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Abstract. Psydac is a Python 3 library for the solution of partial differential equations, which
combines the convenience of a domain specific language with the speed of a high-performance
parallel engine. Its main focus is on isogeometric analysis using tensor-product B-spline finite
elements; to this end it uses an optimized sparse format called “stencil matrix”, which drastically
reduces memory storage compared to the popular CSR/CSC formats. It supports multi-patch
mapped geometries, and finite element exterior calculus. It can distribute each domain patch
across many MPI processes, with multiple OpenMP threads operating in each block.

The users of Psydac define a weak form of the model equations through SymPDE, an exten-
sion of Sympy that provides the mathematical expressions and checks their semantic validity.
Simple mappings can be defined analytically, and multi-patch NURBS geometries can be im-
ported from file. Once a finite element discretization is chosen, Psydac maps abstract concepts
onto concrete objects, the basic building blocks being MPI-distributed vectors and matrices.
Python code is automatically generated for the model-specific operations, namely matrix and
vector assembly, and user-defined diagnostics. Finally, Psydac accelerates all computationally
intensive operations using Pyccel, a transpiler which converts Python code to either C or Fortran.

We present the library design, the typical usage workflow, the user interface for a simple 2D
example, and the parallel scaling results in a large 3D simulation. In addition we show a few
complex applications in fluid dynamics and electromagnetism, where the accuracy of the solver
is verified against manufactured and reference solutions.

1 INTRODUCTION

Finite element methods are widely used for the numerical solution of partial differential
equations (PDEs). Starting from a variational form, and appropriate finite-dimensional function
spaces equipped with their own bases, it systematically reduces a linear PDE to a system of linear
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equations which can be solved on a computer. The generality of the method is not reflected
in the implementation, as in practice one often needs to write a code for a specific problem,
for which it can be fully optimized. This task takes a huge amount of effort as the software
developer needs to fully understand the theory, be able to write an efficient code, and apply
different optimization techniques to it.

Aiming at helping the application specialists, several frameworks seek to automate different
aspects of the finite element method. Many tools are developed in C/C++ like Dolfin [13],
PetIGA [9], and Sundance [14]. Some codes like FreeFem++ [11] and Feel++ [15] use domain-
specific languages, while others combine a user-friendly Python API with computational kernels
written in low level languages, like Fenics [3] and FireDrake [16]. Providing that kind of a tool
is challenging due to two main issues: the first is the complexity of the task, as the software
needs to work with different kinds of equations with different discretization techniques while
providing different solvers; the second is the fact that a specialized code often outperforms a
general purpose library.

In this paper we present Psydac, a new framework which aims at addressing the issues just
described. Section 2 gives an overview of the library and its components. Section 3 shows some
numerical examples of increasing complexity. Section 4 discusses the parallel performance of the
library. Finally, Section 5 presents some conclusions.

2 LIBRARY OVERVIEW

Psydac is a Python 3 library for isogeometric analysis that combines three main features:
1) a high-level domain specific language for describing the weak formulation of a partial dif-
ferential equation, 2) automatic code generation (Python and Fortran) for the model-specific
computational kernels, and 3) massive runtime parallelization through MPI and OpenMP.

The dependency graph of Psydac is depicted in Figure 1. The domain specific language is
provided by SymPDE, an extension of the popular computer algebra system Sympy. SymPDE
provides function spaces over topological domains, differential operators, integrals, mappings,
push-forward and pull-back operators, functionals, linear and bilinear forms, Sobolev norms,
etc. Upon discretization, Psydac creates the finite element counterparts of the abstract objects
defined in SymPDE. The discrete fields and the matrix operators are distributed across multiple
processes using the message-passing interface (MPI). In addition Psydac generates an abstract
syntax tree (AST) for some model-specific kernels that are computationally intensive. The
Psydac AST is then converted to the AST of Pyccel, a Python to C/Fortran transpiler written
in Python which provides the code generation capabilities. Pyccel generates Python code, which
can be inspected by the user, and later converts it to Fortran code that is also available for
inspection; finally it creates a C Python extension module that is imported from Psydac.

The workflow of a typical Psydac simulation is depicted in Figure 2. The solid arrows identify
the “online” phase, where the simulation is driven by a main Python script provided by the user,
and the computational domain is defined through a geometry file. Psydac writes the (possibly
time-dependent) solution to a single HDF5 file. The “offline” phase is identified by dashed
arrows: here the user runs a post-processing script which leverages Psydac’s post-processing
functionality to generate VTK files. In both phases all calculations and I/O operations are
MPI-parallel. Finally the dotted arrows identify the visualization phase, where the VTK files
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PYCCEL SYMPDE

PSYDAC
• Finite Element library

• Uses SymPDE to describe weak formulation

• Automatically generates Python code

• Uses Pyccel to accelerate Python

• Converts Python to Fortran

• Compiles Fortran with compiler of choice

• Extension of SymPy library

• Symbolic description of PDEs

• Provides differential operators, integrals, etc

Figure 1: Dependency graph of Psydac, which requires the SymPDE and Pyccel libraries.

are read, e.g., using a parallel installation of Paraview – usually available on supercomputers.

Geometry file

Main .py script HDF5 output file

Post-processing

 .py script

VTK files

3D visualization

PSYDAC (online)

PSYDAC (offline)

Paraview / Visit

Figure 2: Workflow of a typical Psydac simulation.

3 NUMERICAL EXAMPLES

3.1 3D Poisson problem

As a first example we solve Poisson’s equation on the domain Ω ⊂ R3 with homogeneous
Dirichlet conditions on the boundary ∂Ω. Given f : Ω→ R, we search for u : Ω→ R such that

−∇2u = f in Ω, and u = 0 on ∂Ω. (1)

If we let f ∈ L2(Ω) and u ∈ H1
0 (Ω), the weak formulation of (1) reads

Find u ∈ H1
0 (Ω) s.t.

∫
Ω
∇u · ∇v dΩ =

∫
Ω
fv dΩ ∀v ∈ H1

0 (Ω). (2)

For our test case we take the domain (r, θ, ϕ) ∈ [1, 4]×[0, π]×[0, π/2] in the spherical coordinates.
For testing purposes we choose a manufactured solution uex that vanishes on the boundary ∂Ω,

uex(x, y, z) := xy sin

(
π
x2 + y2 + z2 − r2

in

r2
out − r2

in

)
cos

(
π
x2 + y2 + z2 − r2

in

r2
out − r2

in

)
, (3)
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where rin = 1, rout = 4, and we compute the source term on the right-hand side through symbolic
differentiation of the above, as f(x, y, z) := −∇2uex(x, y, z).

We now present the complete code for the solution of this problem. In Python Code 1 we use
Sympy and SymPDE to define the domain Ω and the exact solution uex, compute the analytical
expression for the right-hand side f := −∇2uex, define the variational problem (2), and define
the L2 and H1 norms of the symbolic error u− uex. In Python Code 2 we use Psydac to setup
a finite element solver using tensor-product splines of polynomial degree p with N uniform cells
along each direction, solve the resulting linear system to obtain the numerical solution uh, and
compute the L2 and H1 norms of the numerical error uh − uex.

Table 1 contains the L2 and H1 norms of the numerical error for different values of p and N ,
together with estimates of the convergence order (computed by keeping p fixed and increasingN).

from sympy import pi , sin , cos

from sympde . calculus import laplace , dot , grad

from sympde . topology import Cube , SphericalMapping

from sympde . topology import ScalarFunctionSpace , elements_of

from sympde . expr import integral , BilinearForm , LinearForm

from sympde . expr import EssentialBC , find , Norm

# Log i ca l domain C i s a r e c t angu l a r cuboid ( 'Cube ' f o r b r ev i ty )
# Phys i ca l domain Omega i s a quar te r s p h e r i c a l s h e l l
( r_in , r_out ) = ( 1 . 0 , 4 . 0 )
C = Cube ( 'C ' , bounds1=( r_in , r_out ) , bounds2=(0 , pi ) , bounds3=(0 , pi/2 ) )
M = SphericalMapping ( 'M' )
Omega = M ( C )

# Method o f manufactured s o l u t i o n s : d e f i n e exact s o l u t i o n u ex
# that i s = 0 at the boundaries , then compute r ight−hand s i d e f
x , y , z = Omega . coordinates
r = x**2 + y**2 + z**2
arg = pi * ( r - r_in**2 ) / ( r_out**2 - r_in**2 )
u_ex = x * y * sin ( arg ) *cos ( arg )
f = - laplace ( u_ex )

# Function space f o r t r i a l and t e s t f unc t i on s
V = ScalarFunctionSpace ( 'V ' , Omega )
u , v = elements_of (V , names= 'u v ' )

# Declare b i l i n e a r and l i n e a r forms f o r v a r i a t i o n a l fo rmulat ion
a = BilinearForm ( (u , v ) , integral ( Omega , dot ( grad ( v ) , grad ( u ) ) ) )
l = LinearForm ( v , integral ( Omega , f * v ) )

# Di r i c h l e t boundary cond i t i on s : u=0 on the domain boundary
bc = EssentialBC (u , 0 , Omega . boundary )

# Var i a t i ona l fo rmulat ion o f Poisson ' s equat ion
equation = find (u , forall=v , lhs=a (u , v ) , rhs=l ( v ) , bc=bc )

# Sca la r e r r o r norms
l2norm = Norm ( u - u_ex , Omega , kind= ' l 2 ' )
h1norm = Norm ( u - u_ex , Omega , kind= ' h1 ' )

Python Code 1: Numerical solution of the 3D Poisson problem (2) in a quarter
spherical shell. Part I: definition of the continuum problem with SymPDE.
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from mpi4py import MPI

from psydac . api . discretization import discretize

from psydac . api . settings import PSYDAC_BACKENDS

# Se l e c t MPI communicator ( s e t to None f o r s e r i a l code )
comm = MPI . COMM_WORLD

# Se l e c t backend f o r code a c c e l e r a t i o n : Pycce l + GCC compi le r
backend = PSYDAC_BACKENDS [ ' pycce l−gcc ' ]

# Se l e c t d i s c r e t i z a t i o n parameters
ncells = [ 8 , 8 , 8 ] # N: number o f c e l l s a long each d i r e c t i o n
degree = [ 3 , 3 , 3 ] # p : s p l i n e degree ” ” ”

# Create computat ional domain from t op o l o g i c a l domain
Omega_h = discretize ( Omega , ncells=ncells , comm=comm )

# Create d i s c r e t e s p l i n e space
Vh = discretize (V , Omega_h , degree=degree )

# Di s c r e t i z e equat ion and e r r o r norms
equation_h = discretize ( equation , Omega_h , [ Vh , Vh ] , backend=backend )
l2norm_h = discretize ( l2norm , Omega_h , Vh , backend=backend )
h1norm_h = discretize ( h1norm , Omega_h , Vh , backend=backend )

# Solve d i s c r e t e equat ion to obta in numerica l s o l u t i o n :
# 1 . assemble d i s t r i b u t e d spar s e matrix A and dense vec to r b
# 2 . s o l v e l i n e a r system A w = b
# 3 . c r e a t e a c a l l a b l e f i e l d u h (x , y ) − s p l i n e with c o e f f i c i e n t s w
u_h = equation_h . solve ( )

# Compute e r r o r norms from so l u t i o n f i e l d
l2_error = l2norm_h . assemble ( u=u_h )
h1_error = h1norm_h . assemble ( u=u_h )

Python Code 2: Numerical solution of the 3D Poisson problem (2) on a quarter
spherical shell. Part II: problem discretization and solution with Psydac.

3.2 Time-harmonic Maxwell’s equations

We consider the time harmonic Maxwell equations in a 2D domain Ω with inhomogeneous es-
sential conditions on the boundary ∂Ω. We write the electric field as E(t,x) = Re

(
iωu(x)e−iωt

)
,

where ω ∈ R is the pulsation and u is a complex field. Given a real current source J : Ω→ R2

and a real tangential trace g : ∂Ω→ R, we search for a real solution u : Ω→ R2 that satisfies{
−ω2u +∇×∇× u = J in Ω,

n× u = g on ∂Ω,
(4)

where n is the outward normal unit vector to ∂Ω. We notice that in 2D the cross product is
scalar-valued; further, the curl of a vector is scalar-valued and the curl of a scalar is vector-valued.

We are interested in solving the problem (4) in a multi-patch domain Ω = ∪kΩk of N patches,
where each of them is obtained through the mapping of a reference square patch Ω̂ := [0, 1]2,
i.e. Ωk = Fk(Ω̂). To this end we do not construct a globally conformal approximation of the
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(a) Degree p = 2

N L2 error L2 order H1 error H1 order
4 3.38× 10−1 – 2.52× 100 –
8 1.02× 10−1 1.73 1.30× 100 0.96

16 9.19× 10−3 3.47 3.07× 10−1 2.08
32 9.55× 10−4 3.27 7.33× 10−2 2.07

(b) Degree p = 3

N L2 error L2 order H1 error H1 order
4 4.79× 10−1 – 3.12× 100 –
8 1.89× 10−2 4.66 3.25× 10−1 3.27

16 1.19× 10−3 3.99 3.98× 10−2 3.03
32 7.49× 10−5 3.99 5.11× 10−3 2.96

(c) Degree p = 4

N L2 error L2 order H1 error H1 order
4 1.23× 10−1 – 9.66× 10−1 –
8 6.61× 10−3 4.22 8.29× 10−2 3.54

16 1.28× 10−4 5.69 3.95× 10−3 4.39
32 3.23× 10−6 5.31 2.11× 10−4 4.23

(d) Degree p = 5

N L2 error L2 order H1 error H1 order
4 3.84× 10−2 – 2.75× 10−1 –
8 9.46× 10−4 5.34 1.41× 10−2 4.29

16 1.77× 10−5 5.74 4.79× 10−4 4.88
32 2.46× 10−7 6.17 1.50× 10−5 5.00

Table 1: Refinement study for 3D Poisson’s equation (1) in a quarter spherical shell. For various
spline degrees p and number of cells N along each direction, we report the L2 and H1 norms of
the error between the numerical and analytical solutions, and compute the order of convergence.

space H(curl; Ω), because this would be technically cumbersome and impractical. Instead, we
construct an appropriate vector-valued space over the reference patch Ω̂,

V̂1 :=

(
S(p−1,p)

S(p,p−1)

)
, (5)

where S(p1,p2) is a scalar-valued tensor-product spline space of maximum regularity, with degrees
p1 and p2 along the first and second logical dimensions, respectively. We then obtain a conformal
approximation within each patch through a push-forward operation for 1-forms, that is

V 1
h (Ωk) := F1

k (V̂1) ⊂ H(curl; Ωk),

and finally we define the global finite element space by simple juxtaposition of the local ones:

V 1
h :=

{
v ∈ [L2(Ω)]2 : v|Ωk

∈ V 1
h (Ωk)

}
6⊂ H(curl; Ω).

In order to connect the solution uh ∈ Vh between adjacent patches, we penalize any jump in the
tangential trace of uh across the interfaces Γij := ∂Ωi ∩ ∂Ωj . Similarly we use penalization on
each sub-boundary Γk := ∂Ω ∩ ∂Ωk to impose the boundary conditions on uh. Following [7] we
obtain a Nitsche weak formulation for equation (4), also known as interior penalty method [4]:

Find uh ∈ V 1
h such that ah(uh,v) = fh(v) ∀v ∈ V 1

h ,

where

ah(uh,v) :=
∑
Ωi

(
(∇× v,∇× uh)Ωi − (v, ω2uh)Ωi

)
+
∑
Γij

(
−([[v]]T , {{∇ × uh}})Γij − k([[uh]]T , {{∇ × v}})Γij + γ([[uh]]T , [[v]]T )Γij

)
+
∑
Γi

(
−(n× v,∇× uh)Γi − k(n× uh,∇× v)Γi + γ(n× uh,n× v)Γi

)
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and

fh(v) :=
∑
Ωi

(J ,v)Ωi +
∑
Γi

(
−k(g,∇× v)Γi + γ(g,n× v)Γi

)
.

The notation (·, ·)σ refers to the L2 scalar product over the domain σ, while [[w]]T := ni ×wi +
nj ×wj is the jump in the tangential component of the vector field w across the interface Γij ,
and {{w}} := (wi + wj)/2 is the average value of the scalar field w across the interface. The
integer parameter k ∈ {−1, 0, 1} allows us to switch between three different formulations: we
choose k = 1 for the symmetric interior penalty method (SIP), k = −1 for the non symmetric
interior penalty method (NIP), and k = 0 for the incomplete interior penalty method (IIP). The
stabilization parameter is γ := γstabh

−1, with γstab > 0 a positive constant, and h the grid size.
As a test case we construct a pretzel-like domain using 18 patches, as shown in the left-most

image of Figure 3. We differentiate the manufactured solution uex to obtain the source J :

uex(x, y) =

(
sin(πy)

sin(πx) cos(πy)

)
, J(x, y) =

(
sin(πy)

(
− ω2 + π2(1− cos(πx))

)
sin(πx) cos(πy)

(
− ω2 + π2

) )
. (6)

Using the expression above for J as input to our code, and by setting the tangential trace as
g := n × uex, we compute a numerical solution uh and compare it to uex. Figure 3 shows the
amplitude |uh| of the numerical solution, as well as the amplitude error |uex| − |uh|, obtained
with N = 16 and p = 3. Table 2 contains the L2 norm of the numerical error for different values
of p and N , together with estimates of the convergence order.
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Figure 3: Time harmonic maxwell’s equation on a pretzel domain with inhomogeneous essential
boundary conditions (4). Multi-patch domain (left), numerical amplitude |uh| (center) and
amplitude error |uex| − |uh| (right) obtained with a polynomial degree p = 3 and N = 16.

3.3 Time-dependent incompressible Navier-Stokes’ equations

We now consider the Navier Stokes’ equations for modeling the flow of an incompressible
viscous fluid of mass density ρ = 1 and kinematic viscosity ν > 0. Given a bounded domain Ω
and time interval (0, T ), a source term f , prescribed velocity uD on the Dirichlet boundary ΓD
and traction force t on the Neuman boundary ΓN , and initial conditions u0 in Ω, we want to
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(a) Degree p = 3

N L2 error L2 order
4 1.08× 10−1 –
8 9.59× 10−3 3.49

16 1.09× 10−3 3.13
32 1.35× 10−4 3.02

(b) Degree p = 4

N L2 error L2 order
4 3.17× 10−2 –
8 1.29× 10−3 4.62

16 6.70× 10−5 4.27
32 4.00× 10−6 4.07

(c) Degree p = 5

N L2 error L2 order
4 9.73× 10−3 –
8 2.01× 10−4 5.60

16 4.65× 10−6 5.43
32 1.33× 10−7 5.13

Table 2: Refinement study for the time-harmonic Maxwell equation (4) on a pretzel domain with
inhomogeneous essential boundary conditions. For various polynomial degrees p and number
of cells N along each direction, we report the L2 norm of the error between the numerical and
analytical solutions, and compute the order of convergence between successively refined results.

simultaneously compute the 2D vector velocity field u and the scalar pressure field p, solving
∂u

∂t
− ν∇2u + (u · ∇)u +∇p = f in Ω× (0, T )

∇ · u = 0 in Ω× (0, T )

u = uD on ΓD × (0, T )

−pn + ν(n · ∇)u = t on ΓN × (0, T )

(7)

where n is the unit vector normal to the boundary. If we let f ∈ L2(Ω) and choose W :=
H1(Ω)2× L2(Ω) for the trial and test spaces, we can derive the mixed variational problem

Find (u, p) ∈W s.t.

∫
Ω

(
∂u

∂t
· v + ν∇u :∇v + (u · ∇)u · v − q∇ · u− p∇ · v

)
=∫

Ω
f · v +

∫
Γn

t · v ∀(v, q) ∈W.

After discretization of the time variable tn = n∆t, we apply the Crank-Nicolson scheme to
obtain a non-linear equation for un+1 ≈ u(tn+1), given the previous solution un ≈ u(tn). At
each time step we solve this equation iteratively, using Newton’s method with un as first guess.

On a mapped multipatch domain we follow a strategy similar to the one for Maxwell’s equa-
tions. On the reference patch Ω̂ we approximate the velocity and pressure functions using
Taylor-Hood B-spline spaces, as suggested in [6] and [12], which can be regarded as smooth
generalizations of the classical Taylor-Hood pairs of finite elements [17]:

V̂ TH
h :=

(
Sp1,p2α1,α2

)2
=
(
Sp1α1
× Sp2α2

)2
, Q̂TH

h := Sp1−1,p2−1
α1,α2

= Sp1−1
α1

× Sp2−1
α2

.

On each patch Ωk = Fk(Ω̂) we construct a conformal discretization using the appropriate push-
forward operators, and define the global finite element space by juxtaposition of the local ones:{
V 0
h (Ωk) := F0

k (V̂ TH
h ) ⊂ H1(Ωk)

2,

V 2
h (Ωk) := F2

k (Q̂TH
h ) ⊂ L2(Ωk),

and

{
V 0
h :=

{
v ∈ [L2(Ω)]2 : v|Ωk

∈ V 0
h (Ωk)

}
6⊂ H1(Ω)2,

V 2
h :=

{
q ∈ L2(Ω) : q|Ωk

∈ V 2
h (Ωk)

}
⊂ L2(Ω).

Our numerical solution will then be (uh, ph) ∈ V 0
h × V 2

h . Since V 0
h is not globally conformal, we

penalize any jumps of uh across the interfaces using Nitsche’s method. We also use this method
to impose Dirichlet boundary conditions. The weak formulation is detailed in [10, Eq. 7.9].
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0.0
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Figure 4: Multi-patch computational domain for the time-dependent Navier-Stokes problem (7).
The colors identify different NURBS patches. The grid is defined by the splines’ breakpoints.

As a test case we simulate the unsteady flow in a pipe with a circular obstacle [1]. The
geometry is depicted in Figure 4 and is defined as Ω = (0, 2.2) × (0, 0.41)\Br(0.2, 0.2), with
the radius being r = 0.05. The kinematic viscosity is ν = 0.001. We require no-slip boundary
conditions on the lower wall Γ1 = (0, 2.2)×{0}, upper wall Γ2 = (0, 2.2)×{0.41}, and obstacle’s
wall S = ∂Br(0.2, 0.2): u|Γ1∪Γ2∪S = 0. On the left edge Γ3 = {0} × (0, 0.41) we prescribe a
parabolic inflow profile with time-oscillating amplitude: u|Γ3 = (4Uy(0.41− y)/0.412, 0)T with
U(t) = 1.5 sin(πt/8). On the right edge Γ4 = {2.2} × (0, 0.41) we prescribe free-flow Neumann
boundary conditions with t = 0. As initial conditions we set u0 = 0 everywhere in Ω.

We compute the numerical solution using a polynomial degree p = 2 and N = 32 elements
along both directions of each patch. The grid defined by the spline breakpoints can be seen in
Figure 4. The magnitude of the velocity field |uh| at different times is shown in Figure 5.

4 PERFORMANCE

4.1 Strong parallel scaling

We now solve the 3D Poisson equation in the unit cube, with homogeneous Dirichlet boundary
conditions, and use a large computational grid distributed across many MPI processes. We run
the tests on Cobra [2], a distributed memory supercomputer with 2 × 20-core Intel Xeon Gold
6148 (Skylake) processors and 192 GB of memory per node, which uses a 100 Gb/s OmniPath
interconnect network. For a given problem size, indicated by the number of cells ncells and the
degree p, we perform a strong scaling analysis by progressively increasing the number of MPI
processes nprocs from 32 (on a single node) to 4096 (on 128 nodes, with 32 processes per node).

We compare the performance of Psydac on various problem sizes with that of PetIGA [8], a
well-established framework for high-performance isogemetric analysis. For both libraries we use
the same Intel compiler suite (Fortran for Psydac, and C for PetIGA) and optimization flags. In
Figure 6 we show the speedup in the assembly of the stiffness matrix compared to PetIGA: with
the exception of a single case, Psydac is consistently 2 to 6 times faster. Certain tests could not
be run with PetIGA because of excessive memory usage (see next section). In Figure 7 we show
the speedup of the matrix-vector product: here Psydac compares favorably with PetIGA as the
polynomial degree is increased, and in many cases it is more than 1.5 times faster.

We think that Psydac achieves this high level of performance thanks to its dedicated data
structure for sparse matrix storage, referred to as “stencil format”, which provides a simple
memory access pattern that is known at compile time. Further, Psydac strives to generate the
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Figure 5: Incompressible 2D Navier-Stokes problem (7): unsteady flow in a pipe with a circular
obstacle. We plot the magnitude of the discrete velocity field |uh| at different time instants. The
results are obtained using a polynomial degree p = 2 and N = 32 elements along both directions
of each patch (see Figure 4 for the grid), and Crank-Nicolson time stepping.
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Figure 6: Stiffness matrix assembly for 3D Poisson problem. Speedup w.r.t. PetIGA (grey line).

10
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Figure 7: Matrix-vector product for 3D Poisson problem. Speedup w.r.t. PetIGA (grey line).

simplest possible Fortran code, which can be easily optimized by a good Fortran compiler.

4.2 Memory usage

In Figure 8 we show the maximum memory usage of Psydac and PetIGA per node using
different numbers of cells and a fixed degree p = 4. For this test we run the simulation with 32
MPI processes on a single “fat” node with 768 GB RAM DDR4. Psydac consistently uses far
less memory than PetIGA, with a memory reduction that exceeds a factor of 5 in some cases.

We obtain these results thanks to Psydac’s own stencil format for sparse matrix storage, which
takes advantage of the tensor-product structure of our spline basis functions to store only the
non-zero matrix entries with no memory overhead. On the other hand PetIGA uses PETSc [5]
to represent the sparse matrices in CSR format, which stores the column index of the non-zero
matrix entries as well as their values: this results in a considerable memory overhead in 3D.
PETSc may also require additional temporary memory during the matrix assembly process.

5 CONCLUSIONS

We have given an overview of the Psydac framework, and shown its capabilities in solv-
ing partial differential equations using isogeometric analysis. It supports multi-patch domains
with analytical or NURBS mapping, and compatible finite element discretizations using tensor-
product splines. This Python 3 library effectively combines three main ingredients: 1) a domain
specific language for variational formulations, 2) automatic generation of Python and Fortran
code, and 3) Hybrid MPI + OpenMP parallelization. We have run performance benchmarks
against the well-established tool PetIGA, and shown that our sparse matrix format has a clear
advantage in terms of memory footprint. The results show that Psydac is a user-friendly envi-
ronment for solving a wide variety of partial differential equations in large-scale simulations.
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Figure 8: Maximum memory used by Psydac and PetIGA for a 3D Poisson problem.
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