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ABSTRACT 

Accent is on determination of appropriate friction factor of the pipes and on selection of the 
representative equation for water or natural gas flow which is valuable for existing conditions 
in the looped network of pipelines. Note that in a municipal gas pipeline, natural gas can be 
treated as incompressible fluid (liquid) i.e. as water or oil. Even under this circumstance, 
calculation of water pipelines cannot be literary copied and applied for calculation of gas 
pipelines. Inappropriate friction factor, equally as e.g. inappropriate usage of water flow 
equations for calculation of gas networks can lead to inaccurate final results. Few iterative 
methods for determining the optimal hydraulic solution of water- and gas- looped pipeline 
networks, such as, Hardy Cross, modified Hardy Cross, node-loop method, node and M.M. 
Andrijashev method, will be shown. Speed of convergence will be compared and discussed 
using a simple network with three loops. 
Keywords: Flow friction, Pipeline networks, Waterworks, Natural gas 

INTRODUCTION 

Accent is on determination of appropriate friction factor of the pipes and on selection of the 
representative equation for water or natural gas flow which is valuable for existing conditions in 
the looped network of pipelines. Note that in a municipal gas pipeline, natural gas can be treated 
as incompressible fluid (liquid) i.e. as water or oil. Even under this circumstance, calculation of 
water pipelines cannot be literary copied and applied for calculation of gas pipelines. This means 
that inappropriate usage of friction factor, equally as e.g. inappropriate usage of water flow 
equations for calculation of gas networks can lead to inaccurate final results. Various equations 
have been proposed to determinate the head losses due to friction, including the Darcy-
Weisbach, Fanning, Chezy, Manning, Hazen-Williams and Scobey formulas [1]. These 
equations relate the friction losses to physical characteristics of the pipe and various flow 
parameters. Darcy friction factor (somewhere known as Moody factor) is the main parameter of 
the Darcy-Weisbach equation [2]. The Fanning factor is not the same as the Darcy friction factor 
(which is 4 times greater than the Fanning Friction factor). The development of ‘Moody Chart’ 
[3] which enables engineers to plot the Darcy friction factor and the use of the personnel 
computer to calculate the Darcy Friction factor has led to a large reduction in the use of the 
Fanning friction factors. The Fanning formula is very similar to the Darcy-Weisbach formula but 
the hydraulic radius of the pipe work must used, not the pipe diameter. These two factors are for 
water or gas flow. But the Darcy-Weisbach and the Fanning also formulas in their basic form are 
only for water (liquid) flow. If we apply these equations for gas flow without modification, 
discharges i.e. calculated flows will be in relative correct range of accuracy but deviation of 
calculated pressure drops (head losses) from real values cannot be neglected. Note that the 
Darcy-Weisbach formulas are not synonym with Darcy friction factor, equally as the Fanning 
formula is not synonym with Fanning friction factor. Factors are main factors in related 
formulas. Darcy friction factor is recommended after different authors for different flow regimes 
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such as laminar, smooth, turbulent, etc. Authors of these factors are e.g. Renourad, Blasius, 
Moody, Colebrook, Altshul, etc. Possible modification of the Darcy-Weisbach equation adjusted 
for gas lines will be shown in this paper. Also, should be noted that physical meaning of Darcy 
and Fanning friction factor are the same. First is in common use in Europe and in civil and 
petroleum engineering, while the second one is more common in America and in chemical 
engineering.  
 
Finally, in this paper will be compared few iterative methods for determining the optimal 
hydraulic solution of water- and gas- pipeline networks which take form of ring-like, such as, 
Hardy Cross [4], modified Hardy Cross [5, 6], node-loop method [7, 8] and node method [9]. In 
the group of the modified Hardy Cross method belongs Andrijashev method [10, 11]. Speed of 
convergence will be compared and discussed. This will be done for one simple network with 
three loops both, for water- or gas- network. For air ventilation system see paper of Aynsley [12]. 

HYDRAULICS FRICTIONS IN PIPES 

Each pipe is connected to two nodes at its ends. In a pipe network system, pipes are the channels 
used to convey fluid from one location to another. The physical characteristics of a pipe include 
the length, inside diameter, roughness coefficient, and minor loss coefficient. The pipe roughness 
coefficient is associated with the pipe material and age. The minor loss coefficient is due to the 
fittings along the pipe. When fluid is conveyed through the pipe, hydraulic energy is lost due to 
the friction between the moving fluid and the stationary pipe surface. This friction loss is a major 
energy loss in pipe flow. Losses of energy, or head (pressure) losses depend on the shape, size 
and roughness of a channel, the velocity density and viscosity of a fluid, and they do not depend 
on the absolute pressure of the fluid. Experiments show that in many cases pressure drop for 
flow of liquids are approximately proportional to the square of the velocity (1). 
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Equation (1) is called the Darcy-Weisbach equation, named after Henry Darcy, a French 
engineer of the nineteenth century, and Julius Weisbach, a German mining engineer and the 
scientist of the same era. Weisbach first proposed the use of non-dimensional resistance 
coefficient (in USA more used coefficient after Fanning), and Darcy carried out numerous tests 
on water pipes. In eq (1) velocity can be replaced by flow (2): 
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Note that the Darcy friction factor is defined in theory as λ=(8·τ)/(ρ·v2) where τ is shear stress 
expressed in Pa. Reynolds (1883) found that the onset of turbulence in pipe was related to one 
non-dimensional parameter (3): 








 inin DvDv

Re          (3) 

When ε is very small compared to the pipe diameter Din i.e. ε/Din→ 0, λ depends only on Re. 
When ε/Din is of a significant value, at low Re, the flow can be considered as in smooth regime 
(there is no effect of roughness). As Re increases, the flow becomes transitionally rough, called 
as transition regime in which the friction factor rises above the smooth value and is a function of 
both ε and Re and as Re increases more and more, the flow eventually reaches a fully rough 
regime in which λ is independent of Re. In a smooth pipe flow, the viscous sub layer completely 
submerges the effect of k on the flow. So, the Darcy friction factor do not depend on a fluid type, 
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or better to say on phase in which fluid exist at present conditions in pipe, which means that 
procedure for calculation of λ is the same for liquids and gases. In both cases λ is function of Re 
and/or k. But eq. (1) and subsequently eq. (2) have to be rearranged for flow of gaseous fluids as 
follows. A steady-state momentum balance on a differential control volume of pipe leads to 
equation which incorporates the friction factor (4): 

0DCBAgdHVdV
2

V

D

dLdp 2

in




      (4) 

Where A is pressure force work term, B is energy dissipation by viscous friction, C is kinetic 
energy term and D is potential energy term. General equation for gas flow can be generated from 
eq. (4). Details of further transformation can be found in the paper of Coelho and Pinho [13]. In 
the present practice in a calculation of gas networks, Renouard equation (5) is used by the 
engineers from Serbia and other countries, such as France, Spain, Portugal, etc. 
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Equation (5) is rearranged eq. (2) for gas flow according to previously shown transformation 
(4) with incorporated Renoaurd formulation for Darcy friction factor in hydraulically smooth 
region. This region of partially turbulence is most possible in conditions when gas is 
conveying through polyethylene (PVC) pipes. Renouard formulation of Darcy friction factor 
can be noted as λ=0.172·Re-0.18. This value has been already included into eq. (5). 
Subsequently, the Renouard relation for pressure drop for liquid flow is (6). 
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But note, that for liquid flow is more convenient the Colebrook-White equation (7) for the 
Darcy friction factor. Under these consequences partially turbulent regime is rather occurred 
than hydraulically smooth regime. 
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To investigate influence of adopted equation i.e. Renouard relation adjusted for gas flow (5) and 
for liquid flow (6), here will be used pipe 8 from our example from Figure 1. To fell the 
influence of equation, relation (5) will be used for gas calculation and only for scientific reasons 
relation (6) will also be used for gaseous flow. Result with relation (5) is 2096864105.775320 
Pa2, which means that for beginning pressure p1=4·105 Pa, p2=397370.2756 Pa. Using relation 
for liquids, with Re=57936.82706 and v=4.4 m/s, ρ=0.84 kg/m3 and η=1.0758∙10-5 Pas, result 
after (6) is p1-p2=12739.85367 Pa, which means p2=387260.1463 Pa. Related friction factor is λ= 
0.023888925. Other date is provide from Figure 1. Difference in calculated values is 0.1 bar. 
Using relation (7) incorporated in (1), i.e. (2) for liquids, with roughness typical for PVC pipes, 
k=0.002·10-2 m, pressure drop in pipe 8 is 11152.33295 Pa and p2= 388847.6671. Related 
friction factor is λ=0.020912113. Note that difference in final results is even greater using 
Renouard friction factor in two different equations (5 vs. 6) compared to using of Renouard vs. 
Colebrook relation applied for liquid flow. 
 
Chezy, Manning, Hazen-Williams and Scobey formulas are only for water, i.e. for liquid flow 
and these factors cannot be used for gas pipeline calculation. Introduced in the early 1900s, the 
Hazen–Williams equation determines pipe friction head loss for water, requiring a single 
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roughness coefficient. Unfortunately even for water it may produce errors as high as ±40% when 
applied outside a limited and somewhat controversial range of Reynolds numbers, pipe diameters 
and C coefficients. Not only inaccurate Hazen-Williams equation is conceptually incorrect [14, 
15]. Valuable book for waterworks but with the Hazen-Williams equation is by Boulos et al [16]. 

LOOPED PIPELINE NETWORKS 

Here will be compared five methods for calculation of looped networks. These methods are 
Hardy Cross [4], modified Hardy Cross [5, 6], M.M. Andrijashev [10, 11], node-loop method 
[7, 8] and node method [9]. Performance of convergence will be compared for all methods. 
Methods are applicable both, for gas and for water networks. Contemporary with Hardy Cross 
[4], soviet author V.G. Lobachev [10] developed very similar method compared to original 
Hardy Cross method. Method of M.M. Andrijashev [11] was very often being used in Russia 
during the soviet era. According to this method, contour and loop are not synonyms (contours 
for calculations has to be chosen to include few loops and only by exception one as in Hardy 
Cross or in modified Hardy Cross). So method of M.M. Andrijashev is some sort of Hardy 
Cross (or modified Hardy Cross). In Figure 1 is given an example of one pipeline network 
with three loops. 
 

 
 

Figure 1. Example of pipeline network with loops 

Hardy Cross method (Single contour adjustment method) 

Hardy Cross developed this method in 1936 [4]. In Hardy Cross calculation, previously, it is 
necessary to determinate maximal consumption of water or gas per each node (Qoutput), and 
one or more inlet i.e. input nodes (Figure 1). These parameters are looked up. Now, initial 
guess of flow of gas or water per conduits has to be assigned. These flows must satisfy first 
Kirchhoff’s law for all nodes in all iterations. Second Kirchhoff’s law for all contours will be 
satisfied in the end of calculation. Second Kirchhoff’s law, changed of flow per pipes or 
number of iterations can be used as stopping criterion. Network is in balance after that. Initial 
flow pattern can be locked up and then diameters of pipes have to be changed during the 
iteration process (optimization of diameters of pipes according to first assumed flows). Here 
will be shown another approach. Diameters of pipes are locked up, and flows per pipes will be 
changed in iterative procedure. The Hardy Cross calculation for gas pipeline network will be 
shown in Table 1 and for water network in Table 2. Only first iteration will be shown in 
details. Flow Q1 calculated in first iteration become initial flow Q for second iteration. The 
plus or minus preceding the flow, Q, indicates the direction of the conduit flow for the 
particular contour. A plus sign denotes clockwise flow in the conduit within the contour; a 
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minus sign, counter-clockwise. A flow correction Δ1 as shown in Table 1 and 2 is computed 
for each contour. This correction must be subtracted algebraically from the assumed gas flow. 

 
Table 1. Hardy Cross calculation for gas network from Figure 1 

 

 Iteration 1 

Loop Pipe Q aF= 2
2

2
1 pp   

F’=
  

 Q

Qpp 2
2

2
1


  

bΔ1=
'F

F  cΔ2 Q1 

I 
3 -0.194 -1264933339 11839776055 +0.132 / -0.061 
4 +0.027 20357137 1333799622 +0.132 +0.097   +0.257 
7 -0.305 -2399620963 14293015047 +0.132 +0.008‡ -0.164 

  Σ -3644197165 27466590725  /  

II 

1 +0.277 1344982709 8812326713 -0.097 / +0.180 
2 -0.277 -200615476 1314432601 -0.097 / -0.374 
4 -0.027 -20357137 1333799622 -0.097 -0.132   -0.257 
5 +0.027 1828425 119798452 -0.097 +0.008   -0.060 

  Σ 1125838521 11580357388  /  

III 

5 -0.027 -1828425 119798452 -0.008 +0.097‡ +0.060 
6 +0.027 65604940 4298435730 -0.008 / +0.018 
7 +0.305 2399620963 14293015047 -0.008 -0.132= +0.164 
8 -0.166 -2096864105 22897756035 -0.008 / -0.175 

  Σ 366533372 41609005264  /  
Pipe lengths and diameters are shown in Figure 1;  
ausing (5), balso using (8), cΔ2 is Δ1 from adjacent loop 

 

In presented example contour I coincides with loop starting and ending in node II via pipes 3, 
4, and 7. 
 

Table 2. Hardy Cross calculation for water network from Figure 1 
 

 Iteration 1 

Loop Pipe Q ap1-p2 
  

 Q

Qpp 21


  bΔ1=

'F

F  cΔ2 Q1 

I 
3 -0.194 -5279095.9 54299272.1 +0.123 / -0.071 
4 +0.027 69146.8 4978573.1 +0.123 +0.093   +0.244 
7 -0.305 -10718549.8 70157780.5 +0.123 +0.010‡ -0.171 

  Σ -15928498.8 129435625.9  /  

II 

1 +0.277 5919850.5 42622924.2 -0.093 / +0.184 
2 -0.277 -816585.1 5879413.0 -0.093 / -0.371 
4 -0.027 -69146.8 4978573.1 -0.093 -0.123   -0.244 
5 +0.027 5967.7 429677.4 -0.093 +0.010   -0.055 

  Σ 5040086.3 53910587.8  /  

III 

5 -0.027 -5967.7 429677.4 -0.010 +0.093‡ +0.055 
6 +0.027 232186.3 16717415.3 -0.010 / +0.017 
7 +0.305 10718549.8 70157780.5 -0.010 -0.123= +0.171 
8 -0.166 -8874257.4 106491089.7 -0.010 / -0.177 

  Σ 2070510.9 193795963.1  /  
Pipe lengths and diameters are shown in Figure 1; 
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 ausing (2) and (7), balso using (8), cΔ2 is Δ1 from adjacent loop 

A conduit common to two loops receives two corrections. The upper plus or minus sign 
shown indicates direction of flow in that conduit in these two contours and is obtained from Q 
for previous iteration. The upper sign is the same as the sign in front of Q if the flow direction 
in each contour coincides with the assumed flow direction in the particular contour under 
consideration, and opposite if it does not. The lower sign is copied from the primary contour 
for this correction (sign from the contour where this correction is first, sign preceding the first 
iteration from adjacent contour for the conduit taken into consideration). The rules for sign of 
corrections Δ2 are: (1). the algebraic operation for correction 1 should be the opposite of its 
sign; i.e. add when the sign is minus. (2). the algebraic operation for corrections 2 should be 
the opposite of their lower signs when their upper signs are the same as the sign in front of Q, 
and as indicated by their lower signs when their upper signs are opposite to the sign in front of 
Q. For details of sing of corrections consult paper of Brkić [6] and Gas Engineers Handbook 
[17]. These rules will be used also for modified Hardy Cross, M.M. Andrijashev, and node 
method. 

Modified Hardy Cross method (Simultaneous contour equation solution) 

In the original Hardy Cross method, each contour correction is determined independently of 
other contours. As seen in Figure 1, several contours have common pipes, so corrections to those 
contours will impact energy losses around more than one contour. In Figure 1, pipe 4 belongs to 
two contours (contour I and II), pipe 7 to contours I and III, and finally pipe 5 to II and III. 
Modified Hardy Cross method is a sort of Newton–Raphson method used to solve unknown flow 
correction in one iteration taking into consideration whole system simultaneously. Original 
Hardy Cross method is also a sort of Newton–Raphson method but used to solve each single 
contour equation solely, one by one. Epp and Fowler gave idea for this approach in 1970 [5]. So, 
in matrix form original Hardy Cross approach from Table 1 can be noted as (8): 
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i.e. using numerical values from Table 1 this became (9): 
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   (9) 

Then [ΔI, ΔII, ΔIII]T are [-0.132677448, 0.09721967, 0.008808991]T as in Table 1. Similar can be 
done for water network in Table 2. To increase efficiency of the Hardy Cross method zero from 
non-diagonal term will be replaced to include influence of pipes mutual with adjacent contours 
(10). Presented matrix is symmetric. 
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i.e. using numerical values from Table 1 this become (11): 
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71429301504-1333799622-52746659072

III

II

I

   (11) 

Final vector of correction in the first iteration for gas network is [ΔI, ΔII, ΔIII]T=[-0.151136589, 
0.079368513, -0.042879082]T. For water network vector of correction in the first iteration is [ΔI, 
ΔII, ΔIII]T=[-0.123061165, 0.09348973, 0.010683973]T as shown in from Table 2, and after 
improvement method become [ΔI, ΔII, ΔIII]T=[-0.141948348, 0.08005798, -0.040526494]T.  

Modified method M.M. Andrijashev 

This method can be used in the formulation as in original Hardy Cross method and as in 
modified Hardy Cross method. Here will be given in notation as improved method because this 
approach shows better convergence performance (for gas in Table 3). It can be notified that some 
pipes in Table 1 or in Table 2 received only one correction per iteration (for example pipe 3 in 
contour I). This means that pipe 3 belongs only to one contour. Contours can be defined in other 
way and then each pipe in the network belongs to two networks (see illustration in the down-
right corner in Figure 1). This means that loop is not synonym with contour as in Hardy Cross 
approach. Now contour I’ starting and ending in node I via pipes 4, 5. 6, 8, 3, contour II’ starting 
and ending in referent node via pipes 1, 6, 8, 7, 4, 2, and finally contour III’ starting and ending 
in referent node via pipes 1, 5, 7, -3, -2.  
 

Table 3. Method M.M. Andrijashev for gas network from Figure 1 
 

 Iteration 1 

Contour pipe Q aF= 2
2

2
1 pp   F’=   

 Q

Qpp 2
2

2
1


  bΔ1 cΔ2 Q1 

I’ 

6 +0.027 65604940 4298435730 +0.136 -0.093‡ +0.070 
8 -0.166 -2096864105 22897756035 +0.136 -0.093   -0.123 
3 -0.194 -1264933339 11839776055 +0.136 +0.014= -0.043 
4 +0.027 20357137 1333799622 +0.136 +0.093   +0.258 
5 -0.027 -1828425 119798452 +0.136 -0.014   +0.094 

  Σ -3277663792 40489565894    

II’ 

6 +0.027 65604940 4298435730 -0.093 +0.136   +0.070 
8 -0.166 -2096864105 22897756035 -0.093 +0.136= -0.123 
7 +0.305 2399620963 14293015047 -0.093 -0.014= +0.197 
4 -0.027 -20357137 1333799622 -0.093 -0.136   -0.258 
2 -0.277 -200615476 1314432601 -0.093 +0.014= -0.357 
1 +0.277 1344982709 8812326713 -0.093 +0.014   +0.198 

  Σ 1492371894 52949765748    

III’ 

1 +0.277 1344982709 8812326713 +0.014 -0.093‡ +0.198 
5 +0.027 1828425 119798452.1 +0.014 -0.136= -0.094 
7 -0.305 -2399620963 14293015047 +0.014 +0.093‡ -0.197 
3 -0.194 -1264933339 11839776055 +0.014 +0.136= -0.043 
2 -0.277 -200615476 1314432601 +0.014 -0.093   -0.357 

  Σ -2518358643 36379348868    
Pipe lengths and diameters are shown in Figure 1; 
ausing (5), bΔ1 after eq. (12) i.e. (13), cΔ2 is Δ1 from adjacent loop 
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Q

Q,Q,Q,Q,QF

 (12) 

Here has to be very careful because non-diagonal terms are not always negative as in modified 
Hardy Cross method (13). For example term in first row, second column is 
25862392143=4298435730+22897756035-1333799622. Same value has term in second row, 
first column, etc. Presented matrix is symmetric. 
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'III

'II

'I

    (13) 

Numerical values are shown in (13) and final vector of corrections for first iteration according 
to method M.M. Andrijashev is [ΔI’, ΔII’, ΔIII’]T=[-0.136692092, 0.09381301, -0.014444497]T. 

Node-loop method 

Wood and Charles (1972) developed the flow adjustment method by coupling the loop 
equations with the node equations [7]. Wood and Rayes later in 1981 improved this method 
[8]. Rather than solve for loop corrections, in this method, conservation of energy around a 
loop is written directly in the terms of the pipe flow rates. Final result after this method is not 
flow correction, but even better flow itself. Node (14) and loop (15) equation for our example 
can be noted in matrix form. Note that node II is input node equal as referent node (sign -). 
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Matrix relation (14) represents first Kirchhoff’s law and (15) second. Matrix relation (15) is for 
gas network, and for water network second matrix in (15) are [Δp1=pref-pIV, Δp2=pref-pI, ··· , 
Δp8=pII-pV]T. In the node-loop method these two matrixes become one with some modifications. 
Here will be used values from Table 1 for gas network (16) and from Table 2 for water network 
(17). For the first iteration these values are valid. First five rows in matrix at the right side is 
also from node equation, and next three rows are ΣF·Σ(Q·F’) for each loop. For gas network,  
for loop I; -2988241676= 
=-3644197165.5+(-0.194·11839776055+0.027·1333799622+(-0.305)·14293015047) 
for loop II; 923187587.8=1125838521.7+ 
+(0.277·8812326713+(-0.277·1314432601)+(-0.027)·1333799622)+0.027·119798452) 
for loop III; 300557365.7=366533372.8+ 
+(-0.027·119798452+0.027·4298435730+0.305·14293015047+(-0.166·22897756035)) 
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First five rows (first matrix) are from node equation, and next three is from loop equation but 
multiplied with first derivate marked in tables as F’. 
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 (17) 

After first iteration for gas network vector of flows is [0.198409265, 0.357146291, 
0.043307855, 0.25828288, -0.094469817, 0.07065686, 0.197298048, 0.123787585]T. Minus 
in front of flow in pipe 5 means: change assumed flow direction from previous iteration. After 
first iteration for water network vector of flows is [0.197719798, 0.357835758, 0.052496097, 
0.249784106, -0.092806697, 0.068304272, 0.204133702, 0.126140172]T. Flows expressed in 
m3/s. 

Node method 

Pipe equations in previous text were expressed as Δp=f(Q) for waterworks, or Δ( 2
2

2
1 pp  )=f(Q) 

for gas networks. These relation can be rewritten in form as Q=f(Δp) for waterworks or Q=f(
2
2

2
1 pp  ). After that, Renouard equation (5) can be rearranged (18): 

  82.1

1

r

82.4
in

2
2

2
1

L4810

Dpp
Q 














          (18) 

In this method 2
2

2
1 pp   for each pipe has to be assumed, not flows. These assumed pressures 

have to be chosen to satisfy second Kirchhoff’s law (Figure 2). 
 

 
Figure 2. Example of pipeline network with loops from Figure 1 adjusted for node method 
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Table 3. Calculation after the node method for gas network from Figure 1 and 2 
 

 Iteration 1 
Node Pipe 2

2
2
1 pp   aF=Q bF’ cΔp1 dΔp2  12

2
2
1 pp   

1 
2 0.25·1010 1.1108 2.44·10-10 -3.61·109  -1.11·109 
3 0.25·1010 0.2827 6.21·10-11 -3.61·109 -6.99·108= -1.81·109 
4 -0.50·1010 -0.5715 6.28·10-11 -3.61·109 +9.70·109‡ 1.09·109 

Constant output flow -0.0555     
Σ 0.7665 3.69·10-10    

2 
3 -0.25·1010 -0.2827 6.21·10-11 +6.99·108 +3.61·109‡ 1.81·109 
7 -0.75·1010 -0.5715 4.19·10-11 +6.99·108 +9.70·109‡ 2.90·109 
8 -0.75·1010 -0.3357 2.46·10-11 +6.99·108 +7.80·109‡ 9.99·108 

Constant input flow 0.2777     
Σ -0.9121 1.28·10-10    

3 
4 0.50·1010 0.5715 6.28·10-11 -9.70·109 +3.61·109   -1.09·109 
5 0.50·1010 2.1483 2.36·10-10 -9.70·109 +7.52·108   -3.95·109 
7 0.75·1010 0.5715 4.19·10-11 -9.70·109 -6.99·108= -2.90·109 

Constant output flow -0.3611     
  Σ 2.9302 3.40·10-10    

4 
1 0.25·1010 0.3905 8.58·10-11 -7.52·108  1.75·109 
5 -0.50·1010 -2.1483 2.36·10-10 -7.52·108 +9.70·109‡ 3.95·109 
6 -0.50·1010 -0.3004 3.30·10-11 -7.52·108 +7.80·109‡ 2.05·109 

Constant output flow -0.2222     
  Σ -2.2805 3.54·10-10    

5 
6 0.50·1010 0.3004 3.30·10-11 -7.80·109 +7.52·108   -2.05·109 
8 0.75·1010 0.3357 2.46·10-11 -7.80·109 -6.99·108= -9.99·108 

Constant output flow -0.1944     
  Σ 0.4417 5.76·10-11    

Pipe lengths and diameters are shown in Figure 1; See Figure 2 for initial pattern 
ausing (18), bF’=     2

2
2
1

2
2

2
1 pp/ppQ  ,cΔ1 after eq. (19), dΔ2 is Δ1 from adjacent node 
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 (19) 

COMPARISONS OF THE RESULTS 

Five methods for calculation of looped pipelines for gas or water distribution have been shown in 
previous text. Final flows are unique after all presented methods, and will be listed in Table 4, 
both for water and for gas network.  
 

Table 4. Final flows for network presented in this paper 
 

Final flows (m3/h); sing minus means flow direction opposite than first assumed in Figure 1  
Pipe 1 2 3 4 5 6 7 8 
Water 902.27 1097.73 94.86 802.87 -146.23 248.50 643.36 451.50 
Gas 913.72 1086.28 82.01 804.27 -137.86 251.58 633.60 448.42 
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Each method has advantages and shortcomings. Convergence performances will be compared 
for all presented methods (Figure 3). Note that the node method cannot be compared literary 
because initial values cannot be equalized. In all other methods initial patterns are given in the 
form of flows, while in the node method initial pattern is in the form of pressures. 
 

 
Figure 3. Comparisons of speed convergence for presented method in this paper 

CONCLUSION 

Comparison between analyzed methods was carried out, taking as a criterion of comparison the 
number of iteration for achievement of accuracy of the results. The Modified Hardy Cross 
method, the modified Andrijahshev method and the node-loop method have equal performances 
according to above adopted criterion. But among these three methods, the node-loop method is 
superior because it does not required complex numerical scheme for algebraic addition of 
corrections in each of iterations. In the node-loop method final result after each of iterations is 
flow and these flows are being used for input in next iteration without any modification. The 
modified Andrijashev method are complicated than the modified Hardy Cross method but 
without improvement in speed of convergence. The node method has the worst performance of 
convergence, but this method is different in its approach compared to the all other shown method 
in this paper. The node method cannot be rejected based only on calculation shown in this paper. 
The Hardy Cross method has historical value and should be replaced with the modified Hardy 
Cross method, or even better with the node-loop method. 

NOMENCLATURE 

p-pressure (Pa) 
λ-Darcy friction factor (-) 
L-pipe length (m) 
v-flow velocity (m/s) 
ρ-density (kg/m3) 
ρr-relative gas density (-) 
Q-flow (m3/s) 
D-pipe diameter (m) 
Re-Reynolds number (-) 
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η-dinamic viscosity (Pa·s) 
μ-kinematic viscosity (m2/s) 
g-gravity acceleration (m/s2) 
H-height (m) 
A, B, C, D – defined in text (auxiliary variables) 
ε-pipe roughness (m) 
Δ-correction (defined in text) 
π-3.1415 
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