
15th World Congress on Computational Mechanics (WCCM-XV)
8th Asian Pacific Congress on Computational Mechanics (APCOM-VIII)

Virtual Congress: 31 July – 5 August 2022
S. Koshizuka (Ed.)

PREPARING THE PATH FOR THE EFFICIENT SIMULATION OF
TURBULENT COMPRESSIBLE INDUSTRIAL FLOWS WITH ROBUST

COLLOCATED RK-DG SOLVERS

Rasha Al Jahdali1*, Lisandro Dalcin1, and Matteo Parsani1

1 King Abdullah University of Science and Technology (KAUST), Extreme Computing Research
Center (ECRC), Computer, Electrical and Mathematical Sciences & Engineering (CEMSE)

Thuwal, 23955-6900, Kingdom of Saudi Arabia
rasha.aljahdali@kaust.edu.sa, dalcinl@gmail.com, matteo.parsani@kaust.edu.sa.

Key words: Compressible flows, Entropy stable schemes, Robust Runge–Kutta schemes, Cloud Com-
puting

Abstract. We present an analysis of the performance of some standard and optimized explicitly Runge–
Kutta schemes that are equipped with CFL-based and error-based time step adaptivity when they are
coupled with the relaxation procedure to achieve fully-discrete entropy stability for complex compressible
flow simulations. We investigate the performance of the temporal integration algorithms by simulating
the flow past the NASA juncture flow model using the in-house KAUST SSDC hp-adaptive collocated
entropy stable discontinuous Galerkin solver. In addition, we present a preliminary analysis of the
performance of the SSDC framework on the Amazon web service cloud computing. The results indicate
that SSDC scales well on the most recent and exotic computing architectures available on the Amazon
cloud platform. Our findings might help select a more robust and efficient temporal integration algorithm
and guide the choice of the EC2 AWS instances that give the best price and wall-clock-time performance
to simulate industrially relevant turbulent flow problems.

1 Introduction

During the last two decades, a lot of effort has been devoted to developing robust and efficient adap-
tive high-order accurate solvers for compressible computational fluid dynamics (CFD). Discontinuous
Galerkin, spectral difference, and flux reconstruction approaches are some of the potential possibili-
ties among current, unstructured high-order methods. Although these approaches are ideally suited for
smooth solutions, they are often designed in the context of linear stability. Hence, they often suffer from
numerical instabilities if the flow, for instance, has unresolved physical features (e.g., under-resolved
turbulent structures).

For nonlinear systems of conservation laws, such as the compressible Navier–Stokes equations, the
entropy stability framework [1] allows mimicking some of the continuous system’s key features closely.
This has resulted in the development of entropy-stable high-order approaches that are provably non-
linearly stable (entropy stable) so long as the positivity of the thermodynamic variables is maintained
[2, 3]. High-order collocated entropy stable discontinuous Galerkin methods are used in this work.
Specifically, we use the high-performance entropy stable solver SSDC presented in [4].

Recently, the relaxation procedure has been developed to ensure the conservation, dissipation, or other

*Corresponding author.

1

R. Al Jahdali, L. Dalcin, and M. Parsani

solution qualities with respect to any convex functional by multiplying each Runge–Kutta update by
a relaxation parameter [5, 6]. Over the last year, the relaxation method has been adopted and utilized
effectively in numerous fluid dynamics problems. Herein, we use some standard and optimized explicitly
Runge–Kutta (ERK) schemes that are equipped with time step adaptivity and the relaxation approach to
attain the fully-discrete entropy stability. Fully-entropy stability is a feature that has been highlighted in
the NASA CFD vision 2030 as an essential element of future CFD frameworks [7] because it provides
provably robustenss for industrial complex problems in the aeronautics and aerospace fields.

Very often, industrially-relevant simulations require vast computations that can only be done on su-
percomputers available to governments or the most well-heeled corporations. Therefore, grids and on-
demand cloud resources should be seriously considered as potential alternatives for traditional local
computing clusters in many contexts and realities. A significant benefit of cloud computing is the ability
to acquire hardware without the need for upfront capital investment or ongoing IT maintenance costs, and
software can be obtained on a pay-per-use basis rather than an annual license. Cloud computing allows
for large-scale high-performance computing resources to be rented on a cost-effective basis. Therefore,
because the industry is extremely interested in using this on-demand technology for performing engi-
neering simulations, testing and assessing the performance of a unique prototype for next generation
compressible CFD solvers, such as SSDC, is relevant.

In this work, we perform the simulation of the NASA juncture flow experiment, which is a new effort
specifically designed to collect validation data in the juncture region of a wing-body configuration [8].
Current turbulence models routinely employed by Reynolds-averaged Navier–Stokes CFD solvers are
inconsistent in their prediction of corner flow separation in aircraft juncture regions, so experimental data
in the near-wall region of such a configuration are useful both for assessment as well as for turbulence
model improvement [8]. The purpose of this study is to provide some results on the performance of the
SSDC solver on the Amazon ParallelCluster, and to measure the capabilities of different instance types of
Amazon cloud. An EC2 instance has a default number of CPU cores, which varies according to instance
type. In this study, we restricted the instance to just utilize the available physical CPU cores, meaning
that we disabled hyperthreading. In particular, we consider the some recent Intel, AMD, and Arm EC2
instances and up to 8 computing nodes.

2 Numerical discretization of the compressible Navier–Stokes equations

2.1 Spatial discretization

The compressible Navier–Stokes equations in Cartesian coordinates read
∂q
∂t +

3
∑

m=1

∂fI
xm

∂xm
=

3
∑

m=1

∂fV
xm

∂xm
, ∀(x1,x2,x3) ∈Ω, t ≥ 0,

q(x1,x2,x3, t) = g(B) (x1,x2,x3, t) , ∀(x1,x2,x3) ∈ Γ, t ≥ 0,
q(x1,x2,x3,0) = g(0) (x1,x2,x3) , ∀(x1,x2,x3) ∈Ω,

(1)

where the vectors q, fI
xm

, and fV
xm

are denoted as the conserved variables, the inviscid fluxes, and the
viscous fluxes, respectively. The boundary data, g(B), and the initial condition, g(0), are assumed to be
in L2(Ω), with the further assumption that g(B) coincides with linear, well–posed boundary conditions,
prescribed in such a way that either entropy conservation or entropy stability is achieved.

The vector of conserved variables is given by q= [ρ,ρU1,ρU2,ρU3,ρE]T , where ρ denotes the den-
sity, U = [U1,U2,U3]

T is the velocity vector, and E is the specific total energy.

2

R. Al Jahdali, L. Dalcin, and M. Parsani

The compressible Navier–Stokes equations given in (1) have a convex extension (a redundant sixth
equation constructed from a nonlinear combination of the mass, momentum, and energy equations) that,
when integrated over the physical domain, only depends on the boundary data and on negative semi-
definite dissipation terms. Such convex extension provides a mechanism for proving stability in the
L2 norm; it depends on an entropy function, s, that is constructed from the thermodynamic entropy as
s=−ρs, where s is the thermodynamic entropy. The approximation of the compressible Navier–Stokes
equations proceeds by partitioning the domain Ω into K non-overlapping elements. On the κ-th element,
the generic entropy stable discretization of (1) reads

dqqqκ

dt
+

3

∑
m=1

2DI,κ
xm
◦Fxm (qqqκ,qqqκ)111κ =

3

∑
m, j=1

DV1,κ
xm

[Cm, j]θθθ j +SATI +SATV +dissI +dissV1 , (2)

where the vector qqqκ is the discrete solution at the mesh nodes, and the vectors dissI and dissV are interface
dissipation terms for the inviscid and viscous portions of the equations, respectively. To mimic the
continuous entropy stability analysis, the derivatives of the inviscid fluxes are approximated in a special
way [9], i.e.,

∂fI
xm

∂xm
≈ 2DI,κ

xm
◦Fxm (qqqκ,qqqκ)111κ, (3)

where DI,κ
xm is a differentiation matrix for the xm direction, ◦ is the Hadamard product (entry-wise multi-

plication), Fxm (qqqκ,qqqκ) is a two-point flux function matrix, and 111κ is a vector of ones. Numerically, we
solve PDEs in computational coordinates, (ξ1,ξ2,ξ3)⊂ R3, where each cell is locally transformed to the
reference element using a pull-back curvilinear coordinate transformation. The matrix DI,κ

xm is an SBP
operator constructed by discretizing the skew-symmetric split of the Cartesian derivative [9].

The differentiation matrix DI,κ
xm is constructed as

DI,κ
xm
≡ 1

2
J−1

κ

3

∑
l=1

(
Dξl

[
J

∂ξl

∂xm

]
κ

+

[
J

∂ξl

∂xm

]
κ

Dξl

)
, (4)

where Jκ denotes the determinant of the discrete Jacobian, Dξl is an SBP operator approximating ∂

∂ξ
,

while
[
J ∂ξl

∂xm

]
κ

denotes the discrete metric terms that need to satisfy a discrete version of the geometric

conservation law (GCL) conditions [9]. On the other hand, the differentiation matrix, DV1,κ
xm , is con-

structed as

DV1,κ
xm
≡ J−1

κ

3

∑
l=1

Dξl

[
J

∂ξl

∂xm

]
κ

. (5)

The metric terms
[
J ∂ξl

∂xm

]
κ

and
[
J ∂ξa

∂x j

]
κ

have been color-coded to highlight that these terms can be com-
puted in different ways.

The terms SAT are the Simultaneous Approximation Terms that weakly couple neighboring elements
(see, for instance, [10, 9]) or impose boundary conditions (see, for instance, [11, 12]). Here, they are
composed of an inviscid and a viscous contribution, i.e., SAT = SATI +SATV , and are generically con-
structed from the difference of the flux on the element boundary Γκ and a numerical flux, in order to
properly approximate ∫

Γκ

v
(
fxm
− f∗xm

)
nxmdΓ,

3

R. Al Jahdali, L. Dalcin, and M. Parsani

where nxm is the m-th component of the outward facing unit normal, and v is a smooth test function.
Moreover, f∗xm

is the unique (for conservation) numerical flux function. The specific form of this flux
function will depend on what type of SAT is being enforced, i.e., interface or boundary condition. In
addition, SAT terms are designed to extend the mimetic properties of the scheme and its stability from
the element level to the full discretization. Stability proofs also hold in the presence of p- and hp-
nonconforming interfaces between elements by using SBP-preserving interpolation operators and non-
standard approximations of the metric terms; see [13] for p-nonconforming interfaces, and [9] for hp-
nonconforming interfaces.

At the beginning of the simulation, the metric terms are computed in order to satisfy the discrete GCL
conditions. Explicit Runge–Kutta schemes are then used to integrate the system of nonlinear ordinary
differential equations (ODEs) arising from the spatial discretization of the compressible Navier–Stokes
equations.

2.2 Temporal discretization

A general (explicit or implicit) Runge–Kutta method with s stages can be represented by its Butcher
tableau which is composed by a square matrix A of dimensions s× s, and two column vectors b and c of
length s. All these coefficients are real numbers. In the context of the relaxation procedure [5], the basic
idea to enforce conservation, dissipation, or other solution properties with respect to a convex functional
is to scale the weights bi of a given Runge–Kutta method by a real-value parameter γ̃. Thus, using an
s-stage Runge–Kutta scheme, a time step from un ≈ u(tn) is given by

yi = un +∆t
s

∑
j=1

ai j f (tn + c j∆t,y j), un+1
γ̃

= un + γ̃n∆t
s

∑
i=1

bi f (tn + ci∆t,yi), (6)

where yi are the stage values of the Runge–Kutta method. For the global relaxation procedure, γ̃n is a
root of a global nonlinear algebraic equation for η [5]. On the contrary, for the local relaxation approach,
γ̃n = minκ γ̃n,κ, i.e., the minimum among the roots of a local equation for ηκ for each cell, κ, of the
discretized spatial domain [6]. If γ̃n = 1, we recover the standard Runge–Kutta method.

As required by the relaxation theory [5], we select ERK schemes with positive weights, bi. In particu-
lar, we use two second-order schemes with CFL-based timestep controller, i.e., ERK(4,2) and ERK(8,2)
[14], one third-order scheme with CFL-based timestep controller, i.e., ERK(5,3) [14], three third-order
schemes with error-based timestep controller, i.e., BSRK(4,3), SSP3(2)4[3S*+] and RK3(2)5F[3S*+]
[15], the classical four-stage fourth-order scheme with CFL-based timestep controller, i.e., ERK(4,4),
one fifth-order scheme with error-based timestep controller, i.e., BSRK(8,5), and one sixth-order scheme
with error-based timestep controller, i.e., VRK(9,6). All these schemes have been throughly tested and
verified when used in combination with an adaptive timestep strategy [14]. In addition, some of these
ERK schemes (e.g., ERK(4,4), BSRK(4,3), and BSRK(8,5)) are the work-horses of commercial and
national laboratories compressible computational fluid dynamics solvers.

3 Numerical results

This section presents an analysis of the performance of certain standard and optimized explicitly
Runge–Kutta schemes equipped with CFL-based and error-based time step adaptivity coupled with the
local and global relaxation techniques. In addition to that, we analyze the performance of the SSDC
solver on the Amazon EC2 cluster.

4

R. Al Jahdali, L. Dalcin, and M. Parsani

3.1 NASA juncture flow configuration

We use the NASA juncture configuration with a wing based on the DLR-F6 geometry and a lead-
ing edge horn to mitigate the effect of the horseshoe vortex over the wing-fuselage juncture [8]. The
Reynolds number is Re = 2.4×106 and the freestream Mach number is Ma = 0.189. The angle of attack
is AoA = −2.5◦. We perform simulations in free air conditions, ignoring both the sting and the mast.
An illustration of the grid structure is shown in Fig. 1 (a), whereas the vortical features visualized using
isocontours of the Q-criterion colored by normalized instantaneous velocity U1/|U∞| are shown in Fig. 1
(b).

(a) (b)

Figure 1: NASA juncture flow experiment.

3.2 Performance of relaxation and adaptive schemes

To assess the performance of the selected adaptive explicit Runge–Kutta schemes coupled with the
global or local relaxation procedure, we perform 600 time steps starting from a fully developed turbulent
flow. The simulations are carried out using 512 CPU cores of the supercomputer Shaheen XC40 hosted
at KAUST. The number of function evaluations and the arithmetic average of the wall-clock time for the
three configurations without, with the global, and with local relaxation procedures are reported in Table
1. The CFL-based and error-based time step controllers are highlighted in yellow and gray, respectively.
As we can see in Table 1, more function evaluations are needed when the relaxation technique is active.
Moreover, approximately the same number of function evaluations are required for the global and local
relaxation procedures. This leads to the fact that the relaxation approaches require more wall-clock time
than the same scheme without relaxation. When the number of function evaluations with and without
relaxation is close to each other, we point out that the difference in wall-clock time is practically due
to time spent by nonlinear algebraic solvers on computing the relaxation parameter, γ̃n. Remarkably,
the error-based controllers are significantly more efficient than CFL-based controllers for third-order
accurate schemes, regardless of whether the relaxation method is enabled. Furthermore, the fifth- and
sixth-order adaptive schemes with error-based time step adaptivity are faster than the second and third-
order accurate methods whose time step is controlled by the CFL number. As demonstrated in Table 1,

5

R. Al Jahdali, L. Dalcin, and M. Parsani

the relaxation Runge–Kutta schemes with CFL-based timestep controller require a number of function
evaluations very close to the schemes without the relaxation approach. According to this, it appears that
with the existing CFL-based controller, the time step approaches the value required for entropy stability,
i.e., γ̃n ≈ 1. We highlight that the latter behavior is not observed for the computations performed with the
error-based controller. Finally, we would like to point out that all simulations are stable, even without
using a relaxation method.

ERK scheme Approach # Function evaluations Wall-clock time [s]

Without relaxation 1,004 1.4062e+02
ERK(4,2) Global relaxation 1,008 1.4108e+02

Local relaxation 1,008 1.4081e+02
Without relaxation 1,000 1.3995e+02

ERK(8,2) Global relaxation 1,024 1.4340e+02
Local relaxation 1,008 1.4125e+02

Without relaxation 817 1.1783e+02
BSRK(4,3) Global relaxation 1,084 1.5248e+02

Local relaxation 1,088 1.5327e+02
Without relaxation 1,356 1.9057e+02

SSP3(2)4[3S*+] Global relaxation 1,352 1.9029e+02
Local relaxation 1,356 1.9117e+02

Without relaxation 817 1.1780e+02
RK3(2)5F[3S*+] Global relaxation 1,084 1.5228e+02

Local relaxation 1,088 1.5299e+02
Without relaxation 1,080 1.5131e+02

ERK(5,3) Global relaxation 1,080 1.5140e+02
Local relaxation 1,085 1.5187e+02

Without relaxation 1,492 2.0858e+02
ERK(4,4) Global relaxation 1,504 2.1078e+02

Local relaxation 1,496 2.0941e+02
Without relaxation 904 1.2841e+02

BSRK(8,5) Global relaxation 952 1.3411e+02
Local relaxation 952 1.3404e+02

Without relaxation 873 1.2462e+02
VRK(9,6) Global relaxation 999 1.4170e+02

Local relaxation 999 1.4168e+02

Table 1: Performance of the schemes used for the simulation of the flow past the NASA juncture flow
model.

3.3 Performance evaluation of on-premises cluster and AWS cloud cluster

In this section, we conduct a detailed, quantitative analysis to evaluate the performance of SSDC on
the on-premises cluster Ibex at KAUST and the Amazon EC2 when used to run complex flow past the
NASA juncture flow experiment. The goal of this study is to determine the suitability of Amazon’s cloud-
based high-performance computing HPC offering for resolving complicated industrial flow problems and
define a range of architectures that give the minimum time-to-solution at the minimum cost. The wall-
clock time in seconds for on-premises cluster and EC2 instances for different architectures of CPUs are
reported in Figs. 2 and 4. For the simulations on the on-premises cluster, we run this test case using 40

6

R. Al Jahdali, L. Dalcin, and M. Parsani

(dark green) and 20 (light blue) physical cores, that is the maximum and half of the maximum physical
cores per nodes. In both cases, each core is assigned a single MPI thread. For the on-premises cluster
with the Intel Cascade Lake architecture, the wall-clock time decrease as the number of nodes increases,
as shown in Fig. 2. Clearly, for the same node counts, the on-premises cluster with 40 physical cores
provides a speed-up of approximately 50% more than that with 20 physical cores. However, this speed-
up percentage generally decreases as the number of nodes increases. We observe this behavior for 4
and 8 nodes in both setups, i.e., when using 40 or 20 physical cores. Together with the problem size,
the main reasons responsible for the degradation in performance on-premise cluster are i) the nodes
are non-exclusive with a daily occupancy of about 75% of medium-to-large scales jobs, and therefore,
the more computing nodes, the higher the chances to share the computing resources with other users
ii) the more computing nodes, the more partitioned the workload on each node and hence, increasing
communication messages which are also sent and received using the shared computing resources. As a
result, if the problem size is not “sufficiently large”, the network connectivity is not “sufficiently fast”
and shared with other users, the performance degrades to the point that a larger number of computing
nodes is detrimental.

For the EC2 c5d instances and all orders of accuracy, the simulations are speed-up as the number
of CPUs increases. In particular, going from one to eight computing nodes yields a speed-up factor
of approximately 6.5 for both instances and the second- and third-order accurate methods. Among the
EC2 instances, the smaller time-to-solution is given by the c5d.9xlarge instance for all the orders of
accuracy. It is also important to note that, the on-premises cluster runs with 40 and 20 MPI threads
are still faster than the EC2 instances. For four computing nodes, the runs on the on-premises cluster
with 20 MPI threads are slightly faster or on par with the runs performed with the c5d.4xlarge instance.
Thus, it appears that using half of the physically available cores on a node has positive effects on the
wall-clock time because shared intra-node network is used by only half of the physically available cores,
and importantly, the workload per core allows to hide better communications behind computations. We
further highlight that, for higher-order accurate methods, the number of degrees of freedom increases,
and therefore a large number of computing nodes is needed. Consequently, some cases cannot be run on
the smaller node count due to the limitations of the computing resources. This occurs when we use 1 and
2 nodes for the fourth- and fifth-order accurate methods, as shown in Figs. 2c and 2d.

7

R. Al Jahdali, L. Dalcin, and M. Parsani

1 2 4 8
Nodes

0.0

1000.0

2000.0

3000.0

4000.0

W
al

l-
cl

oc
k

ti
m

e
[s

]

On-premise I

On-premise II

c5d.9xlarge

c5d.4xlarge

(a) Second-order accurate method.

1 2 4 8
Nodes

0.0

1000.0

2000.0

3000.0

4000.0

5000.0

W
al

l-
cl

oc
k

ti
m

e
[s

]

On-premise I

On-premise II

c5d.9xlarge

c5d.4xlarge

(b) Third-order accurate method.

1 2 4 8
Nodes

0.0

2000.0

4000.0

6000.0

8000.0

W
al

l-
cl

oc
k

ti
m

e
[s

]

On-premise I

On-premise II

c5d.9xlarge

c5d.4xlarge

(c) Fourth-order accurate method.

1 2 4 8
Nodes

0.0

2500.0

5000.0

7500.0

10000.0

12500.0

W
al

l-
cl

oc
k

ti
m

e
[s

]

On-premise I

On-premise II

c5d.9xlarge

c5d.4xlarge

(d) Fifth-order accurate method.

Figure 2: Wall-clock time vs. number of Intel nodes for the on-premises cluster, and c5d instances.

In terms of wall-clock time, the results are in favor of the simulations ran on 8 nodes on the on-
premises cluster. In particular, the on-premises cluster with 40 physical cores delivers the results in the
least amount of time. On the other hand, in terms of cost, the plots shown in Fig. 3, lead to different
conclusions: For any order of accuracy of the solver and number of nodes tested, it is more convenient
to run on the on-premises cluster. In particular, the simulations performed with 20 and 40 physical cores
cost at least a factor of two less than the simulations performed on the EC2 instances. Running on the on-
premises cluster is always convenient also when using the maximum number of physical cores available
(i.e., 40 cores).

8

R. Al Jahdali, L. Dalcin, and M. Parsani

1 2 4 8
Nodes

0.00

0.25

0.50

0.75

1.00

1.25

C
os

t
p

er
co

re
/h

[$
]

On-premise I

On-premise II

c5d.9xlarge

c5d.4xlarge

(a) Second-order accurate method.

1 2 4 8
Nodes

0.0

0.5

1.0

1.5

C
os

t
p

er
co

re
/h

[$
]

On-premise I

On-premise II

c5d.9xlarge

c5d.4xlarge

(b) Third-order accurate method.

1 2 4 8
Nodes

0

1

2

3

4

C
os

t
p

er
co

re
/h

[$
]

On-premise I

On-premise II

c5d.9xlarge

c5d.4xlarge

(c) Fourth-order accurate method.

1 2 4 8
Nodes

0

2

4

6

C
os

t
p

er
co

re
/h

[$
]

On-premise I

On-premise II

c5d.9xlarge

c5d.4xlarge

(d) Fifth-order accurate method.

Figure 3: Price performance of Intel nodes for on-premises cluster ”Ibex”, and c5d instances.

For the on-premises cluster with the AMD Rome architecture (see Fig. 4), we noticed that by increas-
ing the number of nodes, the wall-clock time decreases substantially for all the order of accuracy. The
time-to-solution delivered by the EC2 AMD EPYC (i.e., c5a) also decreases by increasing the number
of nodes. In addition, we observe that by going from the c5a.4xlarge instances to the c5a.8xlarge, the
wall-clock time decreases by about 35%-to-40%. The instances c6g corresponds to the Arm-based AWS
Graviton2 processors and deliver the best performance, i.e., the least wall-clock time. In addition, we ob-
serve that on the Arm-based architecture, doubling the number of nodes leads to approximately halving
the time-to-solution. This corresponds to almost a perfect scaling. We also observe that the time-to-
solution delivered by four Arm nodes is very close to the time-to-solution required by eight AMD EPYC
nodes. Remarkably, the wall clock time on the on-premises cluster for eight nodes with 40 MPI pro-
cesses per node is practically the same as the wall-clock time required by the Arm-based architecture
c6g.8xlarge. Finally, we notice that the test case does not fit in memory for the fourth- and fifth-order
accurate schemes and some of the on-premises and AWS instances.

9

R. Al Jahdali, L. Dalcin, and M. Parsani

1 2 4 8
Nodes

0.0

1000.0

2000.0

3000.0

4000.0

W
al

l-
cl

oc
k

ti
m

e
[s

]

On-premise I

On-premise II

c5a.4xlarge

c5a.8xlarge

c6g.4xlarge

c6g.8xlarge

(a) Second-order accurate method.

1 2 4 8
Nodes

0.0

1000.0

2000.0

3000.0

4000.0

5000.0

W
al

l-
cl

oc
k

ti
m

e
[s

]

On-premise I

On-premise II

c5a.4xlarge

c5a.8xlarge

c6g.4xlarge

c6g.8xlarge

(b) Third-order accurate method.

1 2 4 8
Nodes

0.0

2000.0

4000.0

6000.0

8000.0

W
al

l-
cl

oc
k

ti
m

e
[s

]

On-premise I

On-premise II

c5a.4xlarge

c5a.8xlarge

c6g.4xlarge

c6g.8xlarge

(c) Fourth-order accurate method.

1 2 4 8
Nodes

0.0

2000.0

4000.0

6000.0

8000.0

W
al

l-
cl

oc
k

ti
m

e
[s

]

On-premise I

On-premise II

c5a.4xlarge

c5a.8xlarge

c6g.4xlarge

c6g.8xlarge

(d) Fifth-order accurate method.

Figure 4: Wall-clock time vs. the number of AMD nodes for on-premises cluster ”Ibex”, and c5a and
c6g instances.

To conclude this section, we analyze the cost for simulating the test case with AMD and Arm archi-
tectures. As shown in Figures 5, the computations on the on-premises cluster are substantially cheaper
than those performed on the EC2 parallel cluster. Among the EC2 architectures, Arm is the cheapest one
for both c6g.4xlarge and c6g.8xlarge.

10

R. Al Jahdali, L. Dalcin, and M. Parsani

1 2 4 8
Nodes

0.0

0.2

0.4

0.6

0.8

1.0

C
os

t
p

er
co

re
/h

[$
]

On-premise I

On-premise II

c5a.4xlarge

c5a.8xlarge

c6g.4xlarge

c6g.8xlarge

(a) Second-order accurate method.

1 2 4 8
Nodes

0.00

0.25

0.50

0.75

1.00

1.25

C
os

t
p

er
co

re
/h

[$
]

On-premise I

On-premise II

c5a.4xlarge

c5a.8xlarge

c6g.4xlarge

c6g.8xlarge

(b) Third-order accurate method.

1 2 4 8
Nodes

0

1

2

3

C
os

t
p

er
co

re
/h

[$
]

On-premise I

On-premise II

c5a.4xlarge

c5a.8xlarge

c6g.4xlarge

c6g.8xlarge

(c) Fourth-order accurate method.

1 2 4 8
Nodes

0

1

2

3

4

5

C
os

t
p

er
co

re
/h

[$
]

On-premise I

On-premise II

c5a.4xlarge

c5a.8xlarge

c6g.4xlarge

c6g.8xlarge

(d) Fifth-order accurate method.

Figure 5: Price performance of AMD nodes for on-premises cluster ”Ibex”, and c5a and c6g instances.

4 Conclusions

In this work, we reported the performance of the adaptive RK-DG entropy stable solver with and
without the relaxation procedure in time implemented in the SSDC framework. We tested the solver
using the on-premises Ibex cluster and AWS ParallelCluster. In general, the adaptive ERK schemes
coupled with the relaxation procedures are more expensive than the adaptive schemes without relaxation.
In addition, we found that the schemes equipped with the error-based controller are substantially more
efficient than those using the CFL-based controller, whether or not the relaxation procedure is activated.
By performing a preliminary study on the AWS ParallelCluster, we have observed that the instances
that allow performing the simulation in the least amount of time and cost are the Arm-based processors.
However, the numerical results show that the on-premises cluster Ibex performs reasonably well in terms
of price and wall-clock-time.

REFERENCES

[1] E. Tadmor, “Entropy stability theory for difference approximations of nonlinear conservation laws
and related time-dependent problems,” Acta Numerica, vol. 12, no. 1, pp. 451–512, 2003.

11

R. Al Jahdali, L. Dalcin, and M. Parsani

[2] M. H. Carpenter, M. Parsani, E. J. Nielsen, and T. C. Fisher, “Towards an entropy stable spectral
element framework for computational fluid dynamics,” in 54th AIAA Aerospace Sciences Meeting,
p. 1058, 2016.

[3] T. Chen and C. W. Shu, “Entropy stable high order discontinuous Galerkin methods with suitable
quadrature rules for hyperbolic conservation laws,” Journal of Computational Physics, vol. 345,
pp. 427 – 461, 2017.

[4] M. Parsani, R. Boukharfane, I. R. Nolasco, D. C. Del Rey Fernández, S. Zampini, B. Hadri, and
L. Dalcin, “High-order accurate entropy-stable discontinuous collocated Galerkin methods with the
summation-by-parts property for compressible CFD frameworks: Scalable SSDC algorithms and
flow solver,” Journal of Computational Physics, vol. 424, p. 109844, 2021.

[5] H. Ranocha, M. Sayyari, L. Dalcin, M. Parsani, and D. I. Ketcheson, “Relaxation Runge-Kutta
methods: Fully-discrete explicit entropy-stable schemes for the compressible Euler and Navier–
Stokes equations,” SIAM Journal on Scientific Computing, vol. 42, pp. A612–A638, 03 2020.

[6] H. Ranocha, L. Dalcin, and M. Parsani, “Fully discrete explicit locally entropy-stable schemes
for the compressible Euler and Navier–Stokes equations,” Computers & Mathematics with
Applications, vol. 80, no. 5, pp. 1343–1359, 2020.

[7] J. Slotnick, A. Khodadoust, J. Alonso, D. Darmofal, W. Gropp, E. Lurie, and D. Mavriplis, “CFD
vision 2030 study: A path to revolutionary computational aerosciences,” NASA-CR-2014-218178,
2014.

[8] C. L. Rumsey and J. H. Morrison, “Goals and status of the NASA juncture flow experiment,” NATO,
STO-MP-AVT-246, 2016.

[9] D. C. Del Rey Fernández, M. H. Carpenter, L. Dalcin, S. Zampini, and M. Parsani, “Entropy stable
h/p-nonconforming discretization with the summation-by-parts property for the compressible Euler
and Navier–Stokes equations,” SN Partial Differential Equations and Applications, vol. 1, no. 2,
pp. 1–54, 2020.

[10] M. Parsani, M. H. Carpenter, and E. J. Nielsen, “Entropy stable discontinuous interfaces cou-
pling for the three-dimensional compressible Navier–Stokes equations,” Journal of Computational
Physics, vol. 290, pp. 132–138, 2015.

[11] L. Dalcin, D. Rojas, S. Zampini, D. C. Del Rey Fernández, M. H. Carpenter, and M. Parsani, “Con-
servative and entropy stable solid wall boundary conditions for the compressible Navier–Stokes
equations: Adiabatic wall and heat entropy transfer,” Journal of Computational Physics, vol. 397,
p. 108775, 2019.

[12] M. Parsani, M. H. Carpenter, and E. J. Nielsen, “Entropy stable wall boundary conditions for
the three-dimensional compressible Navier–Stokes equations,” Journal of Computational Physics,
vol. 292, pp. 88–113, 2015.

[13] D. C. D. R. Fernández, M. H. Carpenter, L. Dalcin, L. Fredrich, A. R. Winters, G. J. Gassner, and
M. Parsani, “Entropy-stable p-nonconforming discretizations with the summation-by-parts property
for the compressible navier–stokes equations,” Computers & Fluids, vol. 210, p. 104631, 2020.

[14] R. Al Jahdali, L. Dalcin, I. R. Nolasco, E. D. Keyes, and M. Parsani, “Optimized explicit Runge–
Kutta schemes for collocated discontinuous Galerkin methods with the summation-by-parts prop-
erty for compressible fluid dynamics,” Computers & Mathematics with Applications, 2022.

[15] M. Parsani, D. I. Ketcheson, and W. Deconinck, “Optimized explicit Runge-Kutta schemes for the
spectral difference method applied to wave propagation problems,” SIAM Journal on Scientific
Computing, vol. 35, no. 2, pp. A957–A986, 2013.

12

