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SUMMARY

The performance of different shock capturing viscosities has been examined using our general fluid
mechanics algorithm. Four different schemes have been tested, both for viscous and inviscid compressible
flow problems. Results show that the methods based on the second gradient of pressure give better
performance in all situations. For instance, the method constructed from the nodal pressure values and
consistent and lumped mass matrices is an excellent choice for inviscid problems. The method based on
L2 projection is better than any other method in viscous flow computations. The residual based
anisotropic method gives excellent performance in the supersonic range and gives better results in the
hypersonic regime if a small amount of residual smoothing is used. © 1998 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Second-order schemes for high-speed compressible flow problems with error in the solution of
the order of O(h2) lead to unavoidable high frequency oscillations in the vicinity of shocks.
The first-order schemes, on the other hand, with the error magnitude O(h), damp the
high-frequency components of solutions. To overcome this deficiency of higher order schemes,
many shock capturing schemes are introduced in literature. The excellent summary of shock
capturing viscosity methods for finite difference based methods has been given by Hirsch [1].
Woodward and Colella [2] compared the performance of three different techniques namely
those of artificial viscosity, linear hybridization and Godunov’s approach. Among the three,
the artificial viscosity method is the most direct procedure for shock capturing. Recent
developments of high resolution methods such as TVD [3] and MUSCL [4] schemes in finite
element computations are observed to be good in supersonic as well as in hypersonic flow
ranges [5]. However, a disadvantage of these schemes is that higher computational time is
required compared with standard artificial viscosity schemes.

The shock capturing viscosity scheme was first introduced by Von Neumann and Richtmyer
[6]. This method consists of representing the discontinuity as a narrow region of steep gradients
in the flow variables. Stabilization is achieved by adding a suitable artificial dissipation term
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that mimics the action of viscosity in the neighbourhood of shocks. Other significant
developments in this area are those of Lapidus [7], Steger [8], MacCormack and Baldwin [9]
and Jameson [10]. In the finite difference literature, artificial viscosity terms are generalised by
a coefficient having the dimension of velocity and multiplied by h (element size) to get the
dimension of viscosity (ma) At Swansea, a modified form of the method based on second
gradient of pressure has been developed by Peraire et al. [11] and Morgan et al. [12] for finite
element computations. This modified form of viscosity with the pressure switch calculated
from the nodal pressure values is used subsequently in compressible flow calculations [5,13,14].
Recently, anisotropic shock capturing has been introduced [15,16] to add diffusion in a more
rational way. Recent results using this approach [17] are encouraging and further investigation
of different inviscid and viscous problems is essential. In this article, a search for good artificial
viscosity schemes is undertaken for the general fluid mechanics algorithm introduced by
Zienkiewicz and Codina [16] and the performance of different artificial viscosity schemes is
investigated.

2. GOVERNING EQUATIONS

The Navier–Stokes equations in conservative form, given by
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where, for 2D cases

VT= [r, ru1, ru2, rE ], (2)

are applicable for compressible and nearly incompressible flow problems.
In the above equation, r is the density of the fluid, u1 and u2 are the velocities in x1- and

x2-directions respectively and E is the total energy of the fluid.
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is the convective flux vector, where p is the pressure. Both pressure and total energy can be
defined by the set given in Equation (2) and the state law. The diffusive flux vector is
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Here, T is the temperature, and t is the shear stress tensor given by
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where m is the dynamic viscosity of the fluid. The equation of state is

p= (g−1)r(E−0.5ui
2). (6)

The speed of sound is related to p and r, as

c2=
gp
r

. (7)

Finally, the temperature dependence of viscosity is usually incorporated through the
Sutherland’s semi-empirical formula, as
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where So is Sutherland’s constant and is equal to 198.6° Rankine.

3. THE NUMERICAL SOLUTION PROCEDURE

The general algorithm developed by Zienkiewicz and Codina [16] is used in the present study
for solving compressible flow problems. There are many advantages in using this algorithm.
The characteristic type of approach leads to consistent upwinding terms which automatically
control the stability [14,17,18] in highly convective regions. Also, the generalised form of the
approach can be used for both compressible and incompressible flows. Finally, the sound
mathematical basis of the present scheme justifies its usage in all areas of fluid mechanics.

Before going into the details of the shock capturing techniques, it is essential to summarise
the steps in the general algorithm. In the first step, intermediate values of conservative
variables of the momentum equations are calculated omitting the pressure terms. In the second
step, the equation of continuity is solved to determine the density changes in the fluid. The
pressure is calculated from the density field using the gas law. Finally, the approximate values
of the momentum components are corrected using the computed pressure values. These steps
are discretized using the characteristic Galerkin method described in detail in Zienkiewicz and
Codina [16]. The steps for the explicit form are
Step 1
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, (9)

where U0 i is the approximate momentum flux 6i=rxui.

Figure 1. Supersonic inviscid flow past a quarter cylinder (M=2). (a) Problem domain and boundary conditions; (b)
finite element mesh (nodes=1226, elements=2294).
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Figure 2. Results obtained for supersonic inviscid flow past a quarter cylinder. (a) Pressure contours; (b) Mach
number contours; (c) comparison of coefficient of pressure in x1-direction.
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Figure 3. (a) Shock capturing viscosity coefficient distribution for methods I, II and III (0.0–0.5); (b) shock capturing
viscosity coefficient distribution for methods I, II and III (0.5–1.0); (c) spatial residual distribution for method IV.
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where u1=1 in Equation (10). The variables are defined in the previous section. The weak
form and detailed solution procedure are discussed in Reference [14]. In this paper, linear
triangular elements are used.

4. SHOCK CAPTURING VISCOSITIES

Although Equations (9)–(12) are stable in smooth flow regimes, they admit oscillations in the
vicinity of shocks. To smooth such local effects, additional shock capturing viscosity has to be
introduced. This is accomplished by means of an additional step in which smoothed values are
computed according to a relationship of the form

f s
n+1=fn+1+Dt div(ma grad f), (13)

where ma denotes an additional artificial dissipation term activated by shocks. The approach of
Lapidus [7] uses an artificial diffusion coefficient, ma, based upon the velocity gradient. An
alternative model due to MacCormack and Baldwin [9], in which the diffusion coefficient is
based upon second derivative of pressure, however, gives better results [12]. Nodal values of
second derivatives can be evaluated on a mesh of linear elements by employing a variational
recovery process but this is computationally expensive. In this article, the first model for the
artificial diffusion is the modified form of MacCormack–Baldwin scheme which is slightly
cheaper than the original method. Here the second gradient is approximately calculated from
the consistent and lumped mass matrices.

The model is derived from the observation that in one-dimension, for a scalar variable p we
can write (see Reference [12])

(

(xi

�
h2 (p
(xi

�
xj:ML

−1(M−ML)p̄ �j, (14)

where M denotes the consistent mass matrix and ML the diagonal lumped mass matrix. The
expression appearing on the right of the above equation obviously produces a diffusion effect
and we use this fact as the basis of the construction of the artificial viscosity model. In
two-dimensions, the relation

ma=
CeSe

Dte

, (15)
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Figure 4. Supersonic inviscid flow past a 15° wedge (M=3). (a) Geometry and boundary condition; (b) uniform grid
(nodes=1780, elements=3396); (c) adapted mesh (nodes=168, elements=286); (d) density contours; (e) pressure

contours; and (f) Mach number contours for the uniform mesh.

is used in the MacCormack–Baldwin scheme [12]. The element time step is included to ensure
that the added diffusion is conservative at steady state. The element ‘pressure switch’ Se is
taken to be the mean of the element nodal switches, Si, which are computed as

Si=

)%e (pi−pk)
)

%e �pi−pk �
. (16)

It can be verified that Si=1 when pressure has a local extremum at node i and Si=0 when
pressure at node i is the average of values for all nodes adjacent to node i. Ce is a user specified
constant, normally ranging from 0.0 to 2.0.
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Figure 5. Comparison of density, Mach number and pressure coefficient along section AA for the uniform mesh.
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The modified solution now becomes�f s
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This form of shock capturing (method I) yields reasonably good shock properties for a wide
range of problems but suffers from the disadvantage that Si could have non-zero values in
areas of smoothly varying pressure. This means an additional diffusion is added, even in the
smooth flow regions which may not be very large for subsonic and supersonic cases. But for
hypersonic flow situations, because of the presence of very strong shocks, the amount of
dissipation added would be excessive. This could seriously pollute the velocity and density
fields and lead to a diffuse solution.

As an alternative method to the one discussed above, the second derivative of pressure is
computed using the variational recovery (projection) and used with element size as switch for
smoothing the results. The smoothed solution in this method becomes (method III)�f s
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where V is the total velocity vector, c the speed of sound, and p̄ is the average pressure over
an element. Here, the second derivative is calculated at nodal points and averaged for the
elements. The calculation of the derivatives are given in the text by Zienkiewicz and Taylor
[19].

Earlier methods due to Lapidus [7], use the gradient of velocity to locate discontinuity,
which is given as [20]

Figure 6. Density, Mach number and pressure contours obtained from the adapted mesh for supersonic flow past a
wedge (M=3).
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Figure 7. Comparison of present predictions in adapted mesh with the analytical solution.
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Figure 8. Supersonic inviscid flow past a NACA0012 aerofoil (M=1.2). (a) Problem formulation; (b) finite element
mesh (nodes=3753, elements=7351); (c) mesh near the aerofoil surface.
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Figure 9. Results obtained for supersonic inviscid flow past an aerofoil. (a) Density contours; (b) Mach number
contours; and (c) pressure contours.�f s
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where V is the total velocity vector.
In the later studies, however, the dissipation based on pressure was proved to be the most

efficient for shock capture [12]. A method similar to that of Lapidus replacing the gradient of
velocity by the pressure gradient is another shock capturing viscosity method (method II)
examined in this article. The following relation is used to add artificial diffusion:�f s
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Here the first gradient of pressure is calculated at element level from the nodal pressure
values, as
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where N is the shape function and ph is the finite element solution.
Finally, the anisotropic type of shock capturing [15,16] (method IV) is examined and

compared with other schemes. The basic idea of this method is to introduce an anisotropic
additional diffusion to discrete equations proportional to the spatial residual of the previous
time step, thus keeping the consistency of the finite element formulation when the steady state
is reached. The expression for the corrected solution is given for any variable except density
(diffusion is added to the density equation isotropically), and is
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In the above equation, nsc is the total additional viscosity, ncg is the amount subtracted from
the total additional viscosity and V is the total velocity vector. The second term in the
right-hand-side of the above equation is equal to the additional diffusion added by the
characteristic Galerkin scheme. The following expressions are used for the nsc and ncg in the
present study.
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1
2

Ceh
�R �

�9f �, (23)

Figure 10. Comparison of surface pressure coefficient distribution with literature.
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Figure 11. Supersonic inviscid flow past a full cylinder (M=3). (a) Problem formulation; (b) adapted finite element
mesh (nodes=12651, elements=24979); and (c) Mach contours.

and

ncg=
1
2

Dt
2

V2, (24)

where Ri is the spatial residual calculated without the upwinding terms for the variables, h is
the characteristic dimension of the triangular elements, Ce is the user specified constant.

© 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 28: 1325–1353 (1998)



PERFORMANCE OF SHOCK CAPTURING VISCOSITIES 1339

Figure 12. Property variation along the mid-height. (a) Coefficient of pressure; and (b) Mach number.
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Equation (21) can be rewritten with indices as
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where

nsl=max(0, nsc−ncg). (26)

Figure 13. Hypersonic inviscid flow past a quarter cylinder (M=6) (a) Problem formulation; (b) finite element mesh
(nodes=785, elements=1455); (c) first adapted mesh (nodes=1391, elements=2637); (d) Mach number contours;

and (e) pressure contours using uniform mesh.
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All the above described methods are implemented both for viscous and inviscid flow
problems. The dissipation terms are added to the equations at every time step as the solution
proceed towards steady state. For instance, method III described above is added to the
momentum equation as
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Finite element discretization of the above equation leads to the final form
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All the shock capturing viscosities discussed are used to solve a variety of inviscid and
viscous problems with shock. In the following section, numerical examples with different Mach
numbers are presented.

5. NUMERICAL EXAMPLES

5.1. In6iscid flow past a cylinder of Mach number 2

Figure 1 shows the problem formulation (a) and the finite element mesh (b) generated. This
problem is a standard test case used by many authors to validate the numerical schemes. In the
present study, an inlet Mach number of 2 is assumed and the fluid is inviscid. A uniform mesh
is generated (Figure 1(b)) with 1226 nodes and 2294 linear triangular elements. All four shock
capturing viscosity schemes are separately used to solve this problem.

An efficient shock capturing viscosity should add the additional artificial diffusion in a
rational way and spread the discontinuity over several computational elements without
significantly affecting the solution in the uniform flow region. In many schemes, the amount
of additional diffusion is controlled by an user specified constant Ce. Suitable selection of this
constant gives oscillation-free accurate results. The amount of spreading of the discontinuity
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Figure 14. Results obtained for the hypersonic inviscid flow past quarter cylinder. (a) Mach number contours; and (b)
pressure contours using adapted mesh; (c) comparison of Mach number along the bottom line in the x1-direction.
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Figure 15. Hypersonic inviscid flow past a half cylinder (M=10). (a) Problem formulation; (b) adapted finite element
mesh (nodes=4843, elements=9441).

which is achieved depends upon the selection of the shock capturing viscosity (first derivative,
second derivative of pressure etc.).

Figure 2 shows the Mach and pressure contours and the comparison of coefficient of
pressure along the bottom line of the domain. The results predicted by the first gradient of
pressure are slightly diffusive compared with the other methods. For the same grid used in the
study, the anisotropic shock capturing (IV) and methods I and III give a good result with less
diffusive effects.

In Figure 3, the approximate locations where the diffusion is added are depicted by plotting
the contours of different coefficients used in the shock capturing techniques. In the first three
shock capturing viscosities, the additional diffusion is based on the pressure distribution in the
domain. In method I, the switch based on the nodal pressure values (Equation (16)) is plotted.
In methods II and III, it is the scaled values of first and second gradients of pressure,
respectively. The spatial residuals are plotted for method IV. It is seen that method I based on
the pressure switch adds additional diffusion in the uniform region also. However, the results
predicted by this method are good in most of the inviscid problems including the present
problem. It is observed that all methods considered are good in locating the shock.

5.2. Supersonic in6iscid flow past a wedge

The second example considered is the supersonic inviscid flow past a 15° ramp as shown in
Figure 4. A uniform mesh (Figure 4(a)) with 1780 nodes and 3396 elements and an adapted

© 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 28: 1325–1353 (1998)
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mesh with 168 nodes and 286 elements are used to solve the problem. The inlet Mach number
has been taken as 3.0. The density, pressure and Mach contours predicted by the three
artificial viscosity schemes have also been shown in the figure (Figure 4(d,e,f)). The results
obtained from method II have not been provided, as it has shown diffuse solution, compared
with all other methods. The other three methods predict the shock equally well.

Figure 5 shows the comparison of density, pressure and Mach number values (uniform
mesh) along section AA for all schemes and analytical solution. Again all the three methods
predict the results with almost same accuracy.

The solution obtained from the adapted mesh is shown in Figures 6 and 7. Here, even
though the contours predicted by method II are slightly diffusive (Figure 6), the quantitative
results (Figure 7) match well with the other results considered. It shows that the adaptive
procedure improves the solution with any kind of shock capturing viscosity.

Figure 16. Mach number contours for hypersonic flow past cylinder.
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Figure 17. Density contours for hypersonic flow past cylinder.

5.3. Supersonic flow past NACA0012 aerofoil

The problem formulation and the mesh generated are shown in Figure 8. A finite element
mesh with more elements near the surface of the aerofoil has been generated. There are 3753
nodes and 7351 elements in the mesh (Figure 8(b)). The detail of the mesh near the surface is
also shown (Figure 8(c)). The inlet Mach number is assumed to be 1.2. This Mach number is
the smallest value ever considered in this study.

The results obtained for this problem are shown in Figures 9 and 10. All four methods
considered give an equally good performance. This can be attributed to the low Mach number
flow considered in the problem.

© 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 28: 1325–1353 (1998)
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5.4. Supersonic flow o6er a full cylinder at M=3.0

Figure 11 shows the problem formulation and adapted mesh used in the present computa-
tion. The figure also shows the Mach number contours obtained using methods I and IV. The
inlet Mach number is assumed to be 3. The adapted mesh consists of 12651 nodes and 24979
elements. Such a fine mesh is essential for this problem to resolve the quasi-rarefaction zone.
As this zone often creates a negative pressure zone, care must be taken to control the time step
and additional shock capturing viscosity constants.

Both methods I and IV are seen to predict the shock almost in the same position. A
difference has been observed in the pattern behind the cylinder. Even though there is no way
to validate the results behind the cylinder, the prediction of method IV agrees well with the
special schemes (see Reference [5]).

Figure 18. Pressure contours for hypersonic flow past cylinder.
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Figure 19. Mach number distribution along the bottom line for hypersonic flow past cylinder.

The quantitative results of the schemes are compared in Figure 12. The coefficient of
pressure along the centerline of the domain and surface of the cylinder, calculated from both
schemes, match excellently, except in the rear. Differences in prediction of the Mach number
along the surface are observed between the two schemes. Method IV underpredicts the peak
Mach number on the surface of the cylinder compared with method III and MUSCL scheme
[5]. In this problem, direct use of anisotropic shock capturing (method IV) alone failed to give
the Mach number peak on the cylinder surface. Small amount of residual smoothing along
with the anisotropic shock capturing yields the present results comparable with other
predictions.

5.5. Hypersonic flow past a cylinder

Another problem considered in the present study is the hypersonic inviscid flow past a
quarter cylinder as shown in Figure 13. The inlet Mach number is assumed to be 6. The
uniform mesh with 785 nodes and 1455 elements (Figure 13(b)) and an adapted mesh with
1391 nodes and 2637 elements (Figure 13(c)) are used to solve the problem.

Figure 13(d,e) show the Mach and pressure contours respectively, predicted by methods I
and III using the uniform mesh. The anisotropic shock capturing (method IV), has not given
a good solution with the uniform grid. Among the two methods presented, method I seems to
give a better representation of shock. In general, the additional diffusion requirement of an
inviscid problem is higher than that of a viscous problem. Here, the higher additional diffusion
generated by method I gives a better answer than method III.

The results obtained from the adapted mesh are presented in Figure 14. The anisotropic
shock capturing gives a reasonable solution. For the sake of comparison, the Mach number
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distribution from both initial and final meshes of Reference [21] is plotted along with the
present predictions in Figure 14(c). With a relatively lower mesh density, present predictions
compare well with the final adapted mesh of Reference [21]. Both the methods based on the
second gradient of pressure (methods I and III) seem to give better results compared with the
anisotropic shock capturing (method IV).

5.6. Hypersonic flow past a half cylinder

Hypersonic flow past a half cylinder has been considered as the next example in the present
computation. The problem formulation, finite element mesh and the contour plots are shown
in Figures 15–18. The inlet Mach number is assumed to be 10 and the fluid is inviscid. An
adapted mesh with 4843 nodes and 9441 elements is used to solve the problem.

All three methods considered predict the shock in the same position in front of the cylinder
(Figure 16). The resolution of the shock predicted by method I is better than any other scheme.
This quality is probably due to the pressure switch used in this method. The density and
pressure contours are shown in Figures 17 and 18 respectively. From these contour plots,
method IV gives a better performance than method III.

The Mach number distribution along the bottom line of the domain is shown in Figure 19.
A small oscillation in the vicinity of the shock is observed when method III is used. Also, this

Figure 20. Supersonic viscous flow past a flat plate (M=3, Re=1000). (a) Problem formulation; (b) structured finite
element mesh (nodes=6750, elements=13172); (c) density contours; and (d) Mach number contours.

© 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 28: 1325–1353 (1998)



PERFORMANCE OF SHOCK CAPTURING VISCOSITIES 1349

Figure 21. Comparison of present predictions with Carter [21]. (a) Pressure distribution along the surface; (b) outlet
velocity profile along the surface.
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Figure 22. Hypersonic viscous flow past a 24° compression corner (M=14.1, Re=103680). (a) Problem formulation;
(b) finite element mesh (nodes=11211, elements=22000; (c) Mach number contours; and (d) pressure contours.

method fails to give a clear recirculation behind the cylinder. All three methods differ in
predicting the Mach number along the surface of the cylinder and behind it. From the patterns
observed, methods I and IV are seen to give a better recirculation with three stagnation points
behind the cylinder.

5.7. Supersonic laminar 6iscous flow past a flat plate

Figure 20 shows problem formulation and the results obtained for the supersonic viscous
flow past a flat plate. Here, the Reynolds number based on the length of the plate is 1000 and
the free stream Mach number is assumed to be 3. The Prandtl number is taken as 0.72. The
temperature of the plate is assumed constant and equal to the stagnation temperature and is
given as

Tw=
1

(g−1)M�
2

�
1+

g−1
2

M�
2 �. (34)

A structured mesh with higher density near the plate surface has been generated (Figure
20(b)). The first node from the surface of the plate is placed at a distance of 0.0004 from the
surface. In total, there are 6750 nodes and 13172 elements in the mesh.

The density and Mach contours obtained from all shock capturing techniques are shown in
Figure 20(c,d). All of the schemes give an equally good performance in this problem. However,
method II gives a slightly diffuse solution compared with all other schemes.
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Figure 23. Hypersonic flow past a compression corner. (a) Comparison of coefficient of pressure along the wall; (b)
comparison of skin-friction coefficient along the wall.
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Figure 18 shows the quantitative comparison obtained for all of the shock capturing
techniques with those of Carter [21]. Present predictions (Figure 21(a)) of non-dimensional
pressure along the surface of the plate is seen to agree well with Carter [21] towards the trailing
edge of the plate. Differences do exist between the present predictions and those of Carter near
leading edge. However, no oscillations are observed in the present predictions. The outlet
velocity profile (Figure 21(b)) is also seen to compare excellently. It is seen that method III
gives a better comparison of pressure distribution with Carter [21].

5.8. Hypersonic 6iscous flow past a compression corner

The final test case considered in the present study is the hypersonic viscous flow past a
compression corner of 24°. The free stream is at a Mach number of 14.1 and the Reynolds
number is 103680, based upon the horizontal flat plate length of 1.44 ft. The temperature of
the free stream and wall are fixed at 160 and 535° Rankine respectively. The fluid Prandtl
number is constant and equal to 0.72. Figure 22 (a) shows the details of formulation. In Figure
22(b), the mesh generated is shown. This is a structured mesh with 111×101 nodes.

Figure 22(c,d) shows the Mach and pressure contours respectively. The contours predicted
by method I are generally diffusive than those predicted by method III. It shows that method
III gives a better performance than method I in viscous computations. This can be attributed
to the controlled diffusion added by method III rather than that of method I.

The quantitative results predicted are shown in Figure 23(a,b). The coefficients are calcu-
lated using the relations

Cp= log
� 50pw

r�u�2 /2
n

, (35)

Cf=50
� tw

rinftyu�2 /2
n

, (36)

where w and � refer to the wall and free stream, respectively.

tw= t2
(n)n1− t1

(n)n2= (t21n1+t22n2)n1− (t11n1+t12n2)n2. (37)

It is seen from the comparison that the patterns of variation observed for both of the shock
capturing viscosities considered are similar. However, method III shows a better comparison
with MUSCL scheme [5] than method I (Figure 23).

6. CONCLUSIONS

Among the first three families of shock capturing viscosities, the procedures based on the
second gradient of pressure are best schemes and are suitable for almost all type of
applications. Method I is an excellent choice for compressible inviscid flow problems.
However, this method’s performance in high speed viscous problems is not very good. From
the study carried out, the method based on L2 projection (second gradient of pressure, method
III) has given the best performance for viscous high speed compressible flows. The anisotropic
shock capturing (method IV) gave an excellent performance in the supersonic range. However,
at high Mach numbers, this method needs small amount of residual smoothing to get
acceptable answers. Method II (first gradient of pressure) has also given good results at low
Mach number flows. But its performance is not so attractive compared with other methods
considered in the present study.
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