES	RAD) co	mputer	code, vers	ion 6.4, to calculate	compliance	e				
22			residual radioactivity guid										
23			ironmental Assessment Div										
24	6)		ple design from the Work.						ench				
25			in, Work Instruction No. 0	100F-WI	-G0044,	Rev. 0, W	ashington Closure	Hanford,					
26			land, Washington.										
27	7)		undwater elevation from H										
28		PNN	JL-16346, Pacific Northwe	est Nation	al Labo	ratory, Ric	chland, Washington						
29													
30	SC	LUI	TION:										
31	1)	۸	nalo DECDAD min vice ne	former of f	an tha 10	0 = 4C =	- 	C					
32 33	1)		ngle RESRAD run was per pling analysis. Table 1 sho										
33 34			zon. Attachment 1 shows						at				
35			ways considered for dose,										
36			shown in the "Summary" s						ull				
37			ionuclide Guidelines" prin						r the				
38			poses of this RESRAD eval						1 1110				
39			cted for the waste site, alth						at the				
40			ch drain was only 0.91 m (r s							
41			, (, , ,									

Washington Closure Hanford CALCULATION SHEET

<u>Washing</u>	<u>ton Closure Hanford</u>	CALCULATION SHE	ET	
Originator:	S. W. Clark	Date: S/11/08 Calc. No.:	0100F-CA-V0346	Rev.: $0_1 / 0_1$
Project:	100-F Field Remediation	Job No: 14655 Checked:	H. M. Sulloway	Date: 311/08
Subject:	100-F-46 French Drain Confirmate	Sheet No. 2 of 4		

Table 1. Waste Site Dimensions for RESRAD Modeling								
Parameter	Units	OB/BCL						
Contaminated 2	Zone Dimensio	ns						
Cover Depth	m	0						
Area of Contaminated Zone (CZ)	m ²	100						
Length Parallel to Aquifer Flow	m	10						
Elevations of Vad	ose Zone Hori	zons						
Elevation: Surface	m	126.4						
Elevation: Groundwater	m	114.0						
Thickness: Contaminated Zone	m	12.4						
Thickness: Unsaturated Zone	m	0						

1

2) The year where the peak dose (or concentration) occurs from each individual radionuclide
3 COC and layer was determined by a preliminary run. This year was then added for all
4 horizons for the final RESRAD runs. For the direct exposure pathway (i.e. soil ingestion and
5 inhalation and external radiation), the peak year occurred at year zero (year 2008) for the
6 only COC (tritium). For the water pathways (i.e. drinking water and food ingestion) the peak
7 year for tritium is also at year zero (year 2008).

8 9

10 **METHODOLOGY:**

11 12

1) Runs of RESRAD version 6.4 were completed for the 100-F-46 French Drain soils

confirmatory sampling analysis in Table 2. RESRAD numerical output reports for dose, risk,
 and concentration are presented in the Attachments to this calculation summary.

15

Table 2. Maximum Radionuclide Activities from the 100-F-46French Drain Soils Confirmatory Sampling Analysis								
COC	Confirmatory Sampling Soils Analysis							
Rad	Radionuclide Activity (pCi/g)							
Tritium (H-3) 33.8								

16 17

18 **RESULTS:**

19

20 1) Radionuclide "All Pathways" Dose Rate

- 21 The "all pathways" (maximum) dose rates are shown in Table 3. The maximum all pathways
- dose rate for the 100-F-46 French Drain soils confirmatory sampling analysis is 0.30 mrem/yr at
- 23 year zero (2008).
- 24

<u>Washing</u>	ton Closure Hanford	CALCULATION SHEE		
Originator:	S. W. Clark	Date: Julos Calc. No.:	0100F-CA-V0346	Rev.: , 0/ 2
Project:	100-F Field Remediation	Job No: 14655 Checked:	H. M. Sulloway	Date: 2/1/08
Subject:	100-F-46 French Drain Confirmat	Sheet No. 3 of 4		

Table 3. All Pathways Dose Rate (mrem/yr)										
RESRAD Run	Vadose Zone								ice (yr)	
	Horizons	0	1	2	4	10	30 100 30	300	1000	
Confirmatory Sampling Soil	All	3.00E-01	2.39E-01	1.56E-01	6.65E-02	5.15E-03	1.00E-06	8.69E-20	0	0

1

2 2) Radionuclide Excess Lifetime Cancer Risk

- 3 The radionuclide excess lifetime cancer risk (ELCR) results are shown in Table 4. The
- 4 maximum ELCR for the 100-F-46 French Drain soils confirmatory sampling analysis is
- 5 1.22×10^{-6} at year zero (2008).
- 6

Table 4. Radionuclide Excess Lifetime Cancer Risk										
RESRAD Run	Vadose Zone		Excess Cancer Risk at Each Time Slice (yr)							
	Horizons	0	1	2	4	10	30	100	300	1000
Confirmatory Sampling Soil	All	1.22E-06	1.32E-06	8.62E-07	3.67E-07	2.84E-08	5.52E-12	4.75E-25	0	0

7

8 3) Radionuclide Groundwater Protection

9 The radionuclide concentrations in groundwater calculated by the RESRAD model are

10 summarized in Table 5. Tritium is predicted to reach groundwater in the 1,000 years of the

11 RESRAD model evaluation (at a concentration of 4,900 pCi/L, which is below the MCL of

12 20,000 pCi/L). Because tritium is the only COC, calculation of cumulative organ specific dose

13 via the groundwater (and river) pathway was not necessary to determine that the 4 mrem/yr

14 drinking water dose limitation is met. The comparison to drinking water standards (MCL)

15 calculation brief was also not necessary to be performed.

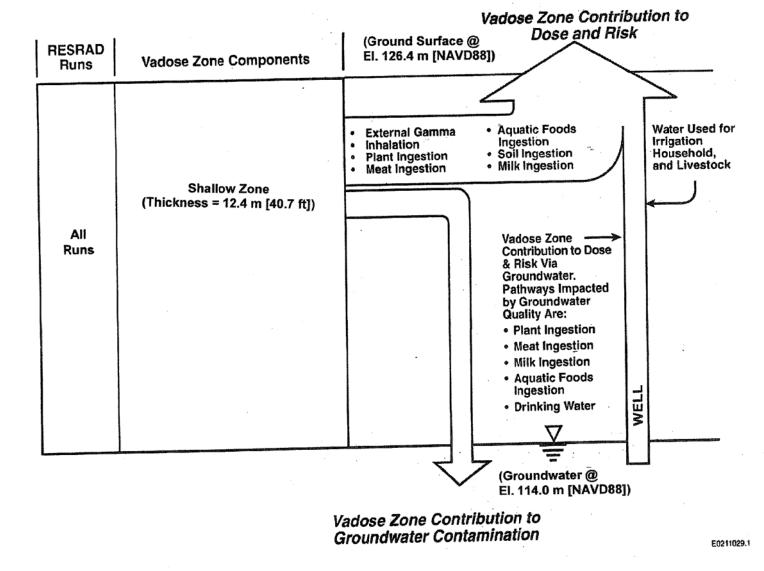
16

	Table 5. Predicted Groundwater (Well Water/Drinking Water) Concentrations											
Radio- nuclides	RESRAD Run		Groundwater Concentrations in pCi/L at Each Time Slice (yr)									
		0	1	2	4	10	30	100	300	1000	pCi/L	
Tritium	Confirmatory Sampling Soil	0	4.90E+03	3.20E+03	1.37E+03	1.06E+02	2.06E-02	1.80E-15	0	0	20,000	
$\mathbf{P} \wedge \mathbf{G}_{\alpha} = \mathbf{P}_{\alpha} \mathbf{m}_{\alpha}$	$2 \Delta G_{P} = Densities a cole from the 100 Area PDP/P AWP$											

RAGs = Remedial action goals from the 100 Area RDR/RAWP

17 18

19 CONCLUSIONS:


20

The "all pathways" (maximum) dose rates are shown in Table 3. The maximum all pathways
 dose rate from the 100-F-46 French Drain soils confirmatory sampling analysis is 0.30m/yr at
 year zero (2008).

24

The radionuclide excess lifetime cancer risk (ELCR) results are shown in Table 4. The maximum ELCR for the 100-F-46 French Drain soils confirmatory sampling analysis 1.22 x 10⁻⁶ at year zero (2008).

	Wa	ashingto	n Closure Hanford	CALCU	JLATIC	N SHEE	Т		
[Origi	inator: S	.W.Clark	Date: 3	/11/08	Calc. No.:	0100F-CA-V0	0346	Rev.: /0/ 2
			00-F Field Remediation		146\$5	Checked:	H. M. Sullowa	ay MAG	Date: 5/h/n8
L	Sı	ubject: 1	00-F-46 French Drain Confirmate	ory Sampling	RESRAD	Calculation	Brief	~~~~	Sheet No. A of 4
1 2 3 4 5 6 7 8 9 10 11 12	•	soils co None o Tritium evaluat Becaus perform	minant pathway for the I onfirmatory sampling and of the site COCs are proje in is predicted to reach gro- cion at a concentration of se only one radionuclide in the calculation of cumu- by to determine that the 4	alysis is wa ected to ex oundwater 4,900 pCi is predicte alative org	ater ing ceed re- in the 1 i/L which ad to rea gan spec	estion du medial ac l,000 yea ch is belo ch groun ific dose	e to tritium. tion goals (rs of the RE w the MCL dwater it wa via the grou	RAGs). ESRAD m (20,000 j as not nec indwater	nodel pCi/L). ressary to
13	A	ГТАСН	MENTS:						
14									
15	1.	Graphi	c showing 100-F-46 Clea	anup Verif	fication	Model (1	page)		
16	2.		AD Output: 100-F-46 Fre					ng Analy	sis – Mixture
17			and Single Radionuclide						
18	3		AD Output: 100-F-46 Fre				ory Sampli	no Analv	sis – Intake
19			ties and Health Risk Fac				ery sumpin		
20	4		AD Output: 100-F-46 Fre			Confirmat	ory Sampli	no Analvo	sis -
20			tration of Radionuclides				ory sampling	ing / mary.	310
21			ination of ixationactions	, (10 page	,sj				

100-F-46 French Drain Cleanup Verification Model

Originators: <u>S.\</u> Chk'd By: <u>H. M.</u> Calc. No. <u>(</u>

1. Sulloway

V0346

Š

C-11

Clark

Attachment

Rev. 0

Attachment to Waste Site Reclassification Form 2008-021

ATTACHMENT

 1RESRAD, Version 6.4
 T« Limit = 180 days
 03/10/2008
 13:54 Page
 1

 Summary : 100-F-46 French Drain Confirmatory Sampling Soils Analysis
 File
 : C:\PROGRAM FILES\RESRAD_FAMILY\RESRAD\100-F-46_FRENCH DRAIN_TRITIUM.RAD

Dose Conversion Factor (and Related) Parameter Summary Site-Specific Parameter Summary Summary of Pathway Selections Contaminated Zone and Total Dose Summary Total Dose Components	2 3 6 7
Time = 0.000E+00	8
Time = 1.000E+00	9
Time = 2.000E+00	10
Time = 4.000E+00	11
Time = 1.000E+01	12
Time = 3.000E+01	13
Time = 1.000E+02	14
Time = 3.000E+02	15
Time = 1.000E+03	16
Dose/Source Ratios Summed Over All Pathways	17
Single Radionuclide Soil Guidelines	17
Dose Per Nuclide Summed Over All Pathways	18
Soil Concentration Per Nuclide	18

Attachment	2	Sheet No. 1 of 18
Originator: S	S. W. Clark	_Date 3/11/.5 8
	M. Sulloway AMS	Date 3111/08
Calc. No.	0100F-CA-V0346	Rev. No? '0

 1RESRAD, Version 6.4
 T
 Limit = 180 days
 03/10/2008
 13:54
 Page
 2

 Summary :
 100-F-46
 French Drain Confirmatory Sampling Soils Analysis
 File
 :
 C:\PROGRAM FILES\RESRAD_FAMILY\RESRAD\100-F-46_FRENCH DRAIN_TRITIUM.RAD

Dose Conversion Factor (and Related) Parameter Summary Dose Library: FGR 11 ³ Current ³ Base ³ Parameter

	Dose Library: FGR 11						
0	3	3	Current	3	Base	3	Parameter
Menu	3 Parameter	3	Value#	3	Case*	3	Name
ÄÄÄÄ	AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	ÄÄÅ	AAAAAAAAAAA	ÄÅ		ÄΔ	AAAAAAAAAAAAAAA
A-1	³ DCF's for external ground radiation, (mrem/yr)/(pCi/g)	3		3		3	
A-1	³ H-3 (Source: FGR 12)	3	0.000E+00	3	0.000F+00	3	DCF1(1)
	3	3		3		3	
B-1	³ Dose conversion factors for inhalation, mrem/pCi:	3		3		3	
в-1	³ H-3	3	6.400E-08	3	6.400E-08	3	DCF2(1)
	3	3		3		3	
D-1	³ Dose conversion factors for ingestion, mrem/pCi:	3		3		3	
D-1	3 H-3	2	6.400E-08	3	6.400E-08	3	DCF3(1)
	3	3		3		3	
D-34	³ Food transfer factors:	3		3		3	
D-34	³ H-3 , plant/soil concentration ratio, dimensionless	3	4.800E+00	3	4.800E+00	3	RTF(1,1)
D-34	³ H-3 , beef/livestock-intake ratio, (pCi/kg)/(pCi/d)	3	1.200E-02	3	1.200E-02	3	RTF(1,2)
D-34	³ H-3 , milk/livestock-intake ratio, (pCi/L)/(pCi/d)	3	1.000E-02	3	1.000E-02	3	RTF(1,3)
	3	3		2		3	
D-5	³ Bioaccumulation factors, fresh water, L/kg:	3		3		3	
D-5	³ H-3 , fish	3	1.000E+00	2	1.000E+00	3	BIOFAC(1,1)
D-5	³ H-3 , crustacea and mollusks	3	1.000E+00	3	1.000E+00	3	BIOFAC(1,2)
							11111111111111
#For	DCF1(xxx) only, factors are for infinite depth & area. See	ETF	G table in	G	round Path	wa	y of Detailed Report.
*Base	e Case means Default.Lib w/o Associate Nuclide contributions.						

Attachment	2	Sheet No. 2 of 18
Originator: S.	W. Clark	Date
Chk'd By: H. N	1. Sulloway	Date
Calc. No. 01	100F-CA-V0346	Rev. No. 0

1RESRAD, Version 6.4

T« Limit = 180 days

ATTACHMENT 2

03/10/2008 13:54 Page 3

Summary : 100-F-46 French Drain Confirmatory Sampling Soils Analysis File : C:\PROGRAM FILES\RESRAD_FAMILY\RESRAD\100-F-46_FRENCH DRAIN_TRITIUM.RAD Site-Specific Parameter Summary 0 3 ³ Used by RESRAD ³ ³ Input ³ Default ³ (If different from user input) ³ ³ Parameter Menu ³ Parameter Name R011 ³ Area of contaminated zone (m**2) R011 ³ Thickness of contaminated zone (m) ³ 1.000E+02 ³ 1.000E+04 ³ ³ 1.240E+01 ³ 2.000E+00 ³ ³ 1.000E+01 ³ 1.000E+02 ³ ---AREA 3 THICKO ---R011 ³ Length parallel to aquifer flow (m) 3 LCZPAQ ---3 1.000E+01 3 1.000E+02 3 3 1.500E+01 3 3.000E+01 3 3 0.000E+00 3 0.000E+00 3 3 1.000E+00 3 1.000E+00 3 3 4.000E+00 3 1.000E+01 3 3 4.000E+01 3 3.000E+01 3 3 1.000E+01 3 1.000E+02 3 3 1.000E+02 3 1.000E+02 3 3 3.000E+02 3 1.000E+00 3 3 1.000E+03 3 0.000E+00 3 3 1.000E+00 3 0.000E+00 3 3 1.000E+00 3 3 1.000E+00 3 0.000E+00 3 3 1.00 R011 ³ Basic radiation dose limit (mrem/yr) ---³ BRDL R011 ³ Time since placement of material (yr) ---3 T I R011 ³ Times for calculations (yr) ---3 T(2) R011 ³ Times for calculations (yr) ---3 T(3) R011 ³ Times for calculations (yr) 3 T(4) ---R011 ³ Times for calculations (yr) ---3 T(5) R011 ³ Times for calculations (yr) ---3 T(6) 3 1.000E+01 3 1.000E+02 3 3 3.000E+02 3 1.000E+02 3 3 1.000E+03 3 0.000E+03 3 3 1.000E+03 3 0.000E+00 3 R011 ³ Times for calculations (yr) ---3 T(7) R011 ³ Times for calculations (yr) ---3 T(8) R011 ³ Times for calculations (yr) ---3 T(9) R011 ³ Times for calculations (yr) ³ not used ³ 0.000E+00 ³ 3 T(10) ---3 3 ---3 S1(1) ---3 W1(1) R013 ³ Cover depth (m) 3 0.000E+00 3 0.000E+00 3 ---³ COVERO ³ not used ³ 1.500E+00 ³ ³ not used ³ 1.000E-03 ³ R013 ³ Density of cover material (g/cm**3) ---DENSCV R013 ³ Cover depth erosion rate (m/yr) ---3 VCV R013 ³ Density of contaminated zone (g/cm**3) 3 1.600E+00 3 1.500E+00 3 ---3 DENSCZ ³ 1.000E-00 ³ 1.500E+00 ³ ³ 4.000E-03 ³ 4.000E-01 ³ R013 ³ Contaminated zone erosion rate (m/yr) ---3 VCZ R013 ³ Contaminated zone total porosity 3 TPCZ ---R013 ³ Contaminated zone field capacity 3 1.500E-01 3 2.000E-01 3 ---³ FCCZ R013 ³ Contaminated zone hydraulic conductivity (m/yr) ³ 2.500E+02 ³ 1.000E+01 ³ ---HCCZ

 R013 3 Contaminated zone b parameter
 3 4.050E+00 3 5.300E+00 3

 R013 3 Average annual wind speed (m/sec)
 3 3.400E+00 3 2.000E+00 3

 R013 3 Humidity in air (g/m**3)
 3 8.000E+00 3

 ---3 BCZ - - -3 WIND ---HUMID R013 ³ Evapotranspiration coefficient ³ 9.100E-01 ³ 5.000E-01 ³ ---EVAPTR R013 ³ Precipitation (m/yr) 3 1.600E-01 3 1.000E+00 3 ---PRECIP ′³ RI R013 ³ Irrigation (m/yr) 3 7.600E-01 3 2.000E-01 3 ---R013 ³ Irrigation mode R013 ³ Runoff coefficient ³ overhead ³ overhead ³ ³ 2.000E-01 ³ 2.000E-01 ³ 3 IDITCH ------3 RUNOFF ³ Watershed area for nearby stream or pond (m**2) ³ 1.000E+06 ³ 1.000E+06 ³ R013 - - -WAREA R013 3 Accuracy for water/soil computations 3 1.000E-03 3 1.000E-03 3 - - -EPS R014 ³ Density of saturated zone (g/cm**3) 3 1.600E+00 3 1.500E+00 3 ---³ DENSAQ R014 ³ Saturated zone total porosity R014 ³ Saturated zone effective porosity 3 4.000E-01 3 4.000E-01 3 ---3 TPSZ 3 2.500E-01 3 2.000E-01 3 ³ EPSZ ---³ 2.500 0. ³ 1.500E-01 ³ 2.000E-01 ³ ³ 5.530E+03 ³ 1.000E+02 ³ ³ 1.250E-03 ³ 2.000E-02 ³ ³ 4.050E+00 ³ 5.300E+00 ³ ³ 1.000E-03 ³ 1.000E-03 ³ ⁴ 4.00E+00 ³ 1.000E+01 ³ R014 ³ Saturated zone field capacity ---FCSZ R014 ³ Saturated zone hydraulic conductivity (m/yr) ---³ HCSZ R014 ³ Saturated zone hydraulic gradient ---³ HGWT R014 ---Saturated zone b parameter ³ BSZ R014 3 Water table drop rate (m/yr) R014 3 Well pump intake depth (m below water table) 3 VWT ------3 DWIBWT R014 ³ Model: Nondispersion (ND) or Mass-Balance (MB) 3 ND 3 ND 3 ---3 MODEL 3 2.500E+02 3 2.500E+02 3 R014 ³ Well pumping rate (m**3/yr) ---3 UW 3 R015 ³ Number of unsaturated zone strata 3 O 31 3 ---3 NS

Attachment	2	_ Sheet No.	3 of 18
Originator: S. V	/. Clark	Date	
Chk'd By: H. M.	Sulloway	Date	_
Calc. No. 010	0F-CA-V0346	Rev. No.	0

 1RESRAD, Version 6.4
 T« Limit = 180 days
 03/10/2008
 13:54 Page

 Summary : 100-F-46 French Drain Confirmatory Sampling Soils Analysis

 File
 : C:\PROGRAM FILES\RESRAD_FAMILY\RESRAD\100-F-46_FRENCH DRAIN_TRITIUM.RAD

Si	te-Specific P	aram	eter Su	umm	nary (co	ntii	nued)		
0 3	. 3		ser	3	, .		3 Used by RESRAD	3	Parameter
Menu ³ Parameter	2		nput				3 (If different from user		Name
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA					AAAAAAA	AAA	******	AAAAAAAAAA	AAAAAAAAAAAAAAA
R016 ³ Distribution coefficients for H-3	3			2			3	3	
R016 ³ Contaminated zone (cm**3/g)					0.000E+				DCNUCC(1)
R016 ³ Saturated zone (cm**3/g)					0.000E+				DCNUCS(1)
R016 ³ Leach rate (/yr)					0.000E+				ALEACH(1)
R016 ³ Solubility constant	,	0.00	J0E+00	3	0.000E+	00	3 not used	3	SOLUBK(1)
	3	7 70	000.07	-	0 /005.	07	1	-	
R017 ³ Inhalation rate (m**3/yr) R017 ³ Mass loading for inhalation (g/m**3)					8.400E+				INHALR
R017 ³ Exposure duration					1.000E- 3.000E+				MLINH ED
R017 ³ Shielding factor, inhalation					4.000E-				SHF3
R017 ³ Shielding factor, external gamma					7.000E-				SHF1
R017 ³ Fraction of time spent indoors					5.000E-				FIND
R017 ³ Fraction of time spent outdoors (on s					2.500E-				FOTD
R017 ³ Shape factor flag, external gamma					1.000E+				FS
R017 ³ Radii of shape factor array (used if				3			3	3	
R017 ³ Outer annular radius (m), ring 1:	3	not	used	3	5.000E+	01	3	3	RAD SHAPE(1)
R017 ³ Outer annular radius (m), ring 2:	2	not	used	3	7.071E+	-01	3		RAD SHAPE(2)
R017 ³ Outer annular radius (m), ring 3:	3	not	used	3	0.000E+	-00	3		RAD SHAPE(3)
R017 ³ Outer annular radius (m), ring 4:	3	not	used	3	0.000E+	-00	3		RAD SHAPE(4)
R017 ³ Outer annular radius (m), ring 5:	2	not	used	2	0.000E+	-00	3	3	RAD_SHAPE(5)
R017 ³ Outer annular radius (m), ring 6:	3	not	used	3	0.000E+	-00	3		RAD_SHAPE(6)
R017 ³ Outer annular radius (m), ring 7:	3	not	used	3	0.000E+	-00	3	3	RAD_SHAPE(7)
R017 ³ Outer annular radius (m), ring 8:					0.000E+			2	RAD_SHAPE(8)
R017 ³ Outer annular radius (m), ring 9:					0.000E+			3	RAD_SHAPE(9)
R017 ³ Outer annular radius (m), ring 10:			used		0.000E+				RAD_SHAPE(10)
R017 ³ Outer annular radius (m), ring 11:			used		0.000E+				RAD_SHAPE(11)
R017 ³ Outer annular radius (m), ring 12:	3		used		0.000E+		3	3	RAD_SHAPE(12)
poiz i freetiene of envilor encod within AD				2			2	3	
R017 ³ Fractions of annular areas within ARE R017 ³ Ring 1			unad	*	1 0005			,	
			used used		1.000E+ 2.732E-				FRACA(1)
R017 ³ Ring 2 R017 ³ Ring 3			used		0.000E+				FRACA(2)
R017 ³ Ring 4			used		0.000E+				FRACA(3)
R017 ³ Ring 5					0.000E+				FRACA(4) FRACA(5)
R017 ³ Ring 6			used		0.000E+				FRACA(6)
R017 ³ Ring 7			used		0.000E+				FRACA(7)
R017 ³ Ring 8			used		0.000E+				FRACA(8)
R017 ³ Ring 9			used		0.000E+				FRACA(9)
R017 ³ Ring 10			used		0.000E+				FRACA(10)
R017 ³ Ring 11	3	not	used	3	0.000E+	-00	3		FRACA(11)
R017 ³ Ring 12	3	not	used	2	0.000E+	-00	3		FRACA(12)
3	3			3			3	3	
R018 ³ Fruits, vegetables and grain consump								3	DIET(1)
R018 ³ Leafy vegetable consumption (kg/yr)					1.400E+			3	DIET(2)
R018 ³ Milk consumption (L/yr)					9.200E+				DIET(3)
R018 ³ Meat and poultry consumption (kg/yr)					6.300E+				DIET(4)
R018 ³ Fish consumption (kg/yr)					5.400E+				DIET(5)
R018 ³ Other seafood consumption (kg/yr)					9.000E-				DIET(6)
R018 ³ Soil ingestion rate (g/yr)					3.650E+				SOIL
R018 ³ Drinking water intake (L/yr)	,	1.5	UUE+U2	,	5.100E+	-02	3	3	DWI

Attachment	2	Sheet No. 4	of 18
Originator: S. W	. Clark	Date	
Chk'd By: H. M. S	Sulloway	Date	
Calc. No. 0100	F-CA-V0346	Rev. No.	0

 1RESRAD, Version 6.4
 T« Limit = 180 days
 03/10/2008
 13:54 Page 5

 Summary : 100-F-46 French Drain Confirmatory Sampling Soils Analysis

 File
 : C:\PROGRAM FILES\RESRAD_FAMILY\RESRAD\100-F-46_FRENCH DRAIN_TRITIUM.RAD

Site-Specific Parameter Summary (continued) 0 User Used by RESRAD User ³ ³ Used by RESRAD ³ Input ³ Default ³ (If different from user input) ³ ³ Parameter Menu ³ Parameter Name R018 ³ Contamination fraction of drinking water R018 ³ Contamination fraction of household water ³ 1.000E+00 ³ 1.000E+00 ³ ³ not used ³ 1.000E+00 ³ ---FDW ---³ FHHW R018 ³ Contamination fraction of livestock water 3 1.000E+00 3 1.000E+00 3 ---FLW R018 ³ Contamination fraction of irrigation water 3 1.000E+00 3 1.000E+00 3 ---FIRW R018 ³ Contamination fraction of aquatic food 3 5.000E-01 3 5.000E-01 3 ---FR9 R018 ³ Contamination fraction of plant food 3 - 1 3-1 3 0.500E-01 FPLANT R018 ³ Contamination fraction of meat 3-1 3-1 3 0.500E-02 FMEAT 3 - 1 3-1 R018 ³ Contamination fraction of milk 0.500E-02 FMILK 3 R019 ³ Livestock fodder intake for meat (kg/day) 3 6.800E+01 3 6.800E+01 3 ---³ LFI5 R019 3 Livestock Kodder intake for milk (kg/day) R019 3 Livestock water intake for meat (L/day) R019 3 Livestock water intake for milk (L/day) ³ 5.500E+01 ³ 5.500E+01 ³ ³ 5.000E+01 ³ 5.000E+01 ³ ³ 1.600E+02 ³ 1.600E+02 ³ - - -3 LFI6 ---3 LWI5 ---3 LWI6 R019 ³ Livestock soil intake (kg/day) 3 5.000E-01 3 5.000E-01 3 ---³ LSI R019 ³ Mass loading for foliar deposition (g/m**3) 3 1.000E-04 3 1.000E-04 3 ---MLFD ³ 1.500E-01 ³ 1.500E-01 ³ ³ 9.000E-01 ³ 9.000E-01 ³ ³ 1.000E+00 ³ 1.000E+00 ³ R019 ³ Depth of soil mixing layer (m) ---3 DM R019 ³ Depth of roots (m) R019 ³ Depth of roots (m) R019 ³ Drinking water fraction from ground water ---DROOT ---FGWDW R019 ³ Household water fraction from ground water not used 3 1.000E+00 3 ---FGWHH R019 ³ Livestock water fraction from ground water 3 1.000E+00 3 1.000E+00 3 - - -FGWLW R019 ³ Irrigation fraction from ground water 3 1.000E+00 3 1.000E+00 3 ---FGWIR 3 7.000E-01 3 7.000E-01 3 R19B ³ Wet weight crop yield for Non-Leafy (kg/m**2) ---3 YV(1) R19B ³ Wet weight crop yield for Leafy (kg/m**2) 3 1.500E+00 3 1.500E+00 3 ---3 YV(2) R19B ³ Wet weight crop yield for Fodder (kg/m**2) 3 1.100E+00 3 1.100E+00 3 ---YV(3) TE(1) R19B ³ Growing Season for Non-Leafy (years) 1.700E-01 3 1.700E-01 3 ---R19B ³ Growing Season for Leafy 2.500E-01 3 2.500E-01 3 (years) 3 ---TE(2) 8.000E-02 3 8.000E-02 3 1.000E-01 3 1.000E-01 3 R19B 3 Growing Season for Fodder (years) - - -TE(3) R19B ³ Translocation Factor for Non-Leafy ---TIV(1) R19B ³ Translocation Factor for Leafy 1.000E+00 3 1.000E+00 3 ---TIV(2) R19B ³ Translocation Factor for Fodder 3 1.000E+00 3 1.000E+00 3 - - -TIV(3) 2.500E-01 ³ 2.500E-01 ³ 2.500E-01 ³ 2.500E-01 ³ 2.500E-01 ³ 2.500E-01 ³ R19B ³ Dry Foliar Interception Fraction for Non-Leafy 3 ---RDRY(1) R19B ³ Dry Foliar Interception Fraction for Leafy R19B ³ Dry Foliar Interception Fraction for Fodder 3 - - -RDRY(2) ---RDRY(3) R19B ³ Wet Foliar Interception Fraction for 2.500E-01 3 2.500E-01 3 Non-Leafy - - -RWET(1) R19B ³ Wet Foliar Interception Fraction for 3 2.500E-01 3 2.500E-01 3 - - -Leafy RWET(2) 2.500E-01 3 2.500E-01 3 R19B ³ Wet Foliar Interception Fraction for Fodder 3 - - -RWET(3) R19B ³ Weathering Removal Constant for Vegetation 3 2.000E+01 3 2.000E+01 3 ---WLAM C14 ³ C-12 concentration in water (g/cm**3) not used 3 2.000E-05 3 ---C12WTR C14 ³ C-12 concentration in contaminated soil (g/g) 3 not used 3 3.000E-02 3 - - -C12CZ ³ Fraction of vegetation carbon from soil C14 х 3 2.000E-02 3 --not used CSOIL ³ Fraction of vegetation carbon from air C14 ³ not used 3 9.800E-01 3 - - -CAIR 3 3.000E-01 3 3 7.000E-07 3 C14 C-14 evasion layer thickness in soil (m) ³ not used ---DMC ³ C-14 evasion flux rate from soil (1/sec) C14 ³ not used ---EVSN ³ C-12 evasion flux rate from soil (1/sec) C14 3 3 1.000E-10 3 --not used REVSN C14 3 Fraction of grain in beef cattle feed 3 8.000E-01 3 ³ not used - - -AVFG4 ³ Fraction of grain in milk cow feed C14 ³ not used 3 2.000E-01 3 - - -AVFG5 STOR ³ Storage times of contaminated foodstuffs (days): ³

Attachment	2	Sheet No.	5 of 18
Originator: S.W.	Clark	Date	
Chk'd By: H. M. S	ulloway	Date	
Calc. No. 0100	F-CA-V0346	Rev. No.	0

 1RESRAD, Version 6.4
 T« Limit = 180 days
 03/10/2008
 13:54
 Page
 6

 Summary :
 100-F-46
 French Drain Confirmatory Sampling Soils Analysis

 File
 :
 C:\PROGRAM FILES\RESRAD_FAMILY\RESRAD\100-F-46_FRENCH DRAIN_TRITIUM.RAD

	Site-Specific	P	aram	eter S	um	mary	(cont	inued)			
0 3		2	Us	ser	2			3	Used by RESRAD	3	Parameter
Menu ³	Parameter	3	Ir	nput	3	De	efault	3 (If	different from user i	nput) 3	Name
ÄÄÄÄÄÄÄ	ааааааааааааааааааааааааааааааааааааааа	ÄÅ	ÄÄÄÄ	4ÅÄÄÄÄ	ÄÅ	ÄÄÄÄ	AAAAAAA	ÂĂĂĂĂĂ	AAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAA	AAAAAAA	ĂĂĂĂĂĂĂĂĂĂĂĂĂĂĂ
STOR 3	Fruits, non-leafy vegetables, and grain	3	1.40	DOE+01	3	1.4	400E+01	2		3	STOR T(1)
STOR 3	Leafy vegetables	3	1.00	00E+00	3	1.0	000E+00	2			STOR T(2)
STOR 3	Milk	3	1.00	00E+00	3	1.0	000E+00	2			STOR T(3)
STOR 3	Meat and poultry	3	2.00	00E+01	3	2.0	000E+01	2			STOR T(4)
STOR 3	Fish	2	7.00	00E+00	2	7.0	000E+00	2			STOR T(5)
STOR 3	Crustacea and mollusks	3	7.00	00E+00	3	7.0	000E+00	2		3	STOR T(6)
STOR 3	Well water	3	1.00	00E+00	3	1.0	000E+00	3			STOR T(7)
STOR 3	Surface water	3	1.00	00E+00	2	1.0	000E+00	3		3	STOR T(8)
STOR 3	Livestock fodder	2	4.50	00E+01	2	4.5	500E+01	2		2	STOR T(9)
3		3			2			3		3	-
R021 3	Thickness of building foundation (m)	3	not	used	3	1.5	500E-01	3		2	FLOOR1
R021 3	Bulk density of building foundation (g/cm**3)	3	not	used	2	2.4	400E+00	2		3	DENSFL
R021 3	Total porosity of the cover material	3	not	used	3	4.0	000E-01	3		2	TPCV
R021 3	Total porosity of the building foundation	3	not	used	2	1.0	000E-01	3		3	TPFL
R021 3	Volumetric water content of the cover material	3	not	used	3	5.0	000E-02	2		2	PH2OCV
R021 3	Volumetric water content of the foundation	3	not	used	2	3.0	000E-02	3		3	PH2OFL
R021 3	Diffusion coefficient for radon gas (m/sec):	2			3			3		3	
R021 3	in cover material	3	not	used	3	2.0	000E-06	3		3	DIFCV
R021 3	in foundation material	3	not	used	3	3.0	000E-07	3 ,		3	DIFFL
R021 3	in contaminated zone soil	2	not	used	3	2.0	000E-06	3		2	DIFCZ
R021 3	Radon vertical dimension of mixing (m)	3	not	used	3	2.0	000E+00	3		3	HMIX
R021 3	Average building air exchange rate (1/hr)	3	not	used	3	5.0	000E-01	3	'	3	REXG
R021 3	Height of the building (room) (m)	3	not	used	3	2.5	500E+00	3		3	HRM
R021 3	Building interior area factor	3	not	used	2	0.0	000E+00	3		3	FAI
R021 3	Building depth below ground surface (m)	3	not	used	3.	-1.0	000E+00	2		3	DMFL
R021 3	Emanating power of Rn-222 gas	3	not	used	3	2.5	500E-01	3		3	EMANA(1)
R021 3	Emanating power of Rn-220 gas	3	not	used	3	1.5	500E-01	3		2	EMANA(2)
2		3			3			3		3	
TITL 3	Number of graphical time points	3		64	3			2		3	NPTS
TITL ³	Maximum number of integration points for dose	3		5	3			3		2	LYMAX
TITL ³	Maximum number of integration points for risk	3		9	2			2		3	KYMAX
ÍÍÍÍÍÍÍ	111111111111111111111111111111111111111	ÍΪ	ÍÍÍÍ	ÍÍÍÍÍÍ	ÍΪ	ÍÍÍ	ÍÍÍÍÍÍÍ	ÍÏÍÍÍÍ	111111111111111111111111111111111111111	ÍÍÍÍÍÍÍ	111111111111111

Summary of Pathway Selections

Attachment	2	Sheet No. 6 of 18
Originator: S	. W. Clark	Date
Chk'd By: H. I	M. Sulloway	Date
Calc. No. 0	100F-CA-V0346	Rev. No. 0

 1RESRAD, Version 6.4
 T « Limit = 180 days
 03/10/2008
 13:54
 Page
 7

 Summary : 100-F-46
 French Drain Confirmatory Sampling Soils Analysis
 File
 : C:\PROGRAM FILES\RESRAD_FAMILY\RESRAD\100-F-46_FRENCH DRAIN_TRITIUM.RAD

	ted Zone Dimensions XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	ÄÄ		Concentrati AAAAAAAAAAAAA 3.380E	AAAAAAAAAA			
0		Total	Doco TDOSE	(t), mrem/y				
		Basic Radiat	tion Dose L	imit = 1.50	0E+01 mrem/	yr		
	Total Mixture Sum	M(t) = Frad	ction of Ba	sic Dose Li	mit Receive	d at Time (t)	
	AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	AAAAAAAAAAA	AAAAAAAAAAAA	AAAAAAAAA AAAA		ÄÄ	
t (vears):	0.000E+00 1.000E+00	2.000E+00	4.000E+00	1.000E+01	3-000F+01	1.000E+02	3.000E+02	1.000E+03
TDOSE(t):		1.560E-01				8.694E-20	0.000E+00	0.000E+00
	1.995E-02 1.593E-02						0.000E+00	0.000E+00
					0.0042-00	J.170E-21	0.0002+00	0.000E+00
UMAXIMUM IDUSE(t): 2.993E-01 mrem/yr	att=0	.000E+00 ye	ars				

Attachment	2	Sheet No. 7 of 18
Originator: S. W	. Clark	Date
Chk'd By: H. M. S	Sulloway	Date
Calc. No. 0100)F-CA-V0346	Rev. No. 0

 1RESRAD, Version 6.4
 T« Limit = 180 days
 03/10/2008
 13:54
 Page
 8

 Summary : 100-F-46 French Drain Confirmatory Sampling Soils Analysis
 File
 : C:\PROGRAM FILES\RESRAD_FAMILY\RESRAD\100-F-46_FRENCH DRAIN_TRITIUM.RAD

0

Total Dose Contributions TDOSE(i,p,t) for Individual Radionuclides (i) and Pathways (p) As mrem/yr and Fraction of Total Dose At t = 0.000E+00 years Water Independent Pathways (Inhalation excludes radon)

0	Ground	Inhalation	Radon	Plant	Meat	Milk	Soil
Radio-	AAAAAAAAAAAAAAAAAAAAA	AAAAAAAAAAAAAAAAAAAAAA	AAAAAAAAAAAAAAAAAAAAAAA	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	AAAAAAAAAAAAAAAAAAAAAA	AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
	e mrem/yr fract.	mrem/yr fract.	mrem/yr fract.	mrem/yr fract.	mrem/yr fract.	mrem/yr fract.	mrem/yr fract.
ÄÄÄÄÄÄ	A AAAAAAAA AAAAAA	AAAAAAA AAAAAAA	AAAAAA AAAAAA	AAAAAA AAAAAA	AAAAAA AAAAAAA	AAAAAA AAAAAAA	AAAAAAAAA AAAAAA
H-3	0.000E+00 0.0000	2.400E-03 0.0080	0.000E+00 0.0000	6.633E-02 0.2216	8.682E-04 0.0029	1.440E-03 0.0048	1.028E-05 0.0000
iiiiii	1 111111111 111111	1111111111 111111	111111111 111111	111111111 111111	111111111 111111	111111111 111111	111111111 111111
Total	0.000E+00 0.0000	2.400E-03 0.0080	0.000E+00 0.0000	6.633E-02 0.2216	8.682E-04 0.0029	1.440E-03 0.0048	1.028E-05 0.0000
0							

Total Dose Contributions TDOSE(i,p,t) for Individual Radionuclides (i) and Pathways (p) As mrem/yr and Fraction of Total Dose At t = 0.000E+00 years Water Dependent Pathways

	As incluy i and indector of forat base At t = 0.000L/00 years						
0			Water D	ependent Pathways			
0	Water	Fish	Radon	Plant	Meat	Milk	All Pathways*
Radio-	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	AAAAAAAAAAAAAAAAAAAAAA	AAAAAAAAAAAAAAAAAAAAA	AAAAAAAAAAAAAAAAAAAAA	AAAAAAAAAAAAAAAAAAAAAA	AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
Nuclide	mrem/yr fract.	mrem/yr fract.	mrem/yr fract.	mrem/yr fract.	mrem/yr fract.	mrem/yr fract.	mrem/yr fract.
AAAAAAA	AAAAAAA AAAAAAA	AAAAAAA AAAAAAA	AAAAAA AAAAAA	AAAAAA AAAAAA	AAAAAA AAAAAA	AAAAAA AAAAAAA	AAAAAAA AAAAAA
H-3	2.217E-01 0.7408	1.224E-05 0.0000	0.000E+00 0.0000	6.300E-03 0.0210	4.500E-05 0.0002	1.606E-04 0.0005	2.993E-01 1.0000
ÍÍÍÍÍÍÍ	111111111111111111		111111111 111111	111111111 111111	111111111 111111	1111111111 111111	111111111 111111
Total	2.217E-01 0.7408	1.224E-05 0.0000	0.000E+00 0.0000	6.300E-03 0.0210	4.500E-05 0.0002	1.606E-04 0.0005	2.993E-01 1.0000
0*Sum of	all water indepen	dent and dependent	pathways.				

Attachment	2	Sheet No.	8 of 18
Originator: S. W	. Clark	Date	
Chk'd By: H. M. S	Sulloway	Date	
Calc. No. 0100	DF-CA-V0346	Rev. No.	0

 1RESRAD, Version 6.4
 T « Limit = 180 days
 03/10/2008
 13:54
 Page
 9

 Summary : 100-F-46
 French Drain Confirmatory Sampling Soils Analysis
 File
 : C:\PROGRAM FILES\RESRAD_FAMILY\RESRAD\100-F-46_FRENCH DRAIN_TRITIUM.RAD

0

٥

Total Dose Contributions TDOSE(i,p,t) for Individual Radionuclides (i) and Pathways (p) As mrem/yr and Fraction of Total Dose At t = 1.000E+00 years Water Independent Pathways (Inhalation excludes radon)

0	Ground	Inhalation	Radon	Plant	Meat	Milk	Soil
Radio-	AAAAAAAAAAAAAAAAAAA	AAAAAAAAAAAAAAAAAAAAA	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑ	AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	AAAAAAAAAAAAAAAAAAA	AAAAAAAAAAAAAAAAAAA
	mrem/yr fract.	mrem/yr fract.	mrem/yr fract.	mrem/yr fract.	mrem/yr fract.	mrem/yr fract.	mrem/yr fract.
ÄÄÄÄÄÄ	AAAAAAA AAAAAAA	AAAAAAA AAAAAAA	AAAAAAA AAAAAAA	AAAAAA AAAAAAA	AAAAAAA AAAAAAA	AAAAAA AAAAAA	AAAAAAAA AAAAAA
H-3	0.000E+00 0.0000	1.567E-03 0.0066	0.000E+00 0.0000	4.336E-02 0.1815	5.705E-04 0.0024	9.442E-04 0.0040	6.714E-06 0.0000
ÍÍÍÍÍÍÍ	1111111111 111111	111111111111111111	111111111 111111	111111111 111111	111111111 111111	111111111 111111	1111111111 111111
Total	0.000E+00 0.0000	1.567E-03 0.0066	0.000E+00 0.0000	4.336E-02 0.1815	5.705E-04 0.0024	9.442E-04 0.0040	6.714E-06 0.0000
0							

Total Dose Contributions TDOSE(i,p,t) for Individual Radionuclides (i) and Pathways (p) As mrem/yr and Fraction of Total Dose At t = 1.000E+00 years Water Dependent Pathways

0	water Dependent Pathways						
0	Water	Fish	Radon	Plant	Meat	Milk	All Pathways*
Radio-	AAAAAAAAAAAAAAAAAAAA	AAAAAAAAAAAAAAAAAAAAA	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	AAAAAAAAAAAAAAAAAAAA	AAAAAAAAAAAAAAAAAAAAAA	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
	mrem/yr fract.	mrem/yr fract.	mrem/yr fract.			mrem/yr fract.	mrem/yr fract.
AAAAAAA	ΑΑΑΑΑΑΑ ΑΑΑΑΑΑ	ΑΑΑΑΑΑΑΑ ΑΑΑΑΑΑ	AAAAAAAA AAAAAA	AAAAAAA AAAAAA	AAAAAAAA AAAAAA	AAAAAAA AAAAAA	AAAAAAA AAAAAA
H-3					4.771E-05 0.0002		
					111111111 111111		
Total	1.867E-01 0.7814	1.055E-05 0.0000	0.000E+00 0.0000	5.586E-03 0.0234	4.771E-05 0.0002	1.450E-04 0.0006	2.390E-01 1.0000
0*Sum of	all water indepen	dent and dependent	pathways.				

Attachment	2	_ Sheet No. 9 of 18
Originator: S	. W. Clark	Date
Chk'd By: H. N	M. Sulloway	Date
Calc. No. 0	100F-CA-V0346	Rev. No. 0

 1RESRAD, Version 6.4
 T« Limit = 180 days
 03/10/2008
 13:54
 Page
 10

 Summary : 100-F-46
 French Drain Confirmatory Sampling Soils Analysis
 File
 : C:\PROGRAM FILES\RESRAD_FAMILY\RESRAD\100-F-46_FRENCH DRAIN_TRITIUM.RAD

0

n

Total Dose Contributions TDOSE(i,p,t) for Individual Radionuclides (i) and Pathways (p) As mrem/yr and Fraction of Total Dose At t = 2.000E+00 years Water Independent Pathways (Inhalation excludes radon)

0	Ground	Inhalation	Radon	Plant	Meat	Milk	Soil
Radio-	AAAAAAAAAAAAAA AAAAAA	AAAAAAAAAAAAAAAAAAAAA	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	AAAAAAAAAAAAAAAAAAAA	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	AAAAAAAAAAAAAAAAAAAAA
	mrem/yr fract.	mrem/yr fract.		mrem/yr fract.	mrem/yr fract.	mrem/yr fract.	mrem/yr fract.
AAAAAAA	AAAAAAA AAAAAA	AAAAAAAA AAAAAAA	AAAAAAA AAAAAAA	AAAAAAA AAAAAAA	AAAAAA AAAAAA	AAAAAAA AAAAAAA	AAAAAAAAA AAAAAA
H-3	0.000E+00 0.0000	1.023E-03 0.0066	0.000E+00 0.0000	2.831E-02 0.1814	3.724E-04 0.0024	6.164E-04 0.0040	4.383E-06 0.0000
ÍÍÍÍÍÍ	111111111 111111	1111111111 111111	111111111 111111	iiiiiiii iiiiii	iiiiiiii iiiiii	111111111 111111	111111111 111111
Total	0.000E+00 0.0000	1.023E-03 0.0066	0.000E+00 0.0000	2.831E-02 0.1814	3.724E-04 0.0024	6.164E-04 0.0040	4.383E-06 0.0000
0							

Total Dose Contributions TDOSE(i,p,t) for Individual Radionuclides (i) and Pathways (p) As mrem/yr and Fraction of Total Dose At t = 2.000E+00 years Water Dependent Pathways

0	water Dependent Pathways						
0	Water	Fish	Radon	Plant	Meat	Milk	All Pathways*
Radio-	AAAAAAAAAAAAAAAAAAAAA	AAAAAAAAAAAAAAAAAAAAAA	AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	AAAAAAAAAAAAAAAAAAAAA	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
	mrem/yr fract.	mrem/yr fract.	mrem/yr fract.	mrem/yr fract.	mrem/yr fract.	mrem/yr fract.	mrem/yr fract.
ÄÄÄÄÄÄ	AAAAAAAA AAAAAA	AAAAAAA AAAAAAA	AAAAAA AAAAAA	AAAAAAA AAAAAAA	AAAAAA AAAAAA	AAAAAA AAAAAA	AAAAAAAAA AAAAAA
H-3		6.888E-06 0.0000					
		111111111 111111					
		6.888E-06 0.0000		3.648E-03 0.0234	3.116E-05 0.0002	9.466E-05 0.0006	1.560E-01 1.0000
0*Sum of	all water indepen	ident and dependent	pathways.				

Attachment	2	Sheet No. 10 of 18
Originator: S. W	. Clark	Date
Chk'd By: H. M. S	Sulloway	Date
Calc. No. 0100	DF-CA-V0346	Rev. No. 0

IRESRAD, Version 6.4 T« Limit = 180 days 03/10/2008 13:54 Page 11 Summary : 100-F-46 French Drain Confirmatory Sampling Soils Analysis File : C:\PROGRAM FILES\RESRAD_FAMILY\RESRAD\100-F-46_FRENCH DRAIN_TRITIUM.RAD 1RESRAD, Version 6.4

0

n

Total Dose Contributions TDOSE(i,p,t) for Individual Radionuclides (i) and Pathways (p) As mrem/yr and Fraction of Total Dose At t = 4.000E+00 years Water Independent Pathways (Inhalation excludes radon)

0	Ground	Inhalation	Radon	Plant	Meat	Milk	Soil
Radio-	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	AAAAAAAAAAAAAAAAAAAA	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	AAAAAAAAAAAAAAAAAAAAA	AAAAAAAAAAAAAAAAAA
	mrem/yr fract.	mrem/yr fract.	mrem/yr fract.				
ÄÄÄÄÄÄÄ	AAAAAAA AAAAAAA	AAAAAAA AAAAAAA	AAAAAA AAAAAA	AAAAAAA AAAAAAA	AAAAAA AAAAAAA	AAAAAA AAAAAA	AAAAAAAA AAAAAAA
H-3	0.000E+00 0.0000	4.358E-04 0.0066	0.000E+00 0.0000	1.206E-02 0.1813	1.587E-04 0.0024	2.626E-04 0.0039	1.868E-06 0.0000
1111111	111111111 111111	1111111111 111111	111111111 111111	111111111 111111	111111111 111111	1111111111111111111	ÍÍÍÍÍÍÍÍÍÍ ÍÍÍÍÍÍ
Total	0.000E+00 0.0000	4.358E-04 0.0066	0.000E+00 0.0000	1.206E-02 0.1813	1.587E-04 0.0024	2.626E-04 0.0039	1.868E-06 0.0000
0				ь			

Total Dose Contributions TDOSE(i,p,t) for Individual Radionuclides (i) and Pathways (p) As mrem/yr and Fraction of Total Dose At t = 4.000E+00 years Water Dependent Pathways

r	and	Fraction	ot	lotal	Dose	At t	=
		11-+	D		h Deth		

0			water D	ependent Pathways			
0	Water	Fish	Radon	Plant	Meat	Milk	All Pathways*
Radio-	AAAAAAAAAAAAAAAAAAAA	AAAAAAAAAAAAAAAAAAAAA	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	AAAAAAAAAAAAAAAAAAAAAA	AAAAAAAAAAAAAAAAAAAAAA	AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
	mrem/yr fract.	mrem/yr fract.	mrem/yr fract.	mrem/yr fract.	mrem/yr fract.	mrem/yr fract.	mrem/yr fract.
AAAAAAA	AAAAAAAA AAAAAAA	AAAAAAA AAAAAAA	AAAAAA AAAAAA	AAAAAA AAAAAAA	AAAAAA AAAAAAA	AAAAAAA AAAAAAA	ΑΑΑΑΑΑΑΑ ΑΑΑΑΑΑ
H-3					1.329E-05 0.0002		
ÍÍÍÍÍÍÍ	111111111 111111	111111111 111111	1111111111 111111	111111111 111111	111111111 111111		111111111 111111
Total	5.200E-02 0.7816	2.937E-06 0.0000	0.000E+00 0.0000	1.555E-03 0.0234	1.329E-05 0.0002	4.036E-05 0.0006	6.653E-02 1.0000
0*Sum of	all water indepen	ident and dependent	pathways.				

Attachment	2	_ Sheet No. 11 of 18
Originator: S. V	V. Clark	Date
Chk'd By: H. M.	Sulloway	Date
Calc. No. 010	00F-CA-V0346	Rev. No. 0

 1RESRAD, Version 6.4
 T « Limit = 180 days
 03/10/2008
 13:54
 Page
 12

 Summary : 100-F-46
 French Drain Confirmatory Sampling Soils Analysis
 File
 : C:\PROGRAM FILES\RESRAD_FAMILY\RESRAD\100-F-46_FRENCH DRAIN_TRITIUM.RAD

0

Total Dose Contributions TDOSE(i,p,t) for Individual Radionuclides (i) and Pathways (p) As mrem/yr and Fraction of Total Dose At t = 1.000E+01 years Water Independent Pathways (Inhalation excludes radon)

0	Ground	Inhalation	Radon	Plant	Meat	Milk	Soil
Radio-	AAAAAAAAAAAAAAAAAAAA	AAAAAAAAAAAAAAAAAAAA	AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ĂĂĂĂĂĂĂĂĂĂĂĂĂĂĂĂĂĂĂ	AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
Nuclide	mrem/yr fract.	mrem/yr fract.	mrem/yr fract.	mrem/yr fract.	mrem/yr fract.	mrem/yr fract.	mrem/yr fract.
ÄÄÄÄÄÄÄ	AAAAAAA AAAAAAA	AAAAAAA AAAAAAA	AAAAAA AAAAAA	AAAAAA AAAAAA	AAAAAA AAAAAA	AAAAAAA AAAAAAA	AAAAAAAAA AAAAAA
H-3	0.000E+00 0.0000	3.367E-05 0.0065	0.000E+00 0.0000	9.318E-04 0.1810	1.226E-05 0.0024	2.029E-05 0.0039	1.443E-07 0.0000
1111111	1111111111 111111	111111111111111111	iiiiiiii iiiiii	111111111 111111	1111111111 111111	111111111 111111	111111111 111111
Total	0.000E+00 0.0000	3.367E-05 0.0065	0.000E+00 0.0000	9.318E-04 0.1810	1.226E-05 0.0024	2.029E-05 0.0039	1.443E-07 0.0000
0							

Total Dose Contributions TDOSE(i,p,t) for Individual Radionuclides (i) and Pathways (p) As mrem/yr and Fraction of Total Dose At t = 1.000E+01 years Water Dependent Pathways

			yyr ana rraction o	i iotat bose At t	- 1.000L/01 years		
0			Water D	ependent Pathways			
0	Water	Fish	Radon	Plant	Meat	Milk	All Pathways*
Radio-	AAAAAAAAAAAAAAAAAAAAA	AAAAAAAAAAAAAAA AAAAA	AAAAAAAAAAAAAAAAAAAAA	AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
Nuclide	mrem/yr fract.	mrem/yr fract.	mrem/yr fract.	mrem/yr fract.	mrem/yr fract.	mrem/yr fract.	mrem/yr fract.
AAAAAAA	AAAAAAA AAAAAAA	AAAAAAA AAAAAAA	AAAAAAA AAAAAA	AAAAAA AAAAAAA	AAAAAAA AAAAAAA	AAAAAA AAAAAA	AAAAAAAA AAAAAA
H-3	4.026E-03 0.7819	2.274E-07 0.0000	0.000E+00 0.0000	1.204E-04 0.0234	1.029E-06 0.0002	3.125E-06 0.0006	5.149E-03 1.0000
ÍÍÍÍÍÍÍ	111111111 111111	111111111 111111	111111111 111111	111111111 111111	111111111 111111	111111111 111111	111111111 111111
Total	4.026E-03 0.7819	2.274E-07 0.0000	0.000E+00 0.0000	1.204E-04 0.0234	1.029E-06 0.0002	3.125E-06 0.0006	5.149E-03 1.0000
0*Sum of	all water indepen	dent and dependent	pathways.				

Attachment	2	Sheet No. 12 of 18
Originator: S. W	. Clark	Date
Chk'd By: H. M. S	Sulloway	Date
Calc. No. 0100	0F-CA-V0346	Rev. No. 0

 1RESRAD, Version 6.4
 T« Limit = 180 days
 03/10/2008
 13:54
 Page
 13

 Summary : 100-F-46
 French Drain Confirmatory Sampling Soils Analysis
 File
 : C:\PROGRAM FILES\RESRAD_FAMILY\RESRAD\100-F-46_FRENCH DRAIN_TRITIUM.RAD

0

n

Total Dose Contributions TDOSE(i,p,t) for Individual Radionuclides (i) and Pathways (p) As mrem/yr and Fraction of Total Dose At t = 3.000E+01 years Water Independent Pathways (Inhalation excludes radon)

AAAAAAA
fract.
AAAAAA
1 0.0000
ÍÍÍÍÍÍÍ
1 0.0000

Total Dose Contributions TDOSE(i,p,t) for Individual Radionuclides (i) and Pathways (p) As mrem/yr and Fraction of Total Dose At t = 3.000E+01 years Water Dependent Pathways

u	Fraction	01	Totat	Dose	ΑL	
	Uston	De	nondont	Dath		

0			water b	ependent Pathways			
0	Water	Fish	Radon	Plant	Meat	Milk	All Pathways*
Radio-	AAAAAAAAAAAAAAAAAAAAAA	AAAAAAAAAAAAAAAAAAAAAA	AAAAAAAAAAAAAAAAAAAAAA	AAAAAAAAAAAAAAAAAAAAAAA	AAAAAAAAAAAAAAAAAAAAA	AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
Nuclide	mrem/yr fract.		mrem/yr fract.		mrem/yr fract.	mrem/yr fract.	mrem/yr fract.
AAAAAAA	AAAAAAA AAAAAAA	AAAAAAA AAAAAAA	AAAAAAA AAAAAAA	AAAAAAA AAAAAAA	AAAAAA AAAAAA	AAAAAA AAAAAAA	AAAAAAAA AAAAAA
H-3		4.434E-11 0.0000					
1111111		111111111 111111	iiiiiiii iiiiii	111111111 111111	111111111 111111	111111111 111111	111111111 111111
		4.434E-11 0.0000		2.349E-08 0.0234	2.006E-10 0.0002	6.095E-10 0.0006	1.003E-06 1.0000
0*Sum of	all water indeper	ident and dependent	pathways.				

Attachment	2	_ Sheet No. 13 of 18
Originator: S. V	N. Clark	Date
Chk'd By: H. M.	Sulloway	Date
Calc. No. 010	00F-CA-V0346	Rev. No. 0

.

ATTACHMENT 2

1RESRAD, Version 6.4 T« Limit = 180 days 03/10/2008 13:54 Page 14 Summary : 100-F-46 French Drain Confirmatory Sampling Soils Analysis File : C:\PROGRAM FILES\RESRAD_FAMILY\RESRAD\100-F-46_FRENCH DRAIN_TRITIUM.RAD

0

Total Dose Contributions TDOSE(i,p,t) for Individual Radionuclides (i) and Pathways (p) As mrem/yr and Fraction of Total Dose At t = 1.000E+02 years

Water Independent Pathways (Inhalation excludes radon)

0 Ground Inhalation Radon Plant Meat Milk Soil Nuclide mrem/yr fract. mrem/yr fract. AAAAAAAAA AAAAAA mrem/yr fract. AAAAAAAAA AAAAAA mrem/yr fract. mrem/yr fract. mrem/yr fract. AAAAAAAAA AAAAAA mrem/yr fract. 5.529E-22 0.0064 111111111 111111 0.000E+00 0.0000 111111111 111111 1.531E-20 0.1761 2.015E-22 0.0023 IIIIIIIIII IIIIIII IIIIIII 3.334E-22 0.0038 1111111111111111 2.369E-24 0.0000 111111111 111111 H-3 0.000E+00 0.0000 1111111 111111111 111111 Total 0.000E+00 0.0000 5.529E-22 0.0064 0.000E+00 0.0000 1.531E-20 0.1761 2.015E-22 0.0023 3.334E-22 0.0038 2.369E-24 0.0000 0

Total Dose Contributions TDOSE(i,p,t) for Individual Radionuclides (i) and Pathways (p) As mrem/yr and Fraction of Total Dose At t = 1.000E+02 years

Water Dependent Pathways

Radon			PI	an	t

			<i>, , , , , , , , , ,</i>	i fotat booc ne t	TROODE. OF Jears			
0	Water Dependent Pathways							
0	Water	Fish	Radon	Plant	Meat	Milk	All Pathways*	
Radio-	AAAAAAAAAAAAAAAAAA	AAAAAAAAAAAAAAAAAAAAA	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	AAAAAAAAAAAAAAAAAAAAA	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	
	mrem/yr fract.	mrem/yr fract.	mrem/yr fract.	mrem/yr fract.	mrem/yr fract.	mrem/yr fract.	mrem/yr fract.	
	AAAAAAA AAAAAAA	AAAAAAA AAAAAAA			AAAAAA AAAAAA		AAAAAAAA AAAAAAA	
					1.749E-23 0.0002			
ÍÍÍÍÍÍÍ	111111111 111111	111111111 111111	iiiiiiii iiiiii	111111111 111111	11111111111111111111	111111111 111111	111111111 111111	
Total	6.842E-20 0.7870	3.865E-24 0.0000	0.000E+00 0.0000	2.047E-21 0.0235	1.749E-23 0.0002	5.312E-23 0.0006	8.694E-20 1.0000	
0*Sum of	all water indepen	dent and dependent	pathways.					

Attachment	2	_ Sheet No. 14 of 18
Originator: S.	W. Clark	Date
Chk'd By: H. M	. Sulloway	Date
Calc. No. 01	00F-CA-V0346	Rev. No. 0

 1RESRAD, Version 6.4
 T« Limit = 180 days
 03/10/2008
 13:54
 Page
 15

 Summary : 100-F-46
 French Drain Confirmatory Sampling Soils Analysis
 File
 : C:\PROGRAM FILES\RESRAD_FAMILY\RESRAD\100-F-46_FRENCH DRAIN_TRITIUM.RAD

0

٥

Total Dose Contributions TDOSE(i,p,t) for Individual Radionuclides (i) and Pathways (p) As mrem/yr and Fraction of Total Dose At t = 3.000E+02 years Water Independent Pathways (Inhalation excludes radon)

0	Ground	Inhalation	Radon	Plant	Meat	Milk	Soil
Radio-	AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	AAAAAAAAAAAAAAAAAAAAA	AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	AAAAAAAAAAAAAAAAAAAAA	AAAAAAAAAAAAAAAAAAAAA
	mrem/yr fract.		mrem/yr fract.	mrem/yr fract.		mrem/yr fract.	mrem/yr fract.
	AAAAAAA AAAAAA			AAAAAA AAAAAA		AAAAAAAA AAAAAA	AAAAAAAAA AAAAAA
H-3	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000
1111111	111111111 111111	111111111 111111	111111111 111111	111111111 111111	111111111 111111	111111111 111111	111111111 111111
Total	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000
0							

Total Dose Contributions TDOSE(i,p,t) for Individual Radionuclides (i) and Pathways (p) As mrem/yr and Fraction of Total Dose At t = 3.000E+02 years Water Dependent Pathways

~		٠.	. ocuc	0030	~
	Water	Der	pendent	t Path	າພລ

0			water D	ependent Pathways			
0	Water	Fish	Radon	Plant	Meat	Milk	All Pathways*
Radio-	AAAAAAAAAAAAAAAAAAAAA	AAAAAAAAAAAAAAAAAAAAAA	AAAAAAAAAAAAAAAAAAAAAA	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	AAAAAAAAAAAAAAAAAAAAA	AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
	mrem/yr fract.	mrem/yr fract.	mrem/yr fract.	mrem/yr fract.	mrem/yr fract.	mrem/yr fract.	mrem/yr fract.
AAAAAAA	AAAAAAAA AAAAAA						AAAAAAA AAAAAA
H-3	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000
		111111111 111111					
Total	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000
0*Sum of	all water indepen	dent and dependent	pathways.				

Attachment	2	_ Sheet No. <u>15</u> of <u>18</u>
Originator: S. V	V. Clark	Date
Chk'd By: H. M.	Sulloway	Date
Calc. No. 010	0F-CA-V0346	Rev. No. 0

 IRESRAD, Version 6.4
 T« Limit = 180 days
 03/10/2008
 13:54 Page
 16

 Summary : 100-F-46 French Drain Confirmatory Sampling Soils Analysis
 File
 : C:\PROGRAM FILES\RESRAD_FAMILY\RESRAD\100-F-46_FRENCH DRAIN_TRITIUM.RAD

 1RESRAD, Version 6.4

0

n

Total Dose Contributions TDOSE(i,p,t) for Individual Radionuclides (i) and Pathways (p) As mrem/yr and Fraction of Total Dose At t = 1.000E+03 years Water Independent Pathways (Inhalation excludes radon)

0	Ground	Inhalation	Radon	Plant	Meat	Milk	Soil
Radio-	AAAAAAAAAAAAAAAAAAAA	ĂĂĂĂĂĂĂĂĂĂĂĂĂĂĂĂĂĂ	AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	AAAAAAAAAAAAAAAAAAAAA	AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
	mrem/yr fract.	mrem/yr fract.	mrem/yr fract.	mrem/yr fract.	mrem/yr fract.	mrem/yr fract.	mrem/yr fract.
AAAAAAA	AAAAAAA AAAAAA	AAAAAAA AAAAAAA	AAAAAA AAAAAAA	AAAAAAA AAAAAAA	AAAAAAA AAAAAAA	AAAAAA AAAAAA	AAAAAAAA AAAAAA
н-З					0.000E+00 0.0000		
ÍÍÍÍÍÍÍ	111111111 111111	111111111 111111	111111111 111111	111111111 111111	111111111 111111	111111111 111111	111111111 111111
Total	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000
0							

Total Dose Contributions TDOSE(i,p,t) for Individual Radionuclides (i) and Pathways (p) As mrem/yr and Fraction of Total Dose At t = 1.000E+03 years Water Dependent Pathways

0			water D	ependent Pathways			
0	Water	Fish	Radon	Plant	Meat	Milk	All Pathways*
Radio-	AAAAAAAAAAAAAAAAAAA	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
	mrem/yr fract.			mrem/yr fract.		mrem/yr fract.	mrem/yr fract.
			AAAAAAAA AAAAAA	AAAAAAAA AAAAAA			
		0.000E+00 0.0000					
		111111111 111111					
		0.000E+00 0.0000		0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000
0*Sum of	all water indepen	dent and dependent	pathways.				

Attachment	2	Sheet No. 16	of 18
Originator: S. W	. Clark	Date	
Chk'd By: H. M.	Sulloway	Date	
Calc. No. 010	0F-CA-V0346	Rev. No.	0

1RESRAD, Version 6.4 T« Limit = 180 days 03/10/2008 13:54 Page 17 Summary : 100-F-46 French Drain Confirmatory Sampling Soils Analysis File : C:\PROGRAM FILES\RESRAD_FAMILY\RESRAD\100-F-46_FRENCH DRAIN_TRITIUM.RAD

0 Parent The DSR includes contributions from associated (half-life ó 180 days) daughters. 0

> Single Radionuclide Soil Guidelines G(i,t) in pCi/g Basic Radiation Dose Limit = 1.500E+01 mrem/yr

			Dasic Radio	LION DOSE L	1.000	L'OI III elliy yi			
ONuclide									
(i)	t= 0.000E+00	1.000E+00	2.000E+00	4.000E+00	1.000E+01	3.000E+01	1.000E+02	3.000E+02	1.000E+03
AAAAAAA	AAAAAAAAA	AAAAAAAAA	AAAAAAAAA	AAAAAAAAA	AAAAAAAAA	AAAAAAAAA	AAAAAAAAA	AAAAAAAAA	AAAAAAAA
H-3	1.694E+03	2.122E+03	3.249E+03	7.621E+03	9.847E+04	5.057E+08	*9.597E+15	*9.597E+15	*9.597E+15
1111111	111111111	111111111	111111111	111111111	111111111	iiiiiiii	ÍÍÍÍÍÍÍÍÍ	ÍÍÍÍÍÍÍÍÍ	111111111
*At spec	ific activity	limit							
0									

Summed Dose/Source Ratios DSR(i,t) in (mrem/yr)/(pCi/g) and Single Radionuclide Soil Guidelines G(i,t) in pCi/g at tmin = time of minimum single radionuclide soil guideline and at tmax = time of maximum total dose = 0.000E+00 years ide Initial tmin DSR(i,tmin) G(i,tmin) DSR(i,tmax) G(i,tmax) ONuclide Initial
 Ci)
 CpCi/g)
 Cycars)
 CpCi/g)
 Cp

Attachment	2	Sheet No. 17 of 18
Originator: S. V	V. Clark	Date
Chk'd By: H. M.	Sulloway	Date
Calc. No. 010	0F-CA-V0346	Rev. No. 0

1RESRAD, Version 6.4 T« Limit = 180 days 03/10/2008 13:54 Page 18 Summary : 100-F-46 French Drain Confirmatory Sampling Soils Analysis File : C:\PROGRAM FILES\RESRAD_FAMILY\RESRAD\100-F-46_FRENCH DRAIN_TRITIUM.RAD

> Individual Nuclide Dose Summed Over All Pathways Parent Nuclide and Branch Fraction Indicated

 DNuclide Parent
 THF(i)
 DOSE(j,t), mrem/yr

 (j)
 (i)
 t= 0.000E+00
 1.000E+00
 2.000E+00
 3.000E+01
 1.000E+02
 3.000E+02
 1.000E+02

 AAAAAAA
 AAAAAAAA
 AAAAAAAA
 AAAAAAAAA
 AAAAAAAAAA
 AAAAAAAAAAA
 AAAAAAAAAA
 ONuclide Parent THF(i) THF(i) is the thread fraction of the parent nuclide.

Individual Nuclide Soil Concentration Parent Nuclide and Branch Fraction Indicated

ONuclide Parent THF(i) THF(i) is the thread fraction of the parent nuclide. ORESCALC.EXE execution time = 9.12 seconds

Attachment	2	Sheet No. 18	of 18
Originator: S. W	I. Clark	Date	
Chk'd By: H. M.	Sulloway	Date	
Calc. No. 010	0F-CA-V0346	Rev. No.	0

 1RESRAD, Version 6.4
 T« Limit = 180 days
 03/10/2008
 13:54 Page
 1

 Intrisk : 100-F-46 French Drain Confirmatory Sampling Soils Analysis
 File
 : C:\PROGRAM FILES\RESRAD_FAMILY\RESRAD\100-F-46_FRENCH DRAIN_TRITIUM.RAD

Cancer Risk Slope Factors Risk Slope and ETFG for the Ground Pathway Amount of Intake Quantities and Excess Cancer Risks	2 3
Time= 0.000E+00	4
Time= 1.000E+00	6
Time= 2.000E+00	8
Time= 4.000E+00	10
Time= 1.000E+01	12
Time= 3.000E+01	14
Time= 1.000E+02	16
Time= 3.000E+02	18
Time= 1.000E+03	20

Attachment	3	Sheet No, 1 of 21
Originator: S. V	V. Clark	Date_3/1/.08
Chk'd By: <u>H. M.</u>	Sulloway MMS	Date 3/4/08
Calc. No. 010	00F-CA-V0346	Rev. No. 0

.

 1RESRAD, Version 6.4
 T« Limit = 180 days
 03/10/2008
 13:54
 Page
 2

 Intrisk : 100-F-46 French Drain Confirmatory Sampling Soils Analysis
 File
 : C:\PROGRAM FILES\RESRAD_FAMILY\RESRAD\100-F-46_FRENCH DRAIN_TRITIUM.RAD

Cancer Risk Slope Factors Summ Risk Library: HEAST 2001 Mor	
0 3 Menu 3 Parameter	³ Current ³ Base ³ Parameter ³ Value ³ Case* ³ Name
AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
Sf-1 ³ Ground external radiation slope factors, 1/yr per (pCi/g Sf-1 ³ H-3	g): 3 3 0.00E+00 3 0.00E+00 3 SLPF(1,1)
Sf-2 ³ Inhalation, slope factors, 1/(pCi): Sf-2 ³ H-3	3 3 3 1.99E-13 3 3 3 3 3 3 3 3 3 3 3 3 3
<pre>Sf-3 ³ Food ingestion, slope factors, 1/(pCi): Sf-3 ³ H-3 3</pre>	3 3 3 3 3 1.44E-13 3 1.44E-13 3 SLPF(1,3) 3 3
Sf-3 ³ Water ingestion, slope factors, 1/(pCi): Sf-3 ³ H-3	3 1.12E-13 3 1.12E-13 3 SLPF(1,4)
<pre>Sf-3 3 Soil ingestion, slope factors, 1/(pCi): Sf-3 3 H-3 3</pre>	3 2.20E-13 3 2.20E-13 3 SLPF(1,5) 3 3
	111111111111111111111111111111111111111

*Base Case means Default.Lib w/o Associate Nuclide contributions.

Attachment	3	Sheet No. 2 of 21
Originator: S. V	V. Clark	Date
Chk'd By: H. M.	Sulloway	Date
Calc. No. 010	00F-CA-V0346	Rev. No. 0

 1RESRAD, Version 6.4
 T« Limit = 180 days
 03/10/2008
 13:54 Page 3

 Intrisk : 100-F-46 French Drain Confirmatory Sampling Soils Analysis

 File
 : C:\PROGRAM FILES\RESRAD_FAMILY\RESRAD\100-F-46_FRENCH DRAIN_TRITIUM.RAD

Risk Slope and Environmental Transport Factors for the Ground Pathway

ONuclide	Slope(i)*		•	ETFG	i,t) At Tim	e in Years	(dimension	less)		
(i)			1.000E+00							
AAAAAAA	AAAAAAAAA	AAAAAAAAA	AAAAAAAAA	AAAAAAAAA	AAAAAAAAA	AAAAAAAAA	AAAAAAAAA	AAAAAAAAA	AAAAAAAAA	AAAAAAAAA
H-3	0.000E+00	6.780E-01	6.780E-01	6.780E-01	6.780E-01	6.780E-01	6.780E-01	6.780E-01	6.780E-01	6.780E-01
ÍÍÍÍÍÍÍ	111111111	ÍÍÍÍÍÍÍÍÍÍ	111111111	111111111	111111111	111111111	111111111	ÍÍÍÍÍÍÍÍÍ	ÍÍÍÍÍÍÍÍÍÍ	ÍÍÍÍÍÍÍÍÍ
* - Unit	s are 1/yr p	er (pCi/g)	at infinite	depth and	area. Mult	iplication	by ETFG(i,t) converts	to site con	ditions.

Attachment	3	Sheet No. 3	3 of 21
Originator: S.	W. Clark	Date	
Chk'd By: H. N	1. Sulloway	Date	
Calc. No. 0	100F-CA-V0346	Rev. No.	0

IRESRAD, Version 6.4 T« Limit = 180 days 03/10/2008 13:54 Page 4 Intrisk : 100-F-46 French Drain Confirmatory Sampling Soils Analysis File : C:\PROGRAM FILES\RESRAD_FAMILY\RESRAD\100-F-46_FRENCH DRAIN_TRITIUM.RAD 1RESRAD, Version 6.4

> Amount of Intake Quantities QINT(i,p,t) for Individual Radionuclides (i) and Pathways (p) As pCi/yr at t= 0.000E+00 years

Water Independent Pathways (Inhalation w/o radon) Water Dependent Pathways Radio-* Sum of all ingestion pathways, i.e. water independent plant, meat, milk, soil and water-dependent water, fish, plant, meat, milk pathways

Excess Cancer Risks CNRS(i,p,t) for Individual Radionuclides (i) and Pathways (p) and Fraction of Total Risk at t= 0.000E+00 years

U		Wate	r Independent Path	ways (Inhalation e	excludes radon)	
0	Ground	Inhalation	Plant	Meat	Milk	Soil
Radio-	AAAAAAAAAAAAAAAAAAAA	AAAAAAAAAAAAAAAAAAA	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	AAAAAAAAAAAAAAAAAAAA	AAAAAAAAAAAAAAAAAAAAA	AAAAAAAAAAAAAAAAA
Nuclide		risk fract.	risk fract.		risk fract.	
AAAAAAA	AAAAAAAA AAAAAA		AAAAAAAA AAAAAAA		AAAAAA AAAAAA AAAAAA	
H-3		2.209E-08 0.0181				
		111111111 111111				
Total	0.000E+00 0.0000	2.209E-08 0.0181	4.391E-07 0.3604	5.627E-09 0.0046	9.404E-09 0.0077	1.046E-10 0.0001
0						

Excess Cancer Risks CNRS(i,p,t) for Individual Radionuclides (i) and Pathways (p) and Fraction of Total Risk at t= 0.000E+00 years

Water Dependent Pathways

	Water	Fish	Plant	Meat	Milk	All Pathways**
Radio-	AAAAAAAAAAAAAAAAAAAA	AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	AAAAAAAAAAAAAAAAAAAAA	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	AAAAAAAAAAAAAAAAAAAAA
Nuclide	risk fract.	risk fract.	risk fract.	risk fract.	risk fract.	risk fract.
ÄÄÄÄÄÄ	AAAAAAA AAAAAAA	AAAAAAA AAAAAA	ΑΑΑΑΑΑΑ ΑΑΑΑΑΑ	AAAAAAA AAAAAA	AAAAAAA AAAAAA	AAAAAAAA AAAAAA
H-3	7.136E-07 0.5857	5.182E-11 0.0000	2.744E-08 0.0225	2.344E-10 0.0002	7.122E-10 0.0006	1.218E-06 1.0000
1111111	111111111 111111	111111111 111111	1111111111111111111		1111111111 111111	111111111 111111
Total	7.136E-07 0.5857	5.182E-11 0.0000	2.744E-08 0.0225	2.344E-10 0.0002	7.122E-10 0.0006	1.218E-06 1.0000

** Sum of water independent ground, inhalation, plant, meat, milk, soil and water dependent water, fish, plant, meat, milk pathways

0

0

Total Excess Cancer Risk CNRS(i,p,t)*** for Initially Existent Radionuclides (i) and Pathways (p) and Fraction of Total Risk at t= 0.000E+00 years

0	0 Water Independent Pathways (Inhalation excludes radon)						
0	Ground	Inhalation	Radon	Plant	Meat	Milk	Soil
Radio-	AAAAAAAAAAAAAAAAAAA	AAAAAAAAAAAAAAAAAA	AAAAAAAAAAAAAAAAAAA	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
Nuclide		risk fract.	risk fract.	risk fract.	risk fract.	risk fract.	risk fract.
AAAAAAA	AAAAAAAA AAAAAA	AAAAAAA AAAAAAA	AAAAAAA AAAAAA	AAAAAAAA AAAAAA	AAAAAAAA AAAAAA	AAAAAAA AAAAAA	AAAAAAA AAAAAA
H-3		2.209E-08 0.0181					
ÍÍÍÍÍÍÍ	111111111 111111	111111111 111111	111111111 111111	111111111 111111	111111111 111111		111111111 111111
Total	0.000E+00 0.0000	2.209E-08 0.0181	0.000E+00 0.0000	4.391E-07 0.3604	5.627E-09 0.0046	9.404E-09 0.0077	1.046E-10 0.0001

Attachment	3	Sheet No. 4 of 21	
Originator: S. V	I. Clark	Date	
Chk'd By: H. M.	Sulloway	Date	
Calc. No. 010	0F-CA-V0346	Rev. No. 0	

 1RESRAD, Version 6.4
 T« Limit = 180 days
 03/10/2008
 13:54
 Page
 5

 Intrisk : 100-F-46
 French Drain Confirmatory Sampling Soils Analysis
 File
 : C:\PROGRAM FILES\RESRAD_FAMILY\RESRAD\100-F-46_FRENCH DRAIN_TRITIUM.RAD

Total Excess Cancer Risk CNRS(i,p,t)*** for Initially Existent Radionuclides (i) and Pathways (p) and Fraction of Total Risk at t= 0.000E+00 years

Water Dependent Pathways

	Water	Fish	Radon	Plant	Meat	Milk	All pathways
Radio-	AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	AAAAAAAAAAAAAAAAAAAAA	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	AAAAAAAAAAAAAAAAAAAAAA	AAAAAAAAAAAAAAAAAAAAAA	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
Nuclide		risk fract.	risk fract.	risk fract.	risk fract.	risk fract.	risk fract.
AAAAAA	AAAAAA AAAAAA AAAAAA	AAAAAAA AAAAAAA	AAAAAAA AAAAAAA	AAAAAA AAAAAAA	AAAAAA AAAAAAA	AAAAAAA AAAAAAA	AAAAAAA AAAAAA
H-3						7.122E-10 0.0006	1.218E-06 1.0000
1111111				111111111 111111	111111111 111111	1111111111 111111	1111111111 111111
Total	7.136E-07 0.5857	5.182E-11 0.0000	0.000E+00 0.0000	2.744E-08 0.0225	2.344E-10 0.0002	7.122E-10 0.0006	1.218E-06 1.0000

***CNRSI(i,p,t) includes contribution from decay daughter radionuclides

Attachment	3	Sheet No. 5 of 21
Originator: S. V	V. Clark	Date
Chk'd By: H. M.	Sulloway	Date
Calc. No. 010	0F-CA-V0346	Rev. No. 0

1RESRAD, Version 6.4 T« Limit = 180 days 03/10/2008 13:54 Page 6 File : C:\PROGRAM FILES\RESRAD_FAMILY\RESRAD\100-F-46_FRENCH DRAIN_TRITIUM.RAD

Amount of Intake Quantities QINT(i,p,t) for Individual Radionuclides (i) and Pathways (p) As pCi/yr at t= 1.000E+00 years

Water Independent Pathways (Inhalation w/o radon) Water Dependent Pathways Radio-Nuclide Inhalation * Sum of all ingestion pathways, i.e. water independent plant, meat, milk, soil and water-dependent water, fish, plant, meat, milk pathways

Excess Cancer Risks CNRS(i,p,t) for Individual Radionuclides (i) and Pathways (p) and Fraction of Total Risk at t= 1.000E+00 years Water Independent Pathways (Inhalation excludes radon)

			TOTI OF TOTAL KISK	at t= 1.000E+00 ye	ars	
0		Wate	r Independent Path	ways (Inhalation e	excludes radon)	
0	Ground	Inhalation	Plant	Meat	Milk	Soil
Radio-	AAAAAAAAAAAAAAAAAAAA	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	AAAAAAAAAAAAAAAAAAAAA	AAAAAAAAAAAAAAAAAAAAA	AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
Nuclide	risk fract.	risk fract.	risk fract.	risk fract.	risk fract.	risk fract.
AAAAAAA	AAAAAAA AAAAAAA	AAAAAAA AAAAAAA	AAAAAAA AAAAAAA	AAAAAAA AAAAAA	AAAAAA AAAAAA	ΧΑΧΑΧΑΧΑ ΑΑΑΑΑΑ
H-3		1.442E-08 0.0109				
iiiiii	111111111 111111	111111111 111111	111111111 111111	ÍÍÍÍÍÍÍÍÍÍ ÍÍÍÍÍÍ	111111111 111111	111111111 111111
Total	0.000E+00 0.0000	1.442E-08 0.0109	2.887E-07 0.2188	3.799E-09 0.0029	6.287E-09 0.0048	6.830E-11 0.0001
0						

Excess Cancer Risks CNRS(i,p,t) for Individual Radionuclides (i) and Pathways (p) and Fraction of Total Risk at t= 1.000E+00 years

Water Dependent Pathways

	Water	Fish	Plant	Meat	Milk	All Pathways**
Radio-	AAAAAAAAAAAAAAAAAAAA	AAAAAAAAAAAAAAAAAAAAAA	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
Nuclide		risk fract.	risk fract.	risk fract.	risk fract.	risk fract.
AAAAAAA	AAAAAAA AAAAAA	AAAAAAA AAAAAA	AAAAAAA AAAAAA	AAAAAAA AAAAAA	AAAAAAA AAAAAA	AAAAAAAA AAAAAA
		7.027E-11 0.0001				1.319E-06 1.0000
1111111	1111111111 111111	111111111 111111	111111111 111111	111111111111111111	1111111111 1111111	111111111 111111
Total	9.676E-07 0.7333	7.027E-11 0.0001	3.721E-08 0.0282	3.179E-10 0.0002	9.657E-10 0.0007	1.319E-06 1.0000

** Sum of water independent ground, inhalation, plant, meat, milk, soil and water dependent water, fish, plant, meat, milk pathways

0

0

Total Excess Cancer Risk CNRS(i,p,t)*** for Initially Existent Radionuclides (i) and Pathways (p) and Fraction of Total Risk at t= 1.000E+00 years

0	Water Independent Pathways (Inhalation excludes radon)						
0	Ground	Inhalation	Radon	Plant	Meat	Milk	Soil
Radio-	AAAAAAAAAAAAAAAAAAAA	AAAAAAAAAAAAAAAAAA	AAAAAAAAAAAAAAAAAAAA	AAAAAAAAAAAAAAAAAAAAAA	AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
Nuclide		risk fract.	risk fract.	risk fract.			risk fract.
AAAAAAA	AAAAAAA AAAAAA	AAAAAAAA AAAAAAA	AAAAAAAA AAAAAAA		AAAAAA AAAAAAA		AAAAAAAA AAAAAAA
H-3					3.799E-09 0.0029		
ÍÍÍÍÍÍÍ	111111111 111111	111111111 111111	111111111 111111	111111111 111111	111111111 111111	1111111111111111111	111111111 111111
Total	0.000E+00 0.0000	1.442E-08 0.0109	0.000E+00 0.0000	2.887E-07 0.2188	3.799E-09 0.0029	6.287E-09 0.0048	6.830E-11 0.0001

Attachment	3	Sheet No. 6 of 21
Originator: S. W	/. Clark	Date
Chk'd By: H. M.	Sulloway	Date
Calc. No. 010	0F-CA-V0346	Rev. No. 0

 1RESRAD, Version 6.4
 T
 Limit = 180 days
 03/10/2008
 13:54 Page
 7

 Intrisk : 100-F-46 French Drain Confirmatory Sampling Soils Analysis
 File
 : C:\PROGRAM FILES\RESRAD_FAMILY\RESRAD\100-F-46_FRENCH DRAIN_TRITIUM.RAD

Total Excess Cancer Risk CNRS(i,p,t)*** for Initially Existent Radionuclides (i) and Pathways (p) and Fraction of Total Risk at t= 1.000E+00 years

Water Dependent Pathways

	Water	Fish	Radon	Plant	Meat	Milk	All pathways
Radio-	AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	AAAAAAAAAAAAAAAAAAAAA	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	AAAAAAAAAAAAAAAAAAAAA	AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
Nuclide		risk fract.	risk fract.	risk fract.	risk fract.	risk fract.	risk fract.
	AAAAAAAA AAAAAAA	AAAAAAAAA AAAAAA	AAAAAAA AAAAAA	AAAAAA AAAAAAA	AAAAAAA AAAAAAA	AAAAAAA AAAAAAA	AAAAAAA AAAAAA
H-3					3.179E-10 0.0002		1.319E-06 1.0000
1111111	1111111111 111111						111111111 111111
Total	9.676E-07 0.7333	7.027E-11 0.0001	0.000E+00 0.0000	3.721E-08 0.0282	3.179E-10 0.0002	9.657E-10 0.0007	1.319E-06 1.0000

***CNRSI(i,p,t) includes contribution from decay daughter radionuclides

Attachment	3	Sheet No. 7 of 21
Originator: S. W	I. Clark	Date
Chk'd By: H. M.	Sulloway	Date
Calc. No. 010	0F-CA-V0346	Rev. No. 0

 1RESRAD, Version 6.4
 T« Limit = 180 days
 03/10/2008
 13:54 Page
 8

 Intrisk : 100-F-46 French Drain Confirmatory Sampling Soils Analysis
 File
 : C:\PROGRAM FILES\RESRAD_FAMILY\RESRAD\100-F-46_FRENCH DRAIN_TRITIUM.RAD

Amount of Intake Quantities QINT(i,p,t) for Individual Radionuclides (i) and Pathways (p) As pCi/yr at t= 2.000E+00 years

Excess Cancer Risks CNRS(i,p,t) for Individual Radionuclides (i) and Pathways (p)

and Fraction of Total Risk at t= 2.000E+00 years

0		Wate	r Independent Path	ways (Inhalation e	excludes radon)	
0	Ground	Inhalation	Plant	Meat	Milk	Soil
Radio-	AAAAAAAAAAAAAA AAAAAA	AAAAAAAAAAAAAAAAA	AAAAAAAAAAAAAAAAAAA	AAAAAAAAAAAAAAAAAAA	AAAAAAAAAAAAAAA AAAAA	AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
Nuclide		risk fract.	risk fract.	risk fract.		risk fract.
AAAAAAA	AAAAAAA AAAAAAA	ΑΑΑΑΑΑΑΑ ΑΑΑΑΑΑ	AAAAAAA AAAAAA	AAAAAA AAAAAA	AAAAAA AAAAAA	AAAAAAA AAAAAA
					4.104E-09 0.0048	
ÍÍÍÍÍÍÍ	111111111 111111	111111111 111111	111111111 111111	1111111111 111111	111111111 111111	111111111 111111
Total	0.000E+00 0.0000	9.410E-09 0.0109	1.885E-07 0.2188	2.480E-09 0.0029	4.104E-09 0.0048	4.458E-11 0.0001

0

Excess Cancer Risks CNRS(i,p,t) for Individual Radionuclides (i) and Pathways (p) and Fraction of Total Risk at t= 2.000E+00 years

Water Dependent Pathways

	Water	Fish	Plant	Meat	Milk	All Pathways**
Radio-	AAAAAAAAAAAAAAAAAAA	AAAAAAAAAAAAAAAAAAAAA	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	AAAAAAAAAAAAAAAAAAAAA
Nuclide		risk fract.	risk fract.	risk fract.	risk fract.	risk fract.
ÄÄÄÄÄÄÄ	AAAAAAAA AAAAAA	AAAAAAA AAAAAAA	AAAAAAA AAAAAA	AAAAAA AAAAAA	AAAAAAA AAAAAAA	AAAAAAA AAAAAA
			2.430E-08 0.0282			8.615E-07 1.0000
İİİİİİİ	111111111 111111	iiiiiiiii iiiiii		111111111 111111	111111111 111111	111111111 111111
Total	6.318E-07 0.7334	4.588E-11 0.0001	2.430E-08 0.0282	2.076E-10 0.0002	6.306E-10 0.0007	8.615E-07 1.0000

** Sum of water independent ground, inhalation, plant, meat, milk, soil and water dependent water, fish, plant, meat, milk pathways

Total Excess Cancer Risk CNRS(i,p,t)*** for Initially Existent Radionuclides (i) and Pathways (p) and Fraction of Total Risk at t= 2.000E+00 years

0	0 Water Independent Pathways (Inhalation excludes radon)							
0	Ground	Inhalation	Radon	Plant	Meat	Milk	Soil	
Radio-	AAAAAAAAAAAAAAAAAAAAAA	AAAAAAAAAAAAAAAAAAAAA	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	AAAAAAAAAAAAAAAAAAAAAAA	AAAAAAAAAAAAAAA AAAAAA	AAAAAAAAAAAAAAAAAAAAAA	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	
Nuclide	e risk fract.		risk fract.					
ÄÄÄÄÄÄÄ	AAAAAA AAAAAAA	AAAAAAA AAAAAAA	AAAAAAA AAAAAAA	AAAAAAA AAAAAAA	AAAAAA AAAAAAA	AAAAAA AAAAAA	AAAAAAA AAAAAA	
H-3	0.000E+00 0.0000	9.410E-09 0.0109	0.000E+00 0.0000	1.885E-07 0.2188	2.480E-09 0.0029	4.104E-09 0.0048	4.458E-11 0.0001	
1111111	111111111 111111	111111111 111111	111111111 111111	111111111 111111	111111111 111111	111111111 111111	111111111 111111	
Total	0.000E+00 0.0000	9.410E-09 0.0109	0.000E+00 0.0000	1.885E-07 0.2188	2.480E-09 0.0029	4.104E-09 0.0048	4.458E-11 0.0001	

Attachment	3	Sheet No. 8 of 21
Originator: S. W	. Clark	Date
Chk'd By: H. M. S	Sulloway	Date
Calc. No. 010	0F-CA-V0346	Rev. No. 0

⁰

 1RESRAD, Version 6.4
 T« Limit = 180 days
 03/10/2008
 13:54
 Page
 9

 Intrisk : 100-F-46
 French Drain Confirmatory Sampling Soils Analysis
 File
 : C:\PROGRAM FILES\RESRAD_FAMILY\RESRAD\100-F-46_FRENCH DRAIN_TRITIUM.RAD

Total Excess Cancer Risk CNRS(i,p,t)*** for Initially Existent Radionuclides (i) and Pathways (p) and Fraction of Total Risk at t= 2.000E+00 years

Water Dependent Pathways

	iter	Fish		Rado		Plant		Meat		Milk		All path	
Radio- AAAAAA	AAAAAAAA A	AAAAAAAAAAAA	AAAA AA	AAAAAAAAA	AAAAAA	AAAAAAAAAAA	AAAAAA	AAAAAAAAAA	AAAAAA	AAAAAAAAAA	AAAAAA	AAAAAAAAAA	AAAAAAA
Nuclide ris	fract.	risk fr	act.	risk	fract.	risk	fract.	risk	fract.	risk	fract.	risk	fract.
AAAAAA AAAAAA	AA AAAAAA AA	AAAAAAA AA	AAAA AA	ĂĂĂĂĂĂĂĂ	ÄÄÄÄÄÄ	AAAAAAAAA	ÄÄÄÄÄÄ	AAAAAAAAA	AAAAAA	AAAAAAAAA	AAAAAA	AAAAAAAAA	AAAAAA
H-3 6.318E	07 0.7334 4	.588E-11 0.	0001 0.	.000E+00	0.0000	2.430E-08	0.0282	2.076E-10	0.0002	6.306E-10	0.0007	8.615E-07	1.0000
1111111 111111	11 111111 1	11111111 11	ÍÍÍÍ ÍÍ	11111111	ÍÍÍÍÍÍ	İİİİİİİİİİ	İİİİİİ	111111111	ÍÍÍÍÍÍ	111111111	111111	111111111	111111
Total 6.318E	07 0.7334 4	.588E-11 0.	0001 0.	000E+00	0.0000	2.430E-08	0.0282	2.076E-10	0.0002	6.306E-10	0.0007	8.615E-07	1.0000

***CNRSI(i,p,t) includes contribution from decay daughter radionuclides

Attachment	3	Sheet No. 9 of 21
Originator: S. W	. Clark	Date
Chk'd By: H. M. S	Sulloway	Date
Calc. No. 0100	0F-CA-V0346	Rev. No. 0

1RESRAD, Version 6.4 T« Limit = 180 days 03/10/2008 13:54 Page 10 Intrisk : 100-F-46 French Drain Confirmatory Sampling Soils Analysis File : C:\PROGRAM FILES\RESRAD_FAMILY\RESRAD\100-F-46_FRENCH DRAIN_TRITIUM.RAD

> Amount of Intake Quantities QINT(i,p,t) for Individual Radionuclides (i) and Pathways (p) As pCi/yr at t= 4.000E+00 years

Water Independent Pathways (Inhalation w/o radon) Water Dependent Pathways Radio-Nuclide Inhalation Plant Meat Milk Soil Water Fish Plant Meat Milk Ingestion* алалала алалалала алалалалал алалалала алалалала алалалалал алалалала алалалала алалалала алалалала алалалала алалалала алалалала * Sum of all ingestion pathways, i.e. water independent plant, meat, milk, soil and water-dependent water, fish, plant, meat, milk pathways

Excess Cancer Risks CNRS(i,p,t) for Individual Radionuclides (i) and Pathways (p) and Fraction of Total Risk at t= 4.000E+00 years

0		Wate	r Independent Path	ways (Inhalation e	excludes radon)	
0	Ground	Inhalation	Plant	Meat	Milk	Soil
Radio-	AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	AAAAAAAAAAAAAAAAAAAA	AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	AAAAAAAAAAAAAAAAAA
Nuclide		risk fract.	risk fract.	risk fract.	risk fract.	risk fract.
AAAAAAA	AAAAAAA AAAAAAA	AAAAAAA AAAAAA	AAAAAAA AAAAAAA	AAAAAAAA AAAAAAA	AAAAAA AAAAAA	AAAAAAAA AAAAAA
H-3	0.000E+00 0.0000	4.009E-09 0.0109			1.748E-09 0.0048	1.899E-11 0.0001
1111111	111111111 111111	111111111 111111	111111111 111111	111111111 111111	111111111 111111	111111111 111111
Total	0.000E+00 0.0000	4.009E-09 0.0109	8.028E-08 0.2186	1.056E-09 0.0029	1.748E-09 0.0048	1.899E-11 0.0001
0						

Excess Cancer Risks CNRS(i,p,t) for Individual Radionuclides (i) and Pathways (p) and Fraction of Total Risk at t= 4.000E+00 years

Water Dependent Pathways

	Water	Fish	Plant	Meat	Milk	All Pathways**
Radio-	AAAAAAAAAAAAAAAAAAAAA	AAAAAAAAAAAAAAAAAAAAAA	AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	AAAAAAAAAAAAAAAAAAAAA
Nuclide	risk fract.	risk fract.	risk fract.	risk fract.	risk fract.	risk fract.
ÄÄÄÄÄÄ	AAAAAAA AAAAAAA	AAAAAAA AAAAAAA	AAAAAA AAAAAA	AAAAAAA AAAAAAA	ÄÄÄÄÄÄÄÄÄ ÄÄÄÄÄÄÄ	AAAAAAAA AAAAAA
H-3	2.694E-07 0.7335	1.956E-11 0.0001	1.036E-08 0.0282		2.688E-10 0.0007	3.672E-07 1.0000
ÍÍÍÍÍÍÍ	111111111 111111	1111111111 111111	iiiiiiiii iiiiii	111111111111111111	111111111 111111	111111111 111111
Total	2.694E-07 0.7335	1.956E-11 0.0001	1.036E-08 0.0282	8.849E-11 0.0002	2.688E-10 0.0007	3.672E-07 1.0000

** Sum of water independent ground, inhalation, plant, meat, milk, soil and water dependent water, fish, plant, meat, milk pathways

0

0

Total Excess Cancer Risk CNRS(i,p,t)*** for Initially Existent Radionuclides (i) and Pathways (p) and Fraction of Total Risk at t= 4.000E+00 years

0	Water Independent Pathways (Inhalation excludes radon)							
0	Ground	Inhalation	Radon	Plant	Meat	Milk	Soil	
Radio-	AAAAAAAAAAAAAAAAAAAAA	AAAAAAAAAAAAAAAAAAAA	AAAAAAAAAAAAAAAAAAAAA	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	AAAAAAAAAAAAAAAAAAAAAA	AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	AAAAAAAAAAAAAAAAAAAAA	
Nuclide		risk fract.		risk fract.	risk fract.	risk fract.	risk fract.	
AAAAAAA	AAAAAAAA AAAAAA	AAAAAAA AAAAAAA	AAAAAAA AAAAAA	AAAAAAA AAAAAA	ΑΑΑΑΑΑΑ ΑΑΑΑΑΑ	ΑΑΑΑΑΑΑ ΑΑΑΑΑΑ	ΑΑΑΑΑΑΑΑ ΑΑΑΑΑΑ	
H-3		4.009E-09 0.0109						
ÍÍÍÍÍÍÍ	111111111 111111	1111111111 111111	111111111 111111	111111111 111111	1111111111 111111	1111111111 111111	111111111 111111	
Total	0.000E+00 0.0000	4.009E-09 0.0109	0.000E+00 0.0000	8.028E-08 0.2186	1.056E-09 0.0029	1.748E-09 0.0048	1.899E-11 0.0001	

Attachment	3	Sheet No. 1	0 of 21
Originator: S. W	/. Clark	Date	
Chk'd By: H. M.	Sulloway	Date	
Calc. No. 010	0F-CA-V0346	Rev. No.	0

 1RESRAD, Version 6.4
 T« Limit = 180 days
 03/10/2008
 13:54
 Page
 11

 Intrisk : 100-F-46
 French Drain Confirmatory Sampling Soils Analysis
 File
 : C:\PROGRAM FILES\RESRAD_FAMILY\RESRAD\100-F-46_FRENCH DRAIN_TRITIUM.RAD

Total Excess Cancer Risk CNRS(i,p,t)*** for Initially Existent Radionuclides (i) and Pathways (p) and Fraction of Total Risk at t= 4.000E+00 years

Water Dependent Pathways

Water	Fish	Radon	Plant	Meat	Milk	All pathways
Radio- AAAAAAAAAAAAAAAAAAAAA	AAAAAAAAAAAAAAAAAAAAA	AAAAAAAAAAAAAAAAAAAA	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	AAAAAAAAAAAAAAAAAAAA	AAAAAAAAAAAAAAAAAAA
Nuclide risk fract.	risk fract.	risk fract.	risk fract.	risk fract.	risk fract.	risk fract.
AAAAAA AAAAAAAAA AAAAAA	AAAAAAAA AAAAAA	AAAAAAAA AAAAAA	AAAAAAA AAAAAA	ΑΑΑΑΑΑΑΑΑ ΑΑΑΑΑΑΑ	AAAAAAA AAAAAA	AAAAAAAAA AAAAAA
H-3 2.694E-07 0.7335	1.956E-11 0.0001	0.000E+00 0.0000	1.036E-08 0.0282	8.849E-11 0.0002	2.688E-10 0.0007	3.672E-07 1.0000
1111111 111111111 111111	111111111 111111	111111111 111111	111111111 111111	1111111111 111111	111111111 111111	111111111 111111
Total 2.694E-07 0.7335	1.956E-11 0.0001	0.000E+00 0.0000	1.036E-08 0.0282			

***CNRSI(i,p,t) includes contribution from decay daughter radionuclides

Attachment	3	Sheet No. 11 of 21
Originator: S. V	V. Clark	Date
Chk'd By: H. M.	Sulloway	Date
Calc. No. 010	0F-CA-V0346	Rev. No. 0

 1RESRAD, Version 6.4
 T« Limit = 180 days
 03/10/2008
 13:54
 Page
 12

 Intrisk : 100-F-46
 French Drain Confirmatory Sampling Soils Analysis
 File
 : C:\PROGRAM FILES\RESRAD_FAMILY\RESRAD\100-F-46_FRENCH DRAIN_TRITIUM.RAD

Amount of Intake Quantities QINT(i,p,t) for Individual Radionuclides (i) and Pathways (p) As pCi/yr at t= 1.000E+01 years

Water Independent Pathways (Inhalation w/o radon) Water Dependent Pathways Radio-Nuclide Inhalation Plant Meat Milk Soil Water Fish Plant Meat Milk Ingestion* алалала алалалала алалалала алалалала алалалала алалалалал алалалалал алалалала алалалала алалалала алалалала алалалала алалалала алалалала * Sum of all ingestion pathways, i.e. water independent plant, meat, milk, soil and water-dependent water, fish, plant, meat, milk pathways 0

Excess Cancer Risks CNRS(i,p,t) for Individual Radionuclides (i) and Pathways (p)

and Fraction of Total Risk at t= 1.000E+01 years

Water Independent Pathways (Inhalation excludes radon)

0	Ground	Inhalation	Plant	Meat	Milk	Soil
Radio-	AAAAAAAAAAAAAAA AAAAA	AAAAAAAAAAAAAAAAAAAAA	AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	AAAAAAAAAAAAAAAAAAAAA	AAAAAAAAAAAAAAAAAAAAA	AAAAAAAAAAAAAAAAAA
Nuclide		risk fract.	risk fract.	risk fract.	risk fract.	risk fract.
AAAAAAA	AAAAAAA AAAAAAA	AAAAAAAA AAAAAA	AAAAAAA AAAAAA	AAAAAAAA AAAAAA	AAAAAAAA AAAAAA	AAAAAAAA AAAAAA
H-3	0.000E+00 0.0000	3.095E-10 0.0109	6.199E-09 0.2183	8.156E-11 0.0029	1.350E-10 0.0048	1.466E-12 0.0001
1111111	111111111 111111	111111111 111111	111111111 111111	111111111 111111	111111111 111111	111111111 111111
Total	0.000E+00 0.0000	3.095E-10 0.0109	6.199E-09 0.2183	8.156E-11 0.0029	1.350E-10 0.0048	1.466E-12 0.0001
0						

Excess Cancer Risks CNRS(i,p,t) for Individual Radionuclides (i) and Pathways (p) and Fraction of Total Risk at t= 1.000E+01 years

Water Dependent Pathways

	Water	Fish	Plant	Meat	Milk	All Pathways**
Radio-	AAAAAAAAAAAAAAAAAAAA	AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	AAAAAAAAAAAAAAAAAA	AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
Nuclide		risk fract.	risk fract.	risk fract.	risk fract.	risk fract.
AAAAAAA	AAAAAAAA AAAAAAA	AAAAAAA AAAAAAA	AAAAAAA AAAAAAA	AAAAAA AAAAAA	AAAAAA AAAAAAA	AAAAAAA AAAAAA
H-3		1.514E-12 0.0001				2.840E-08 1.0000
İİİİİİİ	ÍIIIIIII ÍIIIII	ÍÍÍÍÍÍÍÍÍ ÍÍÍÍÍÍ	111111111 111111	111111111 111111	111111111 111111	111111111 111111
Total	2.084E-08 0.7339	1.514E-12 0.0001	8.016E-10 0.0282	6.847E-12 0.0002	2.080E-11 0.0007	2.840E-08 1.0000

** Sum of water independent ground, inhalation, plant, meat, milk, soil and water dependent water, fish, plant, meat, milk pathways

0

0

Total Excess Cancer Risk CNRS(i,p,t)*** for Initially Existent Radionuclides (i) and Pathways (p) and Fraction of Total Risk at t= 1.000E+01 years

0	0 Water Independent Pathways (Inhalation excludes radon)							
0	Ground	Inhalation	Radon	Plant	Meat	Milk	Soil	
Radio-	AAAAAAAAAAAAAAAAAAAAA	AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	AAAAAAAAAAAAAAAAAAAA	AAAAAAAAAAAAAAA AAAAA	AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	AAAAAAAAAAAAAAAAAAAAA	
Nuclide	e risk fract.						risk fract.	
ÄÄÄÄÄÄÄ	AAAAAAA AAAAAAA	AAAAAA AAAAAAA	AAAAAAA AAAAAAA	AAAAAAA AAAAAAA	AAAAAA AAAAAAA	AAAAAAA AAAAAAA	AAAAAAAA AAAAAA	
H-3		3.095E-10 0.0109						
ÍÍÍÍÍÍÍ	111111111 111111	111111111 111111	111111111 111111	111111111 111111	111111111 111111	111111111 111111	111111111 111111	
Total	0.000E+00 0.0000	3.095E-10 0.0109	0.000E+00 0.0000	6.199E-09 0.2183	8.156E-11 0.0029	1.350E-10 0.0048	1.466E-12 0.0001	

Attachment	3	Sheet No. 12 of 21	
Originator: S. W	I. Clark	Date	
Chk'd By: H. M.	Sulloway	Date	
Calc. No. 010	0F-CA-V0346	Rev. No. 0	

 1RESRAD, Version 6.4
 T« Limit = 180 days
 03/10/2008
 13:54
 Page
 13

 Intrisk : 100-F-46 French Drain Confirmatory Sampling Soils Analysis
 File
 : C:\PROGRAM FILES\RESRAD_FAMILY\RESRAD\100-F-46_FRENCH DRAIN_TRITIUM.RAD

Total Excess Cancer Risk CNRS(i,p,t)*** for Initially Existent Radionuclides (i) and Pathways (p) and Fraction of Total Risk at t= 1.000E+01 years

Water Dependent Pathways

	Water	Fish	Radon	Plant	Meat	Milk	All pathways
Radio-	AAAAAAAAAAAAAAAAAAAAAA	AAAAAAAAAAAAAAAAAAAAAA	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	AAAAAAAAAAAAAAAAAAAAA	AAAAAAAAAAAAAAAAAAAAA	AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
Nuclide		risk fract.	risk fract.	risk fract.	risk fract.	risk fract.	risk fract.
AAAAAAA	AAAAAA AAAAAA AAAAAA	AAAAAAA AAAAAAA	AAAAAAA AAAAAAA	AAAAAAA AAAAAAA	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	AAAAAAA AAAAAA	AAAAAAA AAAAAA
H-3						2.080E-11 0.0007	2.840E-08 1.0000
1111111		1111111111 111111	IIIIIIII IIIIII	111111111 111111	iiiiiiiii iiiiii	1111111111 111111	1111111111 111111
Total	2.084E-08 0.7339	1.514E-12 0.0001	0.000E+00 0.0000	8.016E-10 0.0282	6.847E-12 0.0002	2.080E-11 0.0007	2.840E-08 1.0000

Attachment	3	Sheet No. 13 o	f 21
Originator: S. W	/. Clark	Date	
Chk'd By: H. M.	Sulloway	Date	
Calc. No. 010	0F-CA-V0346	Rev. No. 0)

 1RESRAD, Version 6.4
 T« Limit = 180 days
 03/10/2008
 13:54
 Page
 14

 Intrisk : 100-F-46
 French Drain Confirmatory Sampling Soils Analysis
 File
 : C:\PROGRAM FILES\RESRAD_FAMILY\RESRAD\100-F-46_FRENCH DRAIN_TRITIUM.RAD

Amount of Intake Quantities QINT(i,p,t) for Individual Radionuclides (i) and Pathways (p) As pCi/yr at t= 3.000E+01 years

Excess Cancer Risks CNRS(i,p,t) for Individual Radionuclides (i) and Pathways (p)

and Fraction of Total Risk at t= 3.000E+01 years

0	Water Independent Pathways (Inhalation excludes radon)					
0	Ground	Inhalation			Milk	Soil
Radio-	AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	AAAAAAAAAAAAAAAAAAA	AAAAAAAAAAAAAAAAAAAAA	AAAAAAAAAAAAAAAAAAAAA	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	AAAAAAAAAAAAAAAAAAAAAA
						risk fract.
ÄÄÄÄÄÄÄ	AAAAAAAA AAAAAAA	AAAAAAA AAAAAAA	AAAAAAA AAAAAAA	AAAAAA AAAAAA	AAAAAAA AAAAAAA	AAAAAAA AAAAAAA
		5.980E-14 0.0108				
		111111111 111111				
Total	0.000E+00 0.0000	5.980E-14 0.0108	1.198E-12 0.2170	1.576E-14 0.0029	2.608E-14 0.0047	2.833E-16 0.0001
0						

Excess Cancer Risks CNRS(i,p,t) for Individual Radionuclides (i) and Pathways (p) and Fraction of Total Risk at t= 3.000E+01 years

Water Dependent Pathways

	Water	Fish	Plant	Meat	Milk	All Pathways**
Radio-	AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	AAAAAAAAAAAAAAAAAAAA	AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
Nuclide		risk fract.	risk fract.	risk fract.	risk fract.	risk fract.
AAAAAAA	AAAAAAA AAAAAAA	AAAAAAA AAAAAA	ΑΑΑΑΑΑΑ ΑΑΑΑΑΑ	AAAAAAAA AAAAAA	AAAAAAA AAAAAA	AAAAAAA AAAAAA
H-3			1.561E-13 0.0283	1.333E-15 0.0002	4.050E-15 0.0007	5.519E-12 1.0000
1111111	1111111111 111111	111111111 111111	1111111111 111111		111111111111111111	111111111 111111
Total	4.058E-12 0.7352	2.947E-16 0.0001	1.561E-13 0.0283	1.333E-15 0.0002	4.050E-15 0.0007	5.519E-12 1.0000

** Sum of water independent ground, inhalation, plant, meat, milk, soil and water dependent water, fish, plant, meat, milk pathways

0

0

Total Excess Cancer Risk CNRS(i,p,t)*** for Initially Existent Radionuclides (i) and Pathways (p) and Fraction of Total Risk at t= 3.000E+01 years

0	Water Independent Pathways (Inhalation excludes radon)						
0	Ground	Inhalation	Radon	Plant	Meat	Milk	Soil
Radio-	AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	AAAAAAAAAAAAAAAAAAAA	AAAAAAAAAAAAAAAAAAAA	AAAAAAAAAAAAAAAAAAAAA	AAAAAAAAAAAAAAAAAAAAA	AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
Nuclide						risk fract.	risk fract.
AAAAAAA	AAAAAAA AAAAAA	AAAAAAAA AAAAAA	AAAAAAA AAAAAA	AAAAAAA AAAAAA	AAAAAAAA AAAAAA	ΑΑΑΑΑΑΑΑΑΑ ΑΑΑΑΑΑΑ	ΑΑΑΑΑΑΑΑ ΑΑΑΑΑΑΑ
H-3		5.980E-14 0.0108					
1111111	111111111 111111	111111111 111111	111111111 111111	ÍÍÍÍÍÍÍÍÍ ÍÍÍÍÍÍ	111111111 111111	111111111 111111	1111111111 111111
Total	0.000E+00 0.0000	5.980E-14 0.0108	0.000E+00 0.0000	1.198E-12 0.2170	1.576E-14 0.0029	2.608E-14 0.0047	2.833E-16 0.0001

Attachment	3	Sheet No. 14 of 21
Originator: S. W	. Clark	Date
Chk'd By: H. M.	Sulloway	Date
Calc. No. 010	0F-CA-V0346	Rev. No. 0

 1RESRAD, Version 6.4
 T« Limit = 180 days
 03/10/2008
 13:54
 Page
 15

 Intrisk : 100-F-46
 French Drain Confirmatory Sampling Soils Analysis
 File
 : C:\PROGRAM FILES\RESRAD_FAMILY\RESRAD\100-F-46_FRENCH DRAIN_TRITIUM.RAD

Total Excess Cancer Risk CNRS(i,p,t)*** for Initially Existent Radionuclides (i) and Pathways (p) and Fraction of Total Risk at t= 3.000E+01 years

Water Dependent Pathways

	Water	Fish	Radon	Plant	Meat	Milk	All pathways
Radio-	AAAAAAAAAAAAAAAAAAAAA	AAAAAAAAAAAAAAAAAAAAA	AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	AAAAAAAAAAAAAAAAAAAA	AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
Nuclide	i i i i i i i i i i i i i i i i i i i	risk fract.	risk fract.	risk fract.	risk fract.	risk fract.	risk fract.
AAAAAAA	AAAAAAA AAAAAAA	AAAAAAAA AAAAAAA	AAAAAA AAAAAAA	AAAAAAA AAAAAA	AAAAAAA AAAAAA	AAAAAAA AAAAAA	AAAAAAAA AAAAAA
H-3					1.333E-15 0.0002	4.050E-15 0.0007	5.519E-12 1.0000
ÍÍÍÍÍÍÍ		İİİİİİİİİ İİİİİİ	111111111 111111	111111111 111111		111111111 111111	111111111 111111
Total	4.058E-12 0.7352	2.947E-16 0.0001	0.000E+00 0.0000	1.561E-13 0.0283	1.333E-15 0.0002	4.050E-15 0.0007	5.519E-12 1.0000

Attachment	3	Sheet No. 15 of 21
Originator: S. W	I. Clark	Date
Chk'd By: H. M.	Sulloway	Date
Calc. No. 010	0F-CA-V0346	Rev. No. 0

 1RESRAD, Version 6.4
 T« Limit = 180 days
 03/10/2008
 13:54
 Page
 16

 Intrisk : 100-F-46
 French Drain Confirmatory Sampling Soils Analysis
 File
 : C:\PROGRAM FILES\RESRAD_FAMILY\RESRAD\100-F-46_FRENCH DRAIN_TRITIUM.RAD

Amount of Intake Quantities QINT(i,p,t) for Individual Radionuclides (i) and Pathways (p) As pCi/yr at t= 1.000E+02 years

Excess Cancer Risks CNRS(i,p,t) for Individual Radionuclides (i) and Pathways (p)

and Fraction of Total Risk at t= 1.000E+02 years

0	Water Independent Pathways (Inhalation excludes radon)					
0 Ground		Plant	Meat	Milk	Soil	
Radio- ÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ΑΑΑΑΑ ΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑ	ΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑ	AAAAAAAAAAAAAAAAAAA	AAAAAAAAAAAAAAAAAAA	AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	
	ract. risk fract.			risk fract.	risk fract.	
ΑΑΑΑΑΑΑ ΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑ	ΑΑΑΑΑ ΑΑΑΑΑΑΑΑΑ ΑΑΑΑΑΑ	AAAAAAA AAAAAA	AAAAAAA AAAAAA	AAAAAAAAA AAAAAA	AAAAAAAA AAAAAA	
	.0000 5.039E-27 0.0100					
1111111 1111111111	11111 111111111 111111	111111111 111111	111111111 111111	111111111 111111	111111111 111111	
Total 0.000E+00 0.	.0000 5.039E-27 0.0100	5 1.010E-25 0.2126	1.325E-27 0.0028	2.197E-27 0.0046	2.246E-29 0.0000	
0						

Excess Cancer Risks CNRS(i,p,t) for Individual Radionuclides (i) and Pathways (p) and Fraction of Total Risk at t= 1.000E+02 years

Water Dependent Pathways

	Water	Fish	Plant	Meat	Milk	All Pathways**
Radio-	AAAAAAAAAAAAAAAAAAAA	ĂĂĂĂĂĂĂĂĂĂĂĂĂĂĂĂĂ	AAAAAAAAAAAAAAAAAAAA	AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	AAAAAAAAAAAAAAAAAAAAAA
Nuclide		risk fract.	risk fract.	risk fract.	risk fract.	risk fract.
AAAAAAA	AAAAAAAA AAAAAA	AAAAAAAA AAAAAA	AAAAAAA AAAAAAA	AAAAAA AAAAAAA	AAAAAA AAAAAA	AAAAAAAA AAAAAA
					3.442E-28 0.0007	
					iiiiiiiii iiiiii	
Total	3.514E-25 0.7398	2.399E-29 0.0001	1.351E-26 0.0285	1.120E-28 0.0002	3.442E-28 0.0007	4.750E-25 1.0000

** Sum of water independent ground, inhalation, plant, meat, milk, soil and water dependent water, fish, plant, meat, milk pathways

0

0

Total Excess Cancer Risk CNRS(i,p,t)*** for Initially Existent Radionuclides (i) and Pathways (p) and Fraction of Total Risk at t= 1.000E+02 years

0	0 Water Independent Pathways (Inhalation excludes radon)						
0	Ground	Inhalation	Radon	Plant	Meat	Milk	Soil
Radio-	ĂĂĂĂĂĂĂĂĂĂĂĂĂĂĂĂĂĂĂ	AAAAAAAAAAAAAAAAAAA	AAAAAAAAAAAAAAAAAAA	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	AAAAAAAAAAAAAA AAAAAA
Nuclide		risk fract.	risk fract.	risk fract.	risk fract.	risk fract.	risk fract.
AAAAAAA	AAAAAAA AAAAAAA	AAAAAAAA AAAAAA	AAAAAAA AAAAAA	AAAAAAA AAAAAAA	AAAAAAAA AAAAAA	AAAAAAA AAAAAA	ΑΑΑΑΑΑΑΑ ΑΑΑΑΑΑ
		5.039E-27 0.0106					
		111111111 111111					
Total	0.000E+00 0.0000	5.039E-27 0.0106	0.000E+00 0.0000	1.010E-25 0.2126	1.325E-27 0.0028	2.197E-27 0.0046	2.246E-29 0.0000

Attachment	3	Sheet No. 16 of 21
Originator: S. W	I. Clark	Date
Chk'd By: H. M.	Sulloway	Date
Calc. No. 010	0F-CA-V0346	Rev. No. 0

1RESRAD, Version 6.4 T« Limit = 180 days 03/10/2008 13:54 Page 17 Intrisk : 100-F-46 French Drain Confirmatory Sampling Soils Analysis File : C:\PROGRAM FILES\RESRAD_FAMILY\RESRAD\100-F-46_FRENCH DRAIN_TRITIUM.RAD

> Total Excess Cancer Risk CNRS(i,p,t)*** for Initially Existent Radionuclides (i) and Pathways (p) and Fraction of Total Risk at t= 1.000E+02 years

> > Water Dependent Pathways

	Water	Fish	Radon	Plant	Meat	Milk	All pathways
Radio-	AAAAAAAAAAAAAAAAAAAA	AAAAAAAAAAAAAAAAAAAA	AAAAAAAAAAAAAAAAAAAA	AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	AAAAAAAAAAAAAAAAAAAAA
Nuclide		risk fract.	risk fract.	risk fract.	risk fract.	risk fract.	risk fract.
	AAAAAAAA AAAAAA	AAAAAAAA AAAAAAA		AAAAAAA AAAAAAA	AAAAAAA AAAAAAA	AAAAAAA AAAAAAA	AAAAAAAA AAAAAA
H-3							4.750E-25 1.0000
	111111111 111111				1111111111 111111	111111111 111111	111111111 111111
Total	3.514E-25 0.7398	2.399E-29 0.0001	0.000E+00 0.0000	1.351E-26 0.0285	1.120E-28 0.0002	3.442E-28 0.0007	4.750E-25 1.0000

Attachment	3	Sheet No. 17 of 21
Originator: S. W	. Clark	Date
Chk'd By: H. M. S	Sulloway	Date
Calc. No. 0100	F-CA-V0346	Rev. No. 0

1RESRAD, Version 6.4 T« Limit = 180 days 03/10/2008 13:54 Page 18 Intrisk : 100-F-46 French Drain Confirmatory Sampling Soils Analysis File : C:\PROGRAM FILES\RESRAD_FAMILY\RESRAD\100-F-46_FRENCH DRAIN_TRITIUM.RAD

> Amount of Intake Quantities QINT(i,p,t) for Individual Radionuclides (i) and Pathways (p) As pCi/yr at t= 3.000E+02 years

Water Independent Pathways (Inhalation w/o radon) Water Dependent Pathways Radio-Nuclide Inhalation Plant Meat Milk Soil Water Fish Plant Meat Milk Ingestion* алалала алалалала лалалалал алалалала алалалала алалалалал алалалала алалалала алалалала алалалала алалалала алалалала алалалала H-3 0.000E+00 0. * Sum of all ingestion pathways, i.e. water independent plant, meat, milk, soil and water-dependent water, fish, plant, meat, milk pathways

Excess Cancer Risks CNRS(i,p,t) for Individual Radionuclides (i) and Pathways (p) and Fraction of Total Risk at t= 3.000E+02 years

U		wate	er independent Path	ways (innalation e	excludes radon)	
0	Ground	Inhalation	Plant	Meat	Milk	Soil
Radio-	AAAAAAAAAAAAAAAAAAA	AAAAAAAAAAAAAAAAAAAAA	AAAAAAAAAAAAAAAAAAAAAA	AAAAAAAAAAAAAAAAAAAAAA	ΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑΑ	AAAAAAAAAAAAAAAAAAA
Nuclide	risk fract.	risk fract.	risk fract.	risk fract.	risk fract.	risk fract.
ÄÄÄÄÄÄÄ	AAAAAAAA AAAAAAA	AAAAAAAA AAAAAA	AAAAAAA AAAAAA	AAAAAAA AAAAAAA	AAAAAAAA AAAAAA	AAAAAAAAA AAAAAA
	0.000E+00 0.0000		0.000E+00 0.0000			
iiiiiii	111111111 111111	111111111 111111	111111111 111111	111111111 111111	111111111 111111	111111111 111111
Total	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000
0						

Excess Cancer Risks CNRS(i,p,t) for Individual Radionuclides (i) and Pathways (p) and Fraction of Total Risk at t= 3.000E+02 years

Water Dependent Pathways

	Water	- Fish	Plant	Meat	Milk	All Pathways**
Radio-	AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	AAAAAAAAAAAAAAAAAAAAA	AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
Nuclide		risk fract.	risk fract.	risk fract.	risk fract.	risk fract.
AAAAAAA	AAAAAAAA AAAAAAA	ΑΑΑΑΑΑΑ ΑΑΑΑΑΑ	ΑΑΑΑΑΑΑ ΑΑΑΑΑΑ	AAAAAAA AAAAAA	AAAAAAA AAAAAA	AAAAAAAA AAAAAA
н-З	0.000E+00 0.0000				0.000E+00 0.0000	
1111111	1111111111 111111	111111111 111111	111111111 111111	111111111 111111	111111111 111111	111111111 111111
Total	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000

** Sum of water independent ground, inhalation, plant, meat, milk, soil and water dependent water, fish, plant, meat, milk pathways

Ω

0

~

Total Excess Cancer Risk CNRS(i,p,t)*** for Initially Existent Radionuclides (i) and Pathways (p) and Fraction of Total Risk at t= 3.000E+02 years

0	Water Independent Pathways (Inhalation excludes radon)						
0	Ground	Inhalation	Radon	Plant	Meat	Milk	Soil
Radio-	AAAAAAAAAAAAAAAAAAA	AAAAAAAAAAAAAAAAAA	AAAAAAAAAAAAAAAAAAAA	AAAAAAAAAAAAAAAAAAAAA	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	AAAAAAAAAAAAAAAAAAAAA
Nuclide					risk fract.	risk fract.	risk fract.
AAAAAAA		AAAAAAA AAAAAAA			AAAAAAA AAAAAAA		
H-3		0.000E+00 0.0000					
1111111	111111111 111111	111111111 111111	1111111111 111111	111111111 111111	111111111 111111	111111111 111111	111111111 111111
Total	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000

Attachment	3	Sheet No. 18 of 21
Originator: S. W	. Clark	Date
Chk'd By: H. M. S	Sulloway	Date
Calc. No. 0100	DF-CA-V0346	Rev. No. 0

 1RESRAD, Version 6.4
 T« Limit = 180 days
 03/10/2008
 13:54
 Page
 19

 Intrisk : 100-F-46
 French Drain Confirmatory Sampling Soils Analysis
 File
 : C:\PROGRAM FILES\RESRAD_FAMILY\RESRAD\100-F-46_FRENCH DRAIN_TRITIUM.RAD

Total Excess Cancer Risk CNRS(i,p,t)*** for Initially Existent Radionuclides (i) and Pathways (p) and Fraction of Total Risk at t= 3.000E+02 years

Water Dependent Pathways

	Water	Fish	Radon	Plant	Meat	Milk	All pathways
Radio-	AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	AAAAAAAAAAAAAAAAAAAAA	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	AAAAAAAAAAAAAAAAAAAAAAA	AAAAAAAAAAAAAAAAAAAAA
Nuclide		risk fract.	risk fract.	risk fract.	risk fract.	risk fract.	risk fract.
AAAAAA	AAAAAAAA AAAAAA	AAAAAAA AAAAAAA	AAAAAAA AAAAAAA	AAAAAAA AAAAAAA	AAAAAAA AAAAAAA	AAAAAAA AAAAAAA	AAAAAAAA AAAAAA
H-3		0.000E+00 0.0000				0.000E+00 0.0000	0.000E+00 0.0000
111111			111111111 111111				
Total	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000

Attachment	3	Sheet No. 19 of 21
Originator: S. V	I. Clark	Date
Chk'd By: H. M.	Sulloway	Date
Calc. No. 010	0F-CA-V0346	Rev. No. 0

1RESRAD, Version 6.4 T« Limit = 180 days 03/10/2008 13:54 Page 20 File : C:\PROGRAM FILES\RESRAD_FAMILY\RESRAD\100-F-46_FRENCH DRAIN_TRITIUM.RAD

> Amount of Intake Quantities QINT(i,p,t) for Individual Radionuclides (i) and Pathways (p) As pCi/yr at t= 1.000E+03 years

Water Independent Pathways (Inhalation w/o radon) Water Dependent Pathways Radio-Nuclide Inhalation Plant Meat Milk H-3 0.000E+00 0. * Sum of all ingestion pathways, i.e. water independent plant, meat, milk, soil and water-dependent water, fish, plant, meat, milk pathways

Excess Cancer Risks CNRS(i,p,t) for Individual Radionuclides (i) and Pathways (p) and Fraction of Total Risk at t= 1.000E+03 years Water Independent Pathways (Inhalation excludes radon)

•		Hace	i independente i den	Huys (Innacacion e	Actuaces reading	
0	Ground	Inhalation	Plant	Meat	Milk	Soil
Radio-	AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	AAAAAAAAAAAAAAAAAAAAA	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	AAAAAAAAAAAAAAAAAAAAAA	AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	AAAAAAAAAAAAAAAAAA
Nuclide		risk fract.	risk fract.		risk fract.	risk fract.
AAAAAAA	AAAAAAAA AAAAAAA	AAAAAA AAAAAA	AAAAAAA AAAAAAA	AAAAAA AAAAAAA	AAAAAAA AAAAAAA	AAAAAAAA AAAAAA
н-З		0.000E+00 0.0000				
1111111	111111111 111111	iiiiiiiii iiiiii	1111111111111111111	ÍÍÍÍÍÍÍÍÍ ÍÍÍÍÍÍ	111111111 111111	1111111111 111111
Total	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000
0						

Excess Cancer Risks CNRS(i,p,t) for Individual Radionuclides (i) and Pathways (p) and Fraction of Total Risk at t= 1.000E+03 years

Water Dependent Pathways

	Water	Fish	Plant	Meat	Milk	All Pathways**
Radio-	AAAAAAAAAAAAAAAAAAAA	AAAAAAAAAAAAAAAAAAAA	AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	AAAAAAAAAAAAAAAAAAA
Nuclide		risk fract.	risk fract.	risk fract.	risk fract.	risk fract.
AAAAAAA	AAAAAAA AAAAAAA	AAAAAAA AAAAAAA	AAAAAA AAAAAA	ÄÄÄÄÄÄÄÄÄ ÄÄÄÄÄÄÄ	AAAAAA AAAAAA	AAAAAAAA AAAAAA
H-3	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000
ÍÍÍÍÍÍÍ	1111111111 111111	111111111 111111	111111111 111111	111111111 111111	ÍÍÍÍÍÍÍÍÍ ÍÍÍÍÍÍ	1111111111 111111
Total	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000

** Sum of water independent ground, inhalation, plant, meat, milk, soil and water dependent water, fish, plant, meat, milk pathways

0

0

0

Total Excess Cancer Risk CNRS(i,p,t)*** for Initially Existent Radionuclides (i) and Pathways (p) and Fraction of Total Risk at t= 1.000E+03 years

0	Water Independent Pathways (Inhalation excludes radon)						
0	Ground	Inhalation	Radon	Plant	Meat	Milk	Soil
Radio-	AAAAAAAAAAAAAAAAAAAAA	AAAAAAAAAAAAAAAAAAA	ĂĂĂĂĂĂĂĂĂĂĂĂĂĂĂĂĂ	AAAAAAAAAAAAAAAAAAAAA	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
Nuclide			risk fract.			risk fract.	risk fract.
AAAAAAA		AAAAAAA AAAAAAA					
H-3		0.000E+00 0.0000					
		111111111 111111					
Total	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000

Attachment	3	Sheet No. 20 of 21
Originator: S. W	. Clark	Date
Chk'd By: H. M. S	Sulloway	Date
Calc. No0100	F-CA-V0346	Rev. No. 0

 1RESRAD, Version 6.4
 T« Limit = 180 days
 03/10/2008
 13:54
 Page
 21

 Intrisk : 100-F-46
 French Drain Confirmatory Sampling Soils Analysis
 File
 : C:\PROGRAM FILES\RESRAD_FAMILY\RESRAD\100-F-46_FRENCH DRAIN_TRITIUM.RAD

Total Excess Cancer Risk CNRS(i,p,t)*** for Initially Existent Radionuclides (i) and Pathways (p) and Fraction of Total Risk at t= 1.000E+03 years

Water Dependent Pathways

	Water	Fish	Radon	Plant	Meat	Milk	All pathways
Radio-	AAAAAAAAAAAAAAAAAAAAA	AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	AAAAAAAAAAAAAAAAAAAAAA	AAAAAAAAAAAAAAAAAAAAA	AAAAAAAAAAAAAAAAAAAAAA	AAAAAAAAAAAAAAAAAAAA	AAAAAAAAAAAAAAAAAAAAA
Nuclide		risk fract.	risk fract.	risk fract.	risk fract.	risk fract.	risk fract.
AAAAAAA	AAAAAAAAA AAAAAA		AAAAAAA AAAAAAA	AAAAAAA AAAAAAA	AAAAAAA AAAAAA	AAAAAAA AAAAAAA	AAAAAAAA AAAAAA
H-3		0.000E+00 0.0000		0.000E+00 0.0000		0.000E+00 0.0000	0.000E+00 0.0000
ÍÍÍÍÍÍÍ	111111111 111111	111111111 111111	111111111 111111	111111111 111111	111111111 111111	1111111111 111111	1111111111 111111
Total	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000	0.000E+00 0.0000

Attachment	3	Sheet No. 21 of 21
Originator: S. W	I. Clark	Date
Chk'd By: H. M.	Sulloway	Date
Calc. No. 010	0F-CA-V0346	Rev. No. 0

 1RESRAD, Version 6.4
 T« Limit = 180 days
 03/10/2008
 13:54 Page
 1

 Concent : 100-F-46 French Drain Confirmatory Sampling Soils Analysis
 File
 : C:\PROGRAM FILES\RESRAD_FAMILY\RESRAD\100-F-46_FRENCH DRAIN_TRITIUM.RAD

Concentration of radionuclides in different media

Time=	0.000E+00		 	 	 	 	 							2	2
Time=	1.000E+00	• •	 	 	 	 	 		 •					3	3
Time=	2.000E+00		 	 	 	 	 				 			4	4
Time=	4.000E+00		 	 	 	 	 		 •		 			5	5
Time=	1.000E+01		 	 	 	 	 								6
Time=	3.000E+01		 	 	 	 	 				 			-	7
Time=	1.000E+02		 	 	 	 	 							8	В
Time=	3.000E+02		 	 	 	 	 				 			9	9
Time=	1.000E+03		 	 	 	 	 							10	D

Attachment	4	Sheet No. 1 of 10
Originator: S. W		Date3 /11/08
Chk'd By: H. M. S	Sulloway	Date 3/11/05
Calc. No. 0100	0F-CA-V0346	Rev. No./ 0

 1RESRAD, Version 6.4
 T« Limit = 180 days
 03/10/2008
 13:54
 Page 2

 Concent : 100-F-46
 French Drain Confirmatory Sampling Soils Analysis

 File
 : C:\PROGRAM FILES\RESRAD_FAMILY\RESRAD\100-F-46_FRENCH DRAIN_TRITIUM.RAD

Concentration of radionuclides in environmental media at t = 0.000E+00 years

Concentrations in the media occurring in pathways that are suppressed are calculated using the current input parameters, i.e. using parameters appearing in the input screen when the pathways are active. Concentration of H-3 in soil moisture = 2.792E+02 pCi/ml Concentration of gaseous H-3 in air = 5.258E+00 pCi/m**3

Concentration of radionuclides in foodstuff media at t = 0.000E+00 years*

Drinking Nonleafy Leafy Fodder Fodder Meat Milk Fish Crustacea Water Vegetable Vegetable Meat Milk Radio-
 Kadio Авалалалар
 Авалалалар
 Авалалалар
 Авалалалар
 Авалалалар
 Авалалалар
 Авалалалар
 Авалалалар
 Авалаларар
 Авалаларар
 Авалаларар
 Авалаларар
 Аваларарара
 Аваларарара
 Аваларарара
 Аваларарара
 Аваларарара
 Аваларарара
 Аваларарара
 Аваларарара
 Аваларарара
 Аваларарара
 Аваларарара
 Аваларарара
 Аваларарара
 Аваларарара
 Аваларарара
 Аваларарара
 Аваларарара
 Аваларарара
 Аваларарара
 Аваларарара
 Аваларарара
 Аваларарара
 Аваларарара
 Аваларарара
 Аваларарара
 Аваларарара
 Аваларарара
 Аваларарара
 Аваларарара
 Аваларарара
 Аваларарара
 Аваларарара
 Аваларарара
 Аваларарара
 Аваларарара
 Аваларарара
 Аваларарара
 Аваларарара
 Аваларарара
 Аваларарара
 Аваларарара
 Abanaparapa
 Abanaparapa
 Abanaparapa
 Abanaparapa
 Abanaparapa
 Abanaparapa
 Abanaparapa
 Abanaparapa
 Abanaparapa
 Abanaparapa
 Abanaparapa
 Abanaparapa
 Abanaparapa
 Abanaparapa
 Abanabanapa
 Abanapa
 Abanapa
 *Concentrations are at consumption time and include radioactive decay and ingrowth during storage time. For livestock fodder, consumption time is t minus meat or milk storage time.

Attachment	4	Sheet No. 2	2 of 10
Originator: S.W.	Clark	Date	
Chk'd By: H. M. S	ulloway	Date	
Calc. No. 0100	F-CA-V0346	Rev. No.	0

 1RESRAD, Version 6.4
 T« Limit = 180 days
 03/10/2008
 13:54 Page
 3

 Concent : 100-F-46 French Drain Confirmatory Sampling Soils Analysis
 File
 : C:\PROGRAM FILES\RESRAD_FAMILY\RESRAD\100-F-46_FRENCH DRAIN_TRITIUM.RAD

Concentration of radionuclides in environmental media at t = 1.000E+00 years

Concentrations in the media occurring in pathways that are suppressed are calculated using the current input parameters, i.e. using parameters appearing in the input screen when the pathways are active. Concentration of H-3 in soil moisture = 1.823E+02 pCi/ml Concentration of gaseous H-3 in air = 3.433E+00 pCi/m**3

Concentration of radionuclides in foodstuff media at t = 1.000E+00 years*

Drinking Nonleafy Leafy Fodder Fodder Meat Milk Fish Crustacea Vegetable Water Vegetable Meat Milk Radio-
 Kadilo
 Анананана аладалара сарадалара сарадалара сарадалара сарадалара сарадалара сарадалара сарадалара сарадалара
 Анарадалара сарадалара сарадалара сарадалара сарадалара сарадалара сарадалара сарадалара сарадалара сарадалара

 Nuclide
 pCi/L
 pCi/kg
 pCi/kg
 pCi/kg
 pCi/kg
 pCi/kg
 pCi/kg
 pCi/kg
 pCi/kg
 pCi/kg
 pCi/kg
 pCi/kg
 pCi/kg
 pCi/kg
 pCi/kg
 pCi/kg
 pCi/kg
 pCi/kg
 pCi/kg
 pCi/kg
 pCi/kg
 pCi/kg
 pCi/kg
 pCi/kg
 pCi/kg
 pCi/kg
 pCi/kg
 pCi/kg
 pCi/kg
 pCi/kg
 pCi/kg
 pCi/kg
 pCi/kg
 pCi/kg
 pCi/kg
 pCi/kg
 pCi/kg
 pCi/kg
 pCi/kg
 pCi/kg
 pCi/kg
 pCi/kg
 pCi/kg
 pCi/kg
 pCi/kg
 pCi/kg
 pCi/kg
 pCi/kg
 pCi/kg
 pCi/kg
 pCi/kg
 pCi/kg
 pCi/kg
 pCi/kg
 pCi/kg
 pCi/kg
 pCi/kg
 pCi/kg
 pCi/kg
 pCi/kg
 pCi/kg
 pCi/kg
 pCi/kg
 pCi/kg
 pCi/kg
 pCi/kg
 pCi/kg
 pCi/kg
 pCi/kg
 pCi/kg
 pCi/kg
 <td *Concentrations are at consumption time and include radioactive decay and ingrowth during storage time. For livestock fodder, consumption time is t minus meat or milk storage time.

Attachment	4	Sheet No.	3 of 10
Originator: S.W.	Clark	Date	
Chk'd By: H. M. S	ulloway	Date	
Calc. No. 0100	F-CA-V0346	Rev. No.	0

 1RESRAD, Version 6.4
 T« Limit = 180 days
 03/10/2008
 13:54
 Page
 4

 Concent :
 100-F-46
 French Drain Confirmatory Sampling Soils Analysis

 File
 :
 C:\PROGRAM FILES\RESRAD_FAMILY\RESRAD\100-F-46_FRENCH DRAIN_TRITIUM.RAD

Concentration of radionuclides in environmental media at t = 2.000E+00 years

Concentrations in the media occurring in pathways that are suppressed are calculated using the current input parameters, i.e. using parameters appearing in the input screen when the pathways are active. Concentration of H-3 in soil moisture = 1.190E+02 pCi/ml Concentration of gaseous H-3 in air = 2.241E+00 pCi/m**3

Concentration of radionuclides in foodstuff media at t = 2.000E+00 years*

Drinking Nonleafy Leafv Fodder Fodder Meat Milk Fish Crustacea Vegetable Water Vegetable Meat Milk Radio-
 Kadiaa
 Aaaaaaaaaaa
 Aaaaaaaaaa
 Aaaaaaaaaa
 Aaaaaaaaaa
 Aaaaaaaaaa
 Aaaaaaaaaa
 Aaaaaaaaaa
 Aaaaaaaaaa
 Aaaaaaaaaa
 Aaaaaaaaaa
 Aaaaaaaaaa
 Aaaaaaaaaa
 Aaaaaaaaaa
 Aaaaaaaaaa
 Aaaaaaaaaa
 Aaaaaaaaaa
 Aaaaaaaaaa
 Aaaaaaaaaa
 Aaaaaaaaaa
 Aaaaaaaaaa
 Aaaaaaaaaa
 Aaaaaaaaaa
 Aaaaaaaaaa
 Aaaaaaaaaa
 Aaaaaaaaaa
 Aaaaaaaaaa
 Aaaaaaaaaa
 Aaaaaaaaaa
 Aaaaaaaaaa
 Aaaaaaaaaa
 Aaaaaaaaaa
 Aaaaaaaaaa
 Aaaaaaaaaa
 Aaaaaaaaaa
 Aaaaaaaaaa
 Aaaaaaaaaa
 Aaaaaaaaaa
 Aaaaaaaaaa
 Aaaaaaaaaaa
 Aaaaaaaaaa
 Aaaaaaaaaa
 Aaaaaaaaaa
 Aaaaaaaaaa
 Aaaaaaaaaaa
 Aaaaaaaaaaa
 Aaaaaaaaaaa
 Aaaaaaaaaa
 Aaaaaaaaaa
 Aaaaaaaaaaa
 Aaaaaaaaaa
 Aaaaaaaaaaa
 Aaaaaaaaaa
 Aaaaaaaaaa
 Aaaaaaaaaa
 Aaaaaaaaaa
 Aaaaaaaaaaa
 Aaaaaaaaaa
 Aaaaaaaaaa
 Aaaaaaaaaaa
 Aaaaaaaaaa
 Aaaaaaaaaaa
 Aaaaaaaaaa
 Aaaaaaaaaa
 Aaaaaaaaaa
 Aaaaaaaaaa
 Aaaaaaaaaa
 Aaaaaaaaaa
 Aaaaaaaaaa
 Aaaaaaaaaa
 Aaaaaaaaaaaa
 Aaaaaaaaaaaa
 < *Concentrations are at consumption time and include radioactive decay and ingrowth during storage time. For livestock fodder, consumption time is t minus meat or milk storage time.

Attachment	4	Sheet No. 4 of 10	
Originator: S. V	V. Clark	Date	
Chk'd By: H. M.	Sulloway	Date	
Calc. No. 010	00F-CA-V0346	Rev. No. 0	

 1RESRAD, Version 6.4
 T« Limit = 180 days
 03/10/2008
 13:54
 Page 5

 Concent : 100-F-46
 French Drain Confirmatory Sampling Soils Analysis

 File
 : C:\PROGRAM FILES\RESRAD_FAMILY\RESRAD\100-F-46_FRENCH DRAIN_TRITIUM.RAD

Concentration of radionuclides in environmental media at t = 4.000E+00 years

Concentrations in the media occurring in pathways that are suppressed are calculated using the current input parameters, i.e. using parameters appearing in the input screen when the pathways are active. Concentration of H-3 in soil moisture = 5.070E+01 pCi/ml Concentration of gaseous H-3 in air = 9.549E-01 pCi/m**3

Concentration of radionuclides in foodstuff media at t = 4.000E+00 years*

Drinking Nonleafy Fodder Milk Leafy Fodder Meat Fish Crustacea Vegetable Vegetable Water Meat Milk Radio-
 Nuclide
 pci/kg
 pci/kg
 pci/kg
 pci/kg
 pci/kg
 pci/kg
 pci/kg
 pci/kg
 pci/kg
 pci/kg
 pci/kg
 pci/kg
 pci/kg
 pci/kg
 pci/kg
 pci/kg
 pci/kg
 pci/kg
 pci/kg
 pci/kg
 pci/kg
 pci/kg
 pci/kg
 pci/kg
 pci/kg
 pci/kg
 pci/kg
 pci/kg
 pci/kg
 pci/kg
 pci/kg
 pci/kg
 pci/kg
 pci/kg
 pci/kg
 pci/kg
 pci/kg
 pci/kg
 pci/kg
 pci/kg
 pci/kg
 pci/kg
 pci/kg
 pci/kg
 pci/kg
 pci/kg
 pci/kg
 pci/kg
 pci/kg
 pci/kg
 pci/kg
 pci/kg
 pci/kg
 pci/kg
 pci/kg
 pci/kg
 pci/kg
 pci/kg
 pci/kg
 pci/kg
 pci/kg
 pci/kg
 pci/kg
 pci/kg
 pci/kg
 pci/kg
 pci/kg
 pci/kg
 pci/kg
 pci/kg
 pci/kg
 pci/kg
 pci/kg
 pci/kg
 pci/kg
 pci/kg
 pci/kg
 pci/kg
 pci/kg
 pci/kg
 pci/kg
 pci/kg
 pci/kg
 pci/kg *Concentrations are at consumption time and include radioactive decay and ingrowth during storage time. For livestock fodder, consumption time is t minus meat or milk storage time.

Attachment	4	Sheet No. 5 of 10
Originator: S.W.	Clark	Date
Chk'd By: H. M. S	Sulloway	Date
Calc. No. 0100	F-CA-V0346	Rev. No. 0

 1RESRAD, Version 6.4
 T« Limit = 180 days
 03/10/2008
 13:54 Page
 6

 Concent : 100-F-46 French Drain Confirmatory Sampling Soils Analysis
 File
 : C:\PROGRAM FILES\RESRAD_FAMILY\RESRAD\100-F-46_FRENCH DRAIN_TRITIUM.RAD

Concentration of radionuclides in environmental media at t = 1.000E+01 years

Concentrations in the media occurring in pathways that are suppressed are calculated using the current input parameters, i.e. using parameters appearing in the input screen when the pathways are active. Concentration of H-3 in soil moisture = 3.917E+00 pCi/ml Concentration of gaseous H-3 in air = 7.378E-02 pCi/m**3

Concentration of radionuclides in foodstuff media at t = 1.000E+01 years*

Drinking Nonleafy Leafy Fodder Fodder Meat Milk Fish Crustacea Vegetable Water Vegetable Meat Milk Radio-*Concentrations are at consumption time and include radioactive decay and ingrowth during storage time. For livestock fodder, consumption time is t minus meat or milk storage time.

Attachment	4	Sheet No. 6 of 10
Originator: S. W	. Clark	Date
Chk'd By: H. M. S	Sulloway	Date
Calc. No. 010	0F-CA-V0346	Rev. No. 0

 1RESRAD, Version 6.4
 T« Limit = 180 days
 03/10/2008
 13:54 Page
 7

 Concent : 100-F-46 French Drain Confirmatory Sampling Soils Analysis
 File
 : C:\PROGRAM FILES\RESRAD_FAMILY\RESRAD\100-F-46_FRENCH DRAIN_TRITIUM.RAD

Concentration of radionuclides in environmental media at t = 3.000E+01 years

Concentrations in the media occurring in pathways that are suppressed are calculated using the current input parameters, i.e. using parameters appearing in the input screen when the pathways are active. Concentration of H-3 in soil moisture = 7.585E-04 pCi/ml Concentration of gaseous H-3 in air = 1.429E-05 pCi/m**3

Concentration of radionuclides in foodstuff media at t = 3.000E+01 years*

Drinking Nonleafy Leafy Fodder Fodder Meat Milk Fish Crustacea Vegetable Water Vegetable Meat Milk Radio-
 Nuclide
 pCi/kg
 pCi/kg
 pCi/kg
 pCi/kg
 pCi/kg
 pCi/kg
 pCi/kg
 pCi/kg
 pCi/kg
 pCi/kg
 pCi/kg
 pCi/kg
 pCi/kg
 pCi/kg
 pCi/kg
 pCi/kg
 pCi/kg
 pCi/kg
 pCi/kg
 pCi/kg
 pCi/kg
 pCi/kg
 pCi/kg
 pCi/kg
 pCi/kg
 pCi/kg
 pCi/kg
 pCi/kg
 pCi/kg
 pCi/kg
 pCi/kg
 pCi/kg
 pCi/kg
 pCi/kg
 pCi/kg
 pCi/kg
 pCi/kg
 pCi/kg
 pCi/kg
 pCi/kg
 pCi/kg
 pCi/kg
 pCi/kg
 pCi/kg
 pCi/kg
 pCi/kg
 pCi/kg
 pCi/kg
 pCi/kg
 pCi/kg
 pCi/kg
 pCi/kg
 pCi/kg
 pCi/kg
 pCi/kg
 pCi/kg
 pCi/kg
 pCi/kg
 pCi/kg
 pCi/kg
 pCi/kg
 pCi/kg
 pCi/kg
 pCi/kg
 pCi/kg
 pCi/kg
 pCi/kg
 pCi/kg
 pCi/kg
 pCi/kg
 pCi/kg
 pCi/kg
 pCi/kg
 pCi/kg
 pCi/kg
 pCi/kg
 pCi/kg
 pCi/kg
 pCi/kg
 pCi/kg
 pCi/kg
 pCi/kg
 pCi/kg
 pCi/kg *Concentrations are at consumption time and include radioactive decay and ingrowth during storage time. For livestock fodder, consumption time is t minus meat or milk storage time.

Attachment	4	Sheet No. 7 of	10
Originator: S. V	V. Clark	Date	
Chk'd By: H. M.	Sulloway	Date	
Calc. No. 010	0F-CA-V0346	Rev. No. 0	

 1RESRAD, Version 6.4
 T« Limit = 180 days
 03/10/2008
 13:54 Page
 8

 Concent :
 100-F-46 French Drain Confirmatory Sampling Soils Analysis
 File
 : C:\PROGRAM FILES\RESRAD_FAMILY\RESRAD\100-F-46_FRENCH DRAIN_TRITIUM.RAD

Concentration of radionuclides in environmental media at t = 1.000E+02 years

Concentrations in the media occurring in pathways that are suppressed are calculated using the current input parameters, i.e. using parameters appearing in the input screen when the pathways are active. Concentration of H-3 in soil moisture = 6.448E-17 pCi/ml Concentration of gaseous H-3 in air = 1.214E-18 pCi/m**3

> Concentration of radionuclides in foodstuff media at t = 1.000E+02 years*

Drinking Nonleafy Leafy Fodder Fodder Milk Fish Meat Crustacea Water Vegetable Vegetable Meat Milk Radio-
 Nuclide
 pci/L
 pci/kg
 pci/kg
 pci/kg
 pci/kg
 pci/kg
 pci/kg
 pci/kg
 pci/kg
 pci/kg
 pci/kg
 pci/kg
 pci/kg
 pci/kg
 pci/kg
 pci/kg
 pci/kg
 pci/kg
 pci/kg
 pci/kg
 pci/kg
 pci/kg
 pci/kg
 pci/kg
 pci/kg
 pci/kg
 pci/kg
 pci/kg
 pci/kg
 pci/kg
 pci/kg
 pci/kg
 pci/kg
 pci/kg
 pci/kg
 pci/kg
 pci/kg
 pci/kg
 pci/kg
 pci/kg
 pci/kg
 pci/kg
 pci/kg
 pci/kg
 pci/kg
 pci/kg
 pci/kg
 pci/kg
 pci/kg
 pci/kg
 pci/kg
 pci/kg
 pci/kg
 pci/kg
 pci/kg
 pci/kg
 pci/kg
 pci/kg
 pci/kg
 pci/kg
 pci/kg
 pci/kg
 pci/kg
 pci/kg
 pci/kg
 pci/kg
 pci/kg
 pci/kg
 pci/kg
 pci/kg
 pci/kg
 pci/kg
 pci/kg
 pci/kg
 pci/kg
 pci/kg
 pci/kg
 pci/kg
 pci/kg
 pci/kg
 pci/kg
 pci/kg
 pci/kg
 pci/kg< *Concentrations are at consumption time and include radioactive decay and ingrowth during storage time. For livestock fodder, consumption time is t minus meat or milk storage time.

Attachment	4	Sheet No. 8 of 10
Originator: S. W.	Clark	Date
Chk'd By: H. M. S	Sulloway	Date
Calc. No. 0100	F-CA-V0346	Rev. No. 0

 1RESRAD, Version 6.4
 T« Limit = 180 days
 03/10/2008
 13:54
 Page
 9

 Concent :
 100-F-46
 French Drain Confirmatory Sampling Soils Analysis

 File
 :
 C:\PROGRAM FILES\RESRAD_FAMILY\RESRAD\100-F-46_FRENCH DRAIN_TRITIUM.RAD

Concentration of radionuclides in environmental media at t = 3.000E+02 years

Concentrations in the media occurring in pathways that are suppressed are calculated using the current input parameters, i.e. using parameters appearing in the input screen when the pathways are active. Concentration of H-3 in soil moisture = 0.000E+00 pCi/mlConcentration of gaseous H-3 in air = $0.000E+00 \text{ pCi/m^*3}$

Concentration of radionuclides in foodstuff media at t = 3.000E+02 years*

Drinking Nonleafy Milk Leafv Fodder Fodder Meat Fish Crustacea Vegetable Vegetable Water Meat Milk Radio-Nuclide pCi/L pCi/kg pCi*Concentrations are at consumption time and include radioactive decay and ingrowth during storage time. For livestock fodder, consumption time is t minus meat or milk storage time.

Attachment	4	Sheet No. 9 of 10
Originator: S. W	. Clark	Date
Chk'd By: H. M. S	Sulloway	Date
Calc. No. 0100	F-CA-V0346	Rev. No. 0

 1RESRAD, Version 6.4
 T« Limit = 180 days
 03/10/2008
 13:54
 Page 10

 Concent : 100-F-46 French Drain Confirmatory Sampling Soils Analysis

 File
 : C:\PROGRAM FILES\RESRAD_FAMILY\RESRAD\100-F-46_FRENCH DRAIN_TRITIUM.RAD

Concentration of radionuclides in environmental media at t = 1.000E+03 years

Contaminat- Surface Air Par-Well Surface ted Zone Soil* ticulate Water Water Radio-Nuclide pCi/g pCi/g pCi/m**3 pCi/L pCi/L AMAMAMA AMAMAMAMA AMAMAMAMA AMAMAMAMA AMAMAMAMAMA pCi/m**3 H-3 iiiiiii *The Surface Soil is the top layer of soil within the user specified mixing zone/depth.

Concentrations in the media occurring in pathways that are suppressed are calculated using the current input parameters, i.e. using parameters appearing in the input screen when the pathways are active. Concentration of H-3 in soil moisture = 0.000E+00 pCi/ml Concentration of gaseous H-3 in air = 0.000E+00 pCi/m**3

Concentration of radionuclides in foodstuff media at t = 1.000E+03 years*

Drinking Nonleafy Leafy Fodder Milk Fish Fodder Meat Crustacea Vegetable Vegetable Water Meat Milk Radio-PCI/L PCI/kg PCI/kg PCI/kg PCI/kg PCI/kg PCI/kg PCI/kg PCI/kg PCI/kg PCI/kgNuclide AAAAAAA
 CODE
 CODE
 CODE
 CODE
 CODE
 CODE
 CODE
 CODE
 CODE
 CODE
 CODE
 CODE
 CODE
 CODE
 CODE
 CODE
 CODE
 CODE
 CODE
 CODE
 CODE
 CODE
 CODE
 CODE
 CODE
 CODE
 CODE
 CODE
 CODE
 CODE
 CODE
 CODE
 CODE
 CODE
 CODE
 CODE
 CODE
 CODE
 CODE
 CODE
 CODE
 CODE
 CODE
 CODE
 CODE
 CODE
 CODE
 CODE
 CODE
 CODE
 CODE
 CODE
 CODE
 CODE
 CODE
 CODE
 CODE
 CODE
 CODE
 CODE
 CODE
 CODE
 CODE
 CODE
 CODE
 CODE
 CODE
 CODE
 CODE
 CODE
 CODE
 CODE
 CODE
 CODE
 CODE
 CODE
 CODE
 CODE
 CODE
 CODE
 CODE
 CODE
 CODE
 CODE
 CODE
 CODE
 CODE
 CODE
 CODE
 CODE
 CODE
 CODE
 <th *Concertrations are at consumption time and include radioactive decay and ingrowth during storage time. For livestock fodder, consumption time is t minus meat or milk storage time.

Attachment	4	Sheet No. 10 of 10
Originator: S. W	V. Clark	Date
Chk'd By: H. M.	Sulloway	Date
Calc. No. 010	0F-CA-V0346	Rev. No. 0

APPENDIX D

100-F-46 DATA QUALITY ASSESSMENT

CONFIRMATORY SAMPLING DATA QUALITY ASSESSMENT

A data quality assessment (DQA) was performed to compare the confirmatory sampling approach and resulting analytical data with the sampling and data requirements specified in the site-specific sample designs (WCH 2007, DOE-RL 2005b). This DQA was performed in accordance with site-specific data quality objectives found in the *100 Area Remedial Action Sampling and Analysis Plan* (SAP) (DOE-RL 2005a).

To ensure quality data, the SAP data assurance requirements and the data validation procedures for chemical and radiochemical analysis (BHI 2000a, 2000b) are used as appropriate. This review involves evaluation of the data to determine if they are of the right type, quality, and quantity to support the intended use (i.e., evaluate against cleanup criteria to support a no action or remedial action decision). The DQA completes the data life cycle (i.e., planning, implementation, and assessment) that was initiated by the data quality objectives process (EPA 2000).

A review of the sample design (WCH 2007), the field logbook (WCH 2008), and applicable analytical data packages has been performed as part of this DQA. All samples were collected and analyzed per the sample design. In addition, Toxicity Characteristic Leachate Procedure (TCLP) metals analysis was performed on the confirmatory samples collected at the 100-F-46 waste site. TCLP analytical results are requested for waste characterization purposes and do not support No Action or Remedial Action decisions for waste sites. This DQA limited the data review for the 100-F-46 confirmatory sampling to the data required per the sample design. Confirmatory sample data collected at the 100-F-46 waste site were provided by the laboratory in sample delivery group (SDG) K1037. SDG K1037 was submitted for third-party validation. No major deficiencies were identified in the analytical data set. Minor deficiencies are discussed below.

SDG K1037

This SDG comprises a field duplicate pair (J16355/J16356) sampled from the base of the excavation at the 100-F-46 waste site and sample J16357 (equipment blank). These samples were analyzed for inductively coupled plasma (ICP) metals and mercury. In addition, the field duplicate pair (J16355/J16356) was analyzed for hexavalent chromium, polycyclic aromatic hydrocarbons (PAHs), total petroleum hydrocarbons (TPH), polychlorinated biphenyls (PCBs), gross alpha and gross beta by proportional counting, carbon-14, tritium, isotopic plutonium, and by gamma spectroscopy. SDG K1037 was submitted for formal third-party validation. No major deficiencies were identified in SDG K1037. Minor deficiencies found in SDG K1037 are as follows:

No matrix spike (MS) analysis was performed for tritium or for carbon-14. Third-party validation qualified all tritium and carbon-14 results as estimated and flagged with a "J" designation. The data are useable for decision-making purposes.

For the mercury analysis, the holding time of 28 days was exceeded by less than twice the limit, and all mercury results were qualified as estimates and flagged "J" by third-party validation.

Estimated data are useable for decision-making purposes.

In the ICP metals analysis, the lead result for sample J16357 (the equipment blank) is of similar magnitude as the method blank result, and is qualified by third-party validation as an undetected estimate with a "UJ" flag, due to method blank contamination. The data are useable for decision-making purposes.

Also in the ICP metals analysis, the matrix spike (MS) recoveries for four ICP metals (aluminum, iron, manganese, and silicon) are out of acceptance criteria. For these analytes, the spiking concentration is insignificant compared to the native concentration in the sample from which the MS was prepared. Therefore, the deficiency in the MS result is a reflection of the analytical variability of the native concentration rather than a measure of the recovery from the sample. To confirm quantitation, post-digestion spikes (PDSs) and serial dilutions were prepared for all three analytes with acceptable results.

In the PAH analysis, the matrix spike duplicate (MSD) and laboratory control sample (LCS) recoveries for benzo(a)pyrene are outside the acceptance criteria, at 142% and 141%, respectively. The benzo(a)pyrene results were qualified as estimates and flagged "J" by third-party validation. Estimated data are useable for decision-making purposes.

FIELD QUALITY ASSURANCE/QUALITY CONTROL

Relative percent difference (RPD) evaluations of main sample(s) versus the laboratory duplicate(s) are routinely performed and reported by the laboratory. Any deficiencies in those calculations are reported by SDG in the previous sections.

Field quality assurance/quality control (QA/QC) measures are used to assess potential sources of error and cross contamination of samples that could bias results. Field QA/QC samples, listed in the field logbook (WCH 2008), are the 100-F-46 sample primary and duplicate (J16355/J16356). The main and QA/QC sample results are presented in Appendix C.

Field duplicate samples are collected to provide a relative measure of the degree of local heterogeneity in the sampling medium, unlike laboratory duplicates that are used to evaluate precision in the analytical process. The field duplicates are evaluated by comparison of the RPD of the duplicate samples for each contaminant of concern. The results of the field duplicate RPD calculation were reported in the final validation package for SDG K1037, and are summarized below.

Radionuclides

None of the RPDs calculated for the field QA/QC samples radionuclide results exceeded the acceptance criteria of 30%. The data are useable for decision-making purposes.

Nonradionuclides

The RPD calculated for selenium was 34%, which exceeded the acceptance criteria of 30%. An elevated RPD such as this in the analysis of environmental soil samples is largely attributed to heterogeneities in the soil matrix and only in small part attributed to precision and accuracy issues at the laboratory. The data are useable for decision-making purposes.

An overall visual inspection of all of the data is also performed. No additional major or minor deficiencies were noted. The data are useable for decision-making purposes.

SUMMARY

Limited, random, or sample matrix-specific influenced batch QC issues such as those discussed above are a potential for any analysis. The number and types seen in these data sets are within expectations for the matrix types and analyses performed. The DQA review of the 100-F-46 confirmatory sampling data found that the analytical results are accurate within the standard errors associated with the analytical methods, sampling, and sample handling. The DQA review for 100-F-46 waste site concludes that the data are of the right type, quality, and quantity to support the intended use. The confirmatory sample analytical data are stored in the ENRE Environmental Restoration database prior to being submitted for inclusion in the HEIS Hanford Environmental Information System database. The confirmatory sample analytical data are also summarized in Appendix B.

REFERENCES

- BHI, 2000a, *Data Validation Procedure for Chemical Analysis*, BHI-01435, Rev. 0, Bechtel Hanford, Inc., Richland, Washington.
- BHI, 2000b, *Data Validation Procedure for Radiochemical Analysis*, BHI-01433, Rev. 0, Bechtel Hanford, Inc., Richland, Washington.
- DOE-RL, 2005a, *100 Area Remedial Action Sampling and Analysis Plan*, DOE/RL-96-22, Rev. 4, U.S. Department of Energy, Richland Operations Office, Richland, Washington.
- DOE-RL, 2005b, *Remedial Design Report/Remedial Action Work Plan for the 100 Area*, DOE/RL-96-17, Rev. 5, U.S. Department of Energy, Richland Operations Office, Richland, Washington.
- EPA, 2000, *Guidance for Data Quality Assessment*, EPA QA/G-9, QA00 Update, U.S. Environmental Protection Agency, Office of Environmental Information, Washington, D.C.

- WCH, 2007, Work Instruction for Confirmatory Sampling of the 100-F-46, 119-F Stack Sampling French Drain, 0100F-WI-G0044, Rev. 0, Washington Closure Hanford, Richland, Washington.
- WCH, 2008, *Miscellaneous Sampling*, Logbook EL-1601-2, pp. 2-3 and 13, Washington Closure Hanford, Richland, Washington.