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SUMMARY

This paper focuses on the numerical simulation of strain softening mechanical problems. Two problems
arise: (1) the constitutive model has to be regular and (2) the numerical technique must be able to capture the
two scales of the problem (the macroscopic geometrical representation and the microscopic behaviour in the
localization bands). The Perzyna viscoplastic model is used in order to obtain a regularized softening model
allowing to simulate strain localization phenomena. This model is applied to quasistatic examples. The
viscous regularization of quasistatic processes is also discussed: in quasistatics, the internal length associated
with the obtained band width is no longer only a function of the material parameters but also depends on the
boundary value problem (geometry and loads, specially loading velocity).

An adaptive computation is applied to softening viscoplastic materials showing strain localization. As the
key ingredient of the adaptive strategy, a residual-type error estimator is generalized to deal with such highly
non-linear material model.

In several numerical examples the adaptive process is able to detect complex collapse modes that are not
captured by a "rst, even if "ne, mesh. Consequently, adaptive strategies are found to be essential to detect the
collapse mechanism and to assess the optimal location of the elements in the mesh. Copyright ( 2000 John
Wiley & Sons, Ltd.
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1. INTRODUCTION

Adaptive mesh re"nement in strain softening problems has received important attention in the
last decade. The presence of two well-di!erentiated length scales in such problems seems to
indicate that adaptive remeshing strategies, in a general sense, are the natural approach. Recall
that the spatial interpolation of the primitive variables must describe both the macroscopic scale
associated to the solid geometry and the micro-scale related to the shear band. For instance,
Huerta and Pijaudier-Cabot [1] show for two di!erent models, that in the localization area
element sizes must be one order of magnitude smaller than the internal length if errors under
5 percent are desired. Moreover, a priori knowledge of the location of the localization area is
sometimes not possible.

Adaptivity in "nite element computations requires three main ingredients. The "rst one is an
algorithm for increasing/decreasing the richness of the interpolation in a particular area of the
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computational domain. For instance, a good mesh generator if h-re"nement [2, 3] is used.
Second, an error estimator or error indicator must be employed to locate where there is a need for
re"nement/de-re"nement. And, third, a remeshing criterion must be used to translate the output
of the error analysis into the input of the mesh generator, for instance, the distribution of desired
mesh sizes.

These three steps are fundamental in adaptivity. However, only the second one will be
discussed here because it is, probably, the critical one in softening problems. In fact, Ortiz and
Quigley IV [4] presented an excellent discussion on the di$culties that have deterred an extensive
application of adaptive methods in the context of strain localization: (1) path-dependent consti-
tutive equations, and (2) error estimation relying, in statics, on the ellipticity of the equations
which is lost at the inception of localization. Here, these two di$culties are overcome because:
(1) an error estimator mathematically sound for path-dependent constitutive equations is em-
ployed, and (2) a well-known regularized model which precludes the loss of ellipticity is used. The
main goal here, is to show that adaptive mesh re"nement based on estimating the actual error is
now possible for regularized problems. Any model maintaining ellipticity after the inception of
the localization could be used. Moreover, the numerical examples show that adaptivity based on
the error estimation is essential for accurate computations and, in certain problems, for capturing
a realistic physical behaviour.

The study of localization in solids has received much attention and a number of di!erent
approaches have been devised to overcome the di$culties encountered during its analysis.
A possible approach is to consider the limit problem and consequently, jumps in the displacement
"eld across surfaces (strong discontinuity approach). In fact, it emanates from classical perfect
plasticity where discontinuous displacements are understood in a distributional sense, see for
instance [5}7]. Another possible approach is to regularize the problem precluding any discon-
tinuity in the displacement "eld. These models bear the same fundamental property: an internal
length is introduced to limit the thickness of the localization band. Among these are the
micropolar constitutive models [8], non-local models [9, 10], gradient-dependent models
[11, 12], and rate-dependent models [13, 14]. The present study is developed in the context of
regularized models. Here, a simple rate-dependent model is employed [15] because the main
focus is on adaptivity.

The issue of a mathematically sound error estimator for path-dependent constitutive equations
is crucial in this study. Adaptivity in softening problems has been associated to error indicators
[16}18]. Error indicators are based on heuristic considerations while error estimators approxim-
ate a measure of the actual error in a given norm. In this work, a tool for assessing the error
measured in the energy norm is proposed. The obtained approximation to the error is asymp-
totically exact, that is, tends to the actual error if the element size tends to zero [19, 20]. In that
sense, this tool is an error estimator.

Here, the assessment of the error associated with the "nite element space discretization is the
goal of the study. The in#uence of time discretization is out of the scope of this paper.

2. PERZYNA VISCOPLASTICITY MODEL

As noted previously, the Perzyna viscoplastic model is used for regularization [15, 21]. Thus,
regularization is associated to viscous e!ects in the inelastic range. For clarity, this model is
brie#y reviewed in this section.
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In small-strain viscoplasticity, the strain rate e5 is decomposed into an elastic strain rate e5 % and
a viscoplastic strain rate e5 71.

e"e%#e71 (1)

and the stress rate r5 is obtained as

r5 "C : (e5 !e5 71) (2)

where C is the elastic moduli tensor. Equations (1) and (2) are very similar to those of
elastoplasticity, with plastic strain replaced by viscoplastic strain e71.

An expression for e5 71 is needed. For associative #ow, the Perzyna model [15] takes

e5 71"cC
S f T
pN
0
D
N Lf

Lr
(3)

where c and N are the material parameters of the model, f is the Von Mises yield function which
depends on the yield stress p6 [22]. This yield stress is assumed to be a linear function of the
equivalent viscoplastic strain i, according to

p6 "Sp6
0
#hiT (4)

where p6
0

is the initial yield stress and h is the hardening (for h'0) or softening (for h(0, used
here) parameter. The symbol S f T means that

S f T"G
f

0

if f*0

if f)0
(5)

In contrast to elastoplasticity, stress states outside the yield surface (i.e. with f'0) are admissible
in viscoplasticity. Combining Equations (3) and (5) shows that the viscoplastic strain rate e5 71 is, in
general, non-zero. On the other hand, for stress states inside or on the yield surface, e5 71"0 and
the strain rate is purely elastic.

Figure 1 shows the one-dimensional rheologic scheme of the Perzyna model for the case N"1
[21]. The viscous e!ect is represented by the damper in the right, with viscosity p6

0
/c, and

softening is represented by the element on the left, which symbolizes the linear evolution of the
yield stress (Equation (4)).

The Perzyna viscoplastic model has been used as a regularization technique in transient
dynamic processes [21, 14]. Here, it will be employed to regularize a quasistatic problem, see [23]
for a discussion on dynamic and quasistatic analysis.

For dynamic analysis (i.e. inertia e!ects are considered) the width of the localization band can
be predicted a priori as a function of material parameters [21]. It is independent of the loading
velocity. The rationale is that the stress waves (those producing loading and unloading paths)
travel at a celerity which depends only on material parameters. Thus, in dynamic analysis, the
band width depends on the stress wave celerity and the viscous e!ects.

For quasistatic analysis processes (i.e. inertia terms are neglected) time does not appear
explicitly in the momentum balance. However, time is still an independent variable of the
problem because it is present in the constitutive relations (Equations (1)}(3)). Time has still its
physical meaning and it is not, as in rate-independent elastoplasticity, a loading parameter (i.e.
a pseudo-time). Note that for quasistatic problems the loading velocity has a crucial in#uence on
the material response, see Figure 2 for a simple compression example. Thus, from a physical point
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Figure 1. One-dimensional rheologic scheme of Perzyna-type viscoplastic model (N"1).

Figure 2. In#uence of the loading velocity in the response of the Perzyna model in a quasistatic case
(reaction versus imposed displacement).

of view, viscoplasticity in quasistatics is still a sound regularization technique (i.e. viscous e!ects
and the associated regularization are still present). Section 4 illustrates this issue with several
examples. In fact, viscoplasticity is an obviously sound regularization technique in a quasistatic
analysis because a quasistatic problem is simply a dynamic problem where inertia terms are
below the threshold of computational accuracy. Viscoplasticity is not employed here as a numer-
ical strategy to avoid imposing the plastic consistency condition. It is assumed to be the &real'
material behaviour. It is not used as a numerical relaxation technique [24] designed to get the
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elastoplastic solution. In fact, for softening models, the steady-state limit (after zero loading
velocity is reached) of a viscoplastic analysis does not coincide with an elastoplastic solution.

Nevertheless, in quasistatics, the velocity governing the loading and unloading is no longer the
stress wave celerity but the external load velocity. Thus, the band width in quasistatics is not
governed exclusively by material parameters, it depends also on the load velocity. In fact, in
Reference [25] it is demonstrated that for one-dimensional problems the load velocity plays
a crucial role in the resulting band width.

Another di!erence between dynamic and quasistatic viscoplastic analysis is related with the
need and the in#uence of imperfections. It is well known that dynamic viscoplastic problems do
not need an imperfection to induce localization, re#ecting or incoming stress waves are usually
employed to initiate localization. Quasistatic viscoplastic problems in simple domains, however,
do need an imperfection to induce localization. In any case, both in dynamics and quasistatics, if
an imperfection exists, the resulting band width may be a!ected by the imperfection in its vicinity,
see [21, 26] for dynamic cases and [27] or Section 4 for quasistatics.

3. ERROR ESTIMATION AND ADAPTIVITY

As discussed in the introduction, an error estimator is a key feature in any adaptive procedure.
Many error estimators for linear standard problems have been introduced (see [28}30], for
reviews). However, the generalization of these estimators to general non-linear problems is
involved. This section is devoted to brie#y describe a residual-type a posteriori error estimator
which can be used in general non-linear cases. This estimator is presented in Reference [31], its
mathematical foundation and nonlinear generalization may be found in Reference [32] and its
performance is analysed in Reference [33].

Using a mesh of characteristic size h, the "nite element method provides a discrete equilibrium
equation where the unknown is the nodal displacement vector u

h
:

f */5
h

(u
h
)"f %95

h
(6)

where f */5
h

(u
h
) is the vector of nodal internal forces associated with u

h
and f %95

h
is the discretized

external force term.
Once Equation (6) is solved, the solution u

h
is a!ected by an error that has to be estimated.

Since the actual displacements are unknown, the actual error cannot be computed. However,
using a much "ner mesh of characteristic size h3 (h3 ;h), the "nite element method gives a new
solution uh3 which is much more accurate than u

h
because the regularized model ensures that the

Finite Element Analysis converges as the element size goes to zero. This solution can be taken as
a reference solution and, consequently, the actual error can be fairly replaced by the reference
error eh3 , the di!erence between uh3 and u

h
.

Nevertheless, the determination of uhI (or eh3 ) requires to solve an equation analogous to
Equation (6) but in the "ner mesh:

f */5h3 (uh3 )"f */5h3 (u
h
#eh3 )"f %95h3 (7)

This problem is much more expensive than the original one and it is una!ordable from
a computational point of view.

In the remainder of this section a method for approximating eh3 by low-cost local computations
is presented. That is, instead of solving Equation (7), eh3 is approximated by solving a set of local
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Figure 3. Graphic interpretation of reference error in linear problems.

problems. This method is splitted in two phases. First, a simple residual problem is solved inside
each element and an interior estimate is obtained. Second, a new family of simple problems is
considered and the interior estimate is complemented adding a new contribution. The "rst phase
is called interior estimation and the second one is called patch estimation.

In order to simplify the presentation, the estimator is introduced in the linear case. The
conceptual di!erences introduced in the non-linear generalization are discussed in the following.

3.1. Error estimator for linear problems

If the problem is linear, f */5(u) is a linear function of u and, consequently, Equations (6) and (7)
become

f */5h (u
h
)"K

h
u
h

and f */5h3 (uh3 )"Kh3 uh3 (8)

where K
h

stands for the sti!ness matrix associated with the coarse computational mesh and
Kh3 stands for the sti!ness matrix associated with the "ner mesh. These equations can be easily
manipulated and a linear equation for the reference error is found:

Kh3 eh3 "f %95h3 !f */5h3 (u
h
)":!rh3 (uh) (9)

where f */5h3 (uh) is the internal force vector in the "ner mesh associated with the solution u
h
of the

coarse mesh, and rh3 (uh
) is the residual.

Figure 3 shows a graphic illustration of the meaning of the reference error and its relation with
the residual. The determination of the solutions, u

h
and uh3 , can be seen as the determination of the

intersection between the curve describing the evolution of the internal forces and the threshold of
the discretized external forces (they are assumed to be independent of the solution). In the linear
case the evolution of internal forces is described by straight lines and everything turns trivial.
Figure 3 shows that reference error, eh3"uh3 !u

h
, and the residual, rh3 (uh

) :"f */5h3 (u
h
)!f %95h3 , are

related in terms of the sti!ness matrix in the reference mesh, Kh3 , as indicated in Equation (9).
Although this illustration may appear trivial in the linear case, a variation of this "gure provides
a good understanding for the non-linear case.
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Figure 4. (a) Reference submesh mapped into (b) an element, to get (c) an elementary submesh.

3.1.1. Interior estimation. In order to avoid una!ordable computations (note that Equation (9)
implies the resolution of a very large system of equations), the error estimation must be performed
solving local problems. This is standard in residual-type error estimators. The natural partition of
the domain in order to solve local problems is the set of elements of the &coarse' computational
mesh (denoted by )

k
, k"1,2).

A "ner reference mesh is constructed by the assembly of submeshes discretizing each element.
These elementary submeshes are built from a discretization of the reference element mapped into
the elements of the actual mesh (see Figure 4).

Then, the elementary submeshes can be used to solve the error Equation (9) on each element )
k

of the original mesh. However, the solution of such problems requires proper boundary condi-
tions for the error. Most of residual-type error estimators [34}36], solve Equation (9) prescribing
the error #ux around each element )

k
. This is imposed using a #ux splitting procedure which is

generally involved and expensive from a computational point of view. Here, the estimator avoids
using complex boundary conditions. This is, probably, its major advantage with respect to other
residual-type estimators. Trivial boundary conditions are imposed for both sets of local problems.
Moreover, in contrast with other residual-type estimators the local problems are solved using an
interpolation space based on h-re"nement (easier to implement from a computational point of
view) instead of the usual bubble spaces (p-re"nement).

In this work, the elementary problems are solved in a straightforward manner imposing the
displacement error to vanish along the boundary of each element )

k
(see [31, 32]). That is

Equation (9) is solved at element level and the error is prescribed to zero in all the boundary
nodes of the elementary submesh. This choice is the simplest one for these local boundary
conditions. This discrete local problem leads to a system of equations

K%
k
e
k
"!r%

k
(10)

where K%
k
is the local sti!ness matrix associated with the elementary submesh discretizing )

k
and

r%
k

is the restriction of the residual to this element. The vector e
k

is an approximation to the
restriction of the reference error eh3 inside the element )

k
. In the linear case, the squared local

energy norm of the interior estimate e
k
can be directly computed by

Ee
k
E2"eT

k
K%

k
e
k
"!eT

k
r%
k

(11)
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Figure 5. Patch submesh centred in a node of the computational mesh.

It is worth remarking that the squared norm of the error is simply computed as the scalar product
of two vectors: the estimated displacement error and the residual. This avoiding extra computa-
tions involving the matrix K%

k
.

Once the elementary problems are solved, the local interior estimates can be assembled to build
up a global estimate e having values in the whole domain ),

e"+
k

e
k

(12)

The global norm of e can be easily computed using the local estimates

EeE2"+
k

Ee
k
E2 (13)

The previous choice of the homogeneous boundary condition implies that EeE;Eeh3 E .
The reference error eh3 is, most probably, non-zero along the element edges, thus e may be
a poor approximation to eh3 . In other words, the information contained in the #ux jumps is
ignored.

3.1.2. Patch estimation and complete estimate. Once the interior estimate is computed, it is
necessary to add the contribution of the #ux jumps, that is, to improve the error estimation by
adding non-zero values in the element boundaries. This can be done following the same idea of
the interior estimation, precluding the direct computation of #ux jumps and avoiding any #ux
splitting procedure.

The interior estimate is based on solving local problems in the elements. This has been done
because using the "nite element method, elements are the natural partition of the domain ). In
this second phase, a di!erent set of subdomains, called patches, is considered, each one overlap-
ping a few number of elements and covering a part of the elementary boundaries. Using the
elementary submeshes of Figure 4, the most natural choice for patch subdomains is to associate
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them with the nodes of the mesh: each patch is associated with a node and includes a fourth of
every element where the node belongs (see Figure 5 for an illustration).

The idea is to use this new partition to de"ne new local problems for the error and to solve
them. Local boundary conditions are imposed in the same fashion as in the previous phase
(interior estimate); that is, homogeneous Dirichlet boundary conditions on the whole boundary of
each patch. A new approximation to the error is obtained. This new approximation takes
non-zero values in the boundary of the elements, where the interior estimate e vanishes. In
order to solve these problems each patch must be discretized by a patch submesh. The dis-
cretization of Equation (9) using this patch submesh leads to a system of equations analogous
to Equation (11). Since patches cover the edges of the elements, the restriction of the right-
hand-side residual term of Equation (9), accounts for the residual associated with the #ux
jumps.

Using the patch estimate, local and global estimates can be computed following equations
analogous to (11) and (13). The patch estimate must be forced to verify an additional restriction in
order to be properly added to the previously computed interior estimates: it must be orthogonal
to the global interior estimate e. This is done to cancel the component of the patch estimate that
has already been included in the interior estimate, see [32, 33] for details. This orthogonality
condition can be easily implemented modifying the system of equations that gives the patch
estimate, using the Lagrange multiplier technique [37].

Thus, the interior estimate e is completed and a new approximation to eh3 is found. Since it is
computed solving only local problems the new approximation is denoted by e

L
.

3.2. Accounting for pollution errors

The two phases of the error estimator presented above are based on local computations.
However, the reference error eh3 has a global de"nition that takes into account the errors
propagating from one zone of the domain to another. These are called pollution errors: for
instance, corner singularities on the boundary pollute the solution in the whole domain introduc-
ing errors [38]. Therefore, the obtained estimate, as well as all the estimators based on local
computations, ignore the existence of pollution errors.

Summing up the contribution of the interior and patch estimate an approximation to the error,
e
L
, based on local computations is found. But e

L
Oeh3 and the di!erence, e

G
:"eh3!e

L
is a global

error that cannot be approximated using local computations. The problem is now how to
approximate e

G
by a low cost but global computation.

The vector e
G

is discretized in the reference mesh of element size h3 (because both eh3 and e
L

are de"ned over the "ne mesh). Thus, its computation is expensive (equal to the cost
of Equation (9). However, an approximation e*

G
can be obtained over the coarse mesh.

This approximation to the global error veri"es the following system of equations
(see [32]):

K
h
e*
G
"!f */5h (e

L
) (14)

The system of Equations (14) has the same matrix as the original Equation (6). Then, if a direct
method has been used to solve Equation (6), the matrix is already factorized and the cost of
solving Equation (14) is low. Note that, in order to compute the right-hand side term of Equation
(14), the integrals over elements of the coarse computational mesh which de"ne each component
of f */5h (e

L
) require a function, e

L
, de"ned on the "ner reference mesh.
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Figure 6. Graphic interpretation of reference error in non-linear problems and error estimation
using tangent approximation.

3.3. Error estimator for non-linear problems

If the problem is non-linear, Equation (9) does not hold and the only available equation for the
error is Equation (7). That is, the reference error veri"es

f */5h3 (u
h
#eh3 )"f %95h3

This is a general non-linear equation and must be solved using any standard non-linear solver. In
fact, this problem is equivalent to "nding the reference solution uh3 (recall that uh3"u

h
#eh3 ).

However, here, the unknown eh3 is small compared with uh3 and, consequently, this non-linear
problem is much easier than the original one. Moreover, if this assumption is true and the tangent
matrix is available, the internal force vector can be approximated by a linear Taylor expansion,
that is,

f */5h3 (u
h
#eh3 )+f */5h3 (u

h
)#KT, h3 (uh

)eh3 (15)

where KT, h3 (uh
) is the tangent matrix describing the linear behaviour of the system (discretized with

the "ner mesh) around u
h
.

Replacing Equation (15) in Equation (7), a new error equation is found:

KT, h3 (uh
)eh3"!rh3 (uh

) (16)

where rh3 (uh
) is the residual, following the de"nition given in Equation (9). It is worth noting that

Equation (16) is linear and has exactly the same structure of Equation (9).
Following the idea of the graphic illustration of Figure 3, Figure 6 shows how the non-linear

case can be treated using a tangent approximation. The reference error is approximated using
a tangent approximation of the curve representing the behaviour associated with the "ner mesh.
In this case, due to the non-linearity, the curves describing the behaviour of the internal forces are
not straight lines.

The main idea of the generalization of the error estimator to non-linear cases is to reproduce
the same structure of the linear case with a di!erent equation for the error. Thus, again in this
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case, the previous idea is used and the estimation of the error is splitted in two steps. First,
elementary problems are solved with null error boundary conditions, and an interior estimate is
computed. Second, the restriction of Equation (16) to each one of the patches is solved. Moreover,
the estimation of the global (pollution) error can also be reproduced in this context. In fact, once
the error is set as the solution of the linear equation (16), the structure and the philosophy of the
linear estimator can be fully respected and, consequently, the non-linear generalization inherits
all the properties of the linear counterpart.

Recall that, even in this non-linear case, the energy of the solution may be measured using
a simple scalar product: Ee

k
E2"!eT

k
r%
k
. If the tangent approximation is used and the tangent

matrix is symmetric positive de"nite, this energetic quantity is the measure associated with the
tangent matrix and, consequently, has a precise physical meaning.

3.4. Adaptivity based on error estimation

Once the error is estimated, the adaptive procedure requires a remeshing criterion in order to
generate the input for the mesh generator. The error estimator furnishes local measures of
the error in each element, that is, Eeh3 Ek for k"1,2 . This set of numbers describes the
spatial distribution of the error. The input of a mesh generator is a distribution of desired
element size in the computational domain. Generally, this is described by the desired element
size in each element of the current mesh, that is, h)

k
for k"1,2 . Thus, a remeshing criterion is

required to translate Eeh3 Ek into h)
k
.

Di!erent remeshing criteria have been de"ned [39}42] leading to quite di!erent optimal
meshes. This is because the underlying optimality criteria are di!erent. In fact, all these remeshing
criteria tend to equidistribute the error in some sense. The choice of the error function that has to
be uniform is related with the underlying optimality criterion. In the examples presented in
Section 4, two remeshing criteria are used and it is shown how the obtained meshes are very
di!erent.

In the following, the quadrilateral mesh generator developed by Sarrate [43] is used. This mesh
generator supplies excellent unstructured meshes, both ensuring the prescribed element size and
the regularity of the elements.

4. NUMERICAL EXAMPLES

Two examples are presented in this section. Both of them reproduce the compression of a plane
strain rectangular specimen. In order to induce the strain localization in the specimen, some
imperfection must be introduced. Typically, these imperfections are introduced by either a weaker
element or a geometric imperfection [14, 21]. Here, geometric imperfections are used: circular
openings inside the material create a weaker zone in the specimen. The di!erence between the two
presented examples is the number and the location of these circular openings. In the "rst example
the specimen has one centred circular opening and, consequently, the two axes of symmetry allow
to study only one fourth of the specimen (see Figure 7). In the second example, the specimen has
two circular openings symmetric with respect to the centre. That allows to study only one-half of
the specimen (see Figure 8). In both examples the tests are driven by imposing the velocity at the
top of the specimen.
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Figure 7. Rectangular specimen with one centred imperfection.

Figure 8. Rectangular specimen with two symmetric imperfections.

4.1. Rectangular specimen with one imperfection

As shown in Figure 9, the collapse mechanism in this example is formed by two strain localization
bands and softening behaviour is observed. In Figures 10 and 11 cross-sections of equivalent
inelastic strain and Von Mises stress are shown. It can be seen that strain grows in the localization
band along the loading process, but Von Mises stress remains almost constant once the failure
mechanism is developed. Recall that all the deformation is localized along the band. Once the
band is developed, the specimen behaves like two sliding rigid blocks: the material inside the band
is practically #owing.
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Figure 9. Description of Example 1.

Figure 10. Evolution of the pro"le of the equivalent inelastic strain across the shear band
along the normal direction (A}A@).

This simple example has been used to study the in#uence of the imperfection size and the
loading velocity in the resulting localization band. First, for a given load velocity, three problems
have been examined. The reference problem has an imperfection of radius R"2.5 mm as shown
in Figure 7. Two other problems have been studied with radii R

4.!--
"1.25 mm and
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Figure 11. Evolution of the Von Mises equivalent stress (solid line) and the yield stress
(dashed line) in the loading process.

R
-!3'%

"5 mm. As shown in Figure 12, the specimen with the large imperfection has the same
band width than the reference one. On the contrary, the specimen with the small imperfection has
a narrower band in the neighbourhood of the imperfection. However, far enough from the
imperfection, the width of the band is practically the same as in the other cases. In fact, if the
loading process with the small imperfection continues, when the imposed displacement is large

100 P. DIDEZ, M. ARROYO AND A. HUERTA

Copyright ( 2000 John Wiley & Sons, Ltd. Mech. Cohes.-Frict. Mater. 2000; 5:87}112



Figure 12. In#uence of the imperfection size: contours and pro"les of the inelastic strain.

enough (e.g. d"0.19 mm, see Figure 12) the band width is practically the same as the one
obtained with larger imperfections. Thus, the imperfection size plays a role in the determination
of the band width only if it is small. Moreover, this in#uence is only local and disappears at large
load levels.

Second, the specimen with R"2.5 mm has been studied with di!erent loading velocities, see
Figure 2. As expected (see discussion in Section 2 on viscoplastic regularization), when the load
velocity decreases, the viscoplastic solution tends to the elastoplastic one. Thus, if loading velocity
is very small the band width is very narrow and, from a practical point of view, the viscoplastic
solution has the same problems as the elastoplastic: (1) pathological mesh dependence and (2) an
almost vertical softening branch with the associated convergence di$culties, see [27] for further
details.

An adaptive procedure has been used. First, the computations are carried out with a coarse
almost uniform mesh. Then, the error is estimated at the end of the loading process. Using the
estimated error distribution, a remeshing criterion and a mesh generator, a new mesh is created
and the computations are carried out from scratch. This is repeated until the estimated error is
below some acceptability requirements.

Firstly, two series of adapted meshes following the Li and Bettess [41] optimality criterion are
presented. This remeshing criterion seeks uniform error distribution (EeE

k
constant for every k).

In the adaptive procedure of Figure 13 the error is estimated only locally (interior and patch
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Figure 13. Remeshing process using Li-Bettess criterion, without pollution errors, for a pre-
scribed accuracy of 0.5 per cent.

estimate), in the series shown in Figure 14 pollution errors are also taken into account. The goal
in both examples is to obtain an error below the 0.5 per cent. Discretizations corresponding to the
local estimate have less elements than the ones obtained considering the local estimate have less
elements than the ones obtained considering the pollution error. This is because the local error is
lower and, consequently, a mesh with less elements su$ces. However, the "nal distributions of
elements are very similar. In fact, the pollution error is only relevant in the "rst mesh which is
coarse and roughly uniform. Once the discretization is re"ned where it is needed (in particular in
the vicinity of the singularities) the pollution e!ects are attenuated and become negligible.
Considering pollution error does not make a big di!erence in the "nal results. This result was
expected given the strong ellipticity of the problem. Figure 14 shows also the evolution of the
error distribution along the adaptive procedure. The distribution of the error tends to be uniform,
as expected.

In Figure 15 the adaptive procedure is carried out using a di!erent remeshing criterion. Here,
the uniform local accuracy (ULA) optimality criterion introduced in Reference [42] which is
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Figure 14. Remeshing process using Li-Bettess and considering pollution errors for a prescribed accuracy of
0.5 per cent: succession of meshes and estimated error distributions.

based on obtaining a uniform distribution of local relative errors (EeE
k
/EuE

k
constant for every k)

is used. In Figure 15 the accuracy maps (local relative error distribution) for the "nal mesh in
Figure 14 is also shown. Using the ULA criterion the accuracy is almost uniform over the domain
but it requires more elements than the Li and Bettess criterion. This result was expected because
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Figure 15. Remeshing process using ULA criterion and considering pollution errors for a prescribed
accuracy of 0.5 per cent: succession of meshes, accuracy distributions and comparison with LB "nal mesh.

the Li and Bettess criterion is optimal in the sense that it produces the mesh with less elements
given a globally acceptable error. The ULA criterion guarantees uniform accuracy, even locally,
but it has a larger cost.

Note that the numerical examples con"rm that the problem has been regularized because the
behaviour of the solution does not vary along the remeshing process. The error estimation is
robust in the sense that the adaptive procedure converges (the "nal mesh has the desired error).
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Figure 16. Remeshing process using Li-Bettess for a prescribed accuracy of 1.5 per cent: succession of
meshes and estimated error distributions.

4.2. Rectangular specimen with two imperfections

The mechanism of failure in this case is much more complex. In fact, it depends strongly on the
position of the circular openings. Two cases are examined with di!erent horizontal gaps between
the openings, see Figure 8. In this example, the main concern is to capture the true collapse
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Figure 17. General solution for Example 2a: Reaction versus imposed displacement, deformation of mesh
5 and inelastic strain contours for meshes 0 and 5.

mechanism which minimizes the global energy. Thus, the goal is to reduce a global measure of the
error. This is optimally done using the Li and Bettess remeshing criterion [41] and therefore is the
one used for this example. Thus, the number of elements in the obtained meshes is minimum for
a prescribed global accuracy even though the prescribed accuracy is not reached locally. If local
accuracy is needed the ULA criterion, [42], should be used. In this case, the global mechanism
will not vary but accurate stress distribution can be found in the localized area at the expense of
larger computational cost.

Example 2a. (Distant openings)

If the horizontal distance between the circular openings is large enough, the behaviour is
similar to the previous case. One shear band is developed aligned with the two openings. The
remeshing process (see Figure 16) leads to a mesh with a large number of elements concentrated
along a single shear band. Figure 17 shows the general behaviour of the solution: the softening
force}displacement curve is similar to the previous case and the equivalent inelastic strain is
concentrated along the shear band, both in the original and the "nal meshes of the remeshing
process. That is, the captured collapse mechanism is the same in both meshes.
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Figure 18. Remeshing process using Li-Bettess for a prescribed accuracy of 1.5 per cent:
succession of meshes and estimated error distributions.

Example 2b. (Close openings)

On the contrary, if the circular openings are closer, the behaviour of the solution is much more
complex and the original mesh is not able to reproduce such a mechanism.
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Figure 19. Numerical bifurcation in the "rst meshes: mesh deformation ampli"ed 40 times and equivalent
inelastic strain contours.

Figure 18 shows the succession of meshes in this case. It is worth noting that, in the "nal mesh,
according to the concentration of elements, two bands are developed. In fact, the resulting bands
are not aligned with the imperfections (as in Example 2a), but have opposite inclination. Indeed
Figure 19 shows how the computed equivalent inelastic strain and the deformation evolve along
the remeshing process. Only after two remeshing steps the mesh captures two bands. In the
previous meshes the discretization is not accurate enough and only one band is completely
developed. Since large deformations are considered, once the "rst band evolves enough, the
kinematic mechanism associated with this band locks: then a second band appears as a new
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Figure 20. Two consecutive failure mechanisms for the "nal mesh: mesh deformation ampli"ed 40 times and
equivalent inelastic strain contours at two moments of the loading history.

deformation mode with less energy. Figure 19 shows also how the force}displacement curves for
meshes 0 and 1 are qualitatively di!erent from meshes 2 to 5. In fact, the shape of the
force}displacement curve for meshes 2}5 are practically identical and have two in#ections in the
descending branch. In Figure 20 it is shown how the in#ections correspond to the formation of
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a new failure mechanism. The solution given by the last mesh is obviously more accurate than the
original one because the energy of deformation (area under the force}displacement curve) is
lower. In fact, since the error is controlled in energy norm, one can be sure that the actual curve,
associated with the exact solution, is not too far from the obtained curve (the error in energy norm
is less than 1.5 per cent and, consequently the di!erence of the area under the curves is less than
1.5 per cent). The "rst meshes are not able to reproduce the behavior of the actual solution
because the elements along the later band (which develops in a further stage of the loading
process) are too large and, consequently, the discretization is too sti!. Then, the size of the
elements in this zone does not allow the inception of softening. On the contrary, once the
remeshing process introduces small enough elements along the second band, the second mecha-
nism can be captured.

Thus, this example demonstrates that adaptivity based on error estimation is an essential tool
for the determination of a priori unpredictable "nal solutions. Without this adaptive strategy, the
initial mesh (mesh 0 in Figure 18) and the resulting solution could be regarded as correct, and the
second mechanism would not be detected.

5. CONCLUDING REMARKS

The Perzyna viscoplastic model has been used in order to obtain a regularized softening model
allowing to simulate strain localization phenomena. This model has been applied to a quasistatic
examples, where inertia terms are negligible. The viscous regularization of quasistatic processes
has been discussed: the rate e!ects are still present and regularize the problem. However
a di!erence between the dynamic and the quasistatic cases must be mentioned: in quasistatics, the
internal length associated with the obtained band width is no longer only a function of the
material parameters but also depends on the boundary value problem (geometry and loads,
specially loading velocity).

An adaptive computation has been successfully applied to softening viscoplastic materials
showing strain localization. As the key ingredient of the adaptive strategy, a residual-type error
estimator has been generalized to deal with such highly non-linear material model. Moreover,
this estimator has been designed in order to account for pollution errors. However, as expected,
the pollution errors have been found to be negligible, specially in the re"ned meshes, with
elements concentrated in the vicinity of the singularities.

In the numerical examples, the adaptive process is shown to be able to detect complex collapse
modes that are not captured by a "rst, even if "ne, mesh. This is specially interesting for softening
localization problems, where small variations in the geometry of the problem may induce very
di!erent mechanical behaviour. In this situation the location of the localization band cannot be
predicted a priori. For instance, in one of the examples the "rst mesh is not able to reproduce the
two consecutive mechanisms captured with the "nal mesh. The second mechanism is associated
with a second shear band appearing in a further stage of the loading process. However, if
adaptivity is not used, the "rst mesh would be regarded as correct and one never would detect the
second mechanism. In fact, even if some heuristic remeshing is done, based on solution obtained
with the "rst mesh, the mesh would not be re"ned along the second shear band, that is, where it is
needed to capture the second mechanism. On the contrary, if a remeshing strategy based on the
error distribution is used, the elements are concentrated along this second band and the new mesh
is able to reproduce the two mechanisms. Consequently, adaptive strategies based on error
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estimation are essential to detect the collapse mechanism and to assess the location of the
elements in an optimal mesh.

REFERENCES

1. Huerta A, Pijaudier-Cabot G. Discretization in#uence on the regularization by two localization limiters. Journal of
Engineering Mechanics ASCE 1994; 120(6):1198}1218.

2. Oden JT, Demkowicz L, Rachowicz W, Westermann TA. Toward a universal h-p adaptive "nite element strategy,
part 2. A posteriori error estimation. Computer Methods in Applied Mechanics and Engineering 1989, 77:113}180.

3. Zhu JZ, Hinton E, Zienkiewicz OC. Mesh enrichment against mesh regeneration using quadrilateral elements.
Communications in Numerical Methods in Engineering 1993; 9:547}554.

4. Ortiz M, Quigley IV JJ. Adaptive mesh re"nement in strain localization problems. Computer Methods in Applied
Mechanics and Engineering 1991; 90:781}804.

5. Simo JC, Oliver J, Armero F. An analysis of strong discontinuities induced by strain-softening in rate-independent
inelastic solids. Computational Mechanics 1993; 12:277}296.

6. Armero F, Garkipati K. An analysis of strong discontinuities in the multiplicative "nite strain plasticity and their
relation with the numerical simulation of strain localization in solids. International Journal of Solids Structure 1996;
33(20}22):2863}2885.

7. Larsson R, Runesson K. Element embedded localization band based on regularized displacement discontinuity.
Journal of Engineering Mechanics, ASCE 1996; 122:402}411.

8. de Borst R. Simulation of strain localization: a reappraisal of the cosserat continuum. Engineering Computations 1991;
8:317}332.

9. Belytschko T, Baz\ ant P, Hyun Y, Chang TP. Strain softening materials and "nite element solutions. Computers and
Structures 1986; 23:163}180.

10. Pijaudier-Cabot G, Baz\ ant ZP. Nonlocal damage theory. Journal of Engineering Mechanics, ASCE 1987;
113:1512}1533.

11. de Borst R, MuK hlhaus HB. Gradient dependent plasticity: formulation and algorithmic aspects. International Journal
of Numerical Methods in Engineering 1992; 35:521}540.

12. Lasry D, Belytschko T. Localization limiters in transient problems. International Journal of Solids and Structures 1988;
24:581}597.

13. Sluys LJ, de Borst R. Wave propagation and localization in rate-dependent cracked medium. Model formulation and
one dimensional examples. International Journal of Solids and Structures 1992; 29:2945}2958.

14. Belytschko T, Moran B, Kulkarni M. On the crucial role of imperfections in quasi-static viscoplastic solutions.
Journal of Applied Mechanics, ASME 1991; 58:658}665.

15. Perzyna P. Fundamental problems in viscoplasticity. In Recent Advances in Applied Mechanics, Vol. 9. Academic
Press: New York, 1966; 243}377.

16. Pastor M, Peraire J, Zienkiewicz OC. Adaptive remeshing for shear band localization problems. Archive of Applied
Mechanics 1991; 61:30}39.

17. Yu J, Peric D, Owen DRJ. Adaptive "nite element analysis of a strain localization problem for the elastoplastic
cosserat continuum. Proceeding of the 3rd International Conference on Computational Plasticity, COMPLAS III,
Owen DRJ et al. (eds). Pineridge Press: Swansea, 1992; 551}566.

18. Pijaudier-Cabot G, BodeH L, Huerta A. Arbitrary Lagrangian}Eulerian "nite element analysis of strain localization in
transient problems. International Journal for Numerical Methods in Engineering 1995; 38:4171}4191.

19. Babus\ ka I, DuraH n R, RodrmHguez R. Analysis of the e$ciency of an a posteriori error estimator for linear triangular
"nite elements. SIAM (Society for Industrial and Applied Mathematics) Journal of Numerical Analysis 1992;
29:947}964.

20. Babus\ ka I, RodrmHguez R. The problem of the selection of an a posteriori error indicator based on smoothening
techniques. International Journal for Numerical Methods in Engineering 1993; 36:539}567.

21. Sluys LJ. Wave propagation localization and dispersion in softening solids. Doctoral ¹hesis, Delft University of
Technology, 1992.

22. Khan, Huang. Continuum ¹heory of Plasticity. Wiley: New York, 1995.
23. RodrmHguez-Ferran A, Casadei F, Huerta A. ALE stress update for transient and quasistatic processes. International

Journal for Numerical Methods in Engineering 1998; 43:241}262.
24. Owen, Hinton. Finite Elements in Plasticity. Pineridge Press: Swansea, 1980.
25. Needleman A. Material rate dependence and mesh sensitivity in localization problems. Computer Methods in Applied

Mechanics and Engineering 1988; 67:69}85.
26. Wang WM, Sluys LJ, De Borst R. Interaction between material length scale and imperfection size for localization

phenomena in viscoplastic media. European Journal of Mechanics A/Solids 1996; 15(3):447}464.

111ERROR ESTIMATION FOR VISCOPLASTIC SOFTENING MATERIALS

Copyright ( 2000 John Wiley & Sons, Ltd. Mech. Cohes.-Frict. Mater. 2000; 5:87}112



27. Arroyo M, DmHez P, Huerta A. Error estimation and adaptivity in strain localization problems with softening materials.
Monograph CIMNE no. 40, Barcelona, 1997.

28. Strouboulis T, Haque KA. Recent experiences with error estimation and adaptivity, Part I: Review of error estimators
for scalar elliptic problems. Computer Methods in Applied Mechanics and Engineering 1992; 97:399}436.

29. Strouboulis T, Haque KA. Recent experiences with error estimation and adaptivity, Part II: Error estimation for
h-adaptive approximations on grids of triangles and quadrilaterals. Computer Methods in Applied Mechanics and
Engineering 1992; 100:359}430.

30. Cirak F, Ramm E. A-posteriori error estimation and adaptivity for linear elasticity using the reciprocal theorem.
Computer Methods in Applied Mechanics and Engineering 1998; 156:351}362.

31. DmH ez P, Egozcue JJ, Huerta A. A posteriori error estimation for standard "nite element analysis. Computer Methods in
Applied Mechanics and Engineering 1998; 163:141}157.

32. Huerta A, DmH ez P. Error estimation including pollution assessment for nonlinear "nite element analysis. Computer
Methods in Applied Mechanics and Engineering 2000; 181:21}41.

33. DmH ez P, Egozcue JJ, Huerta A. Analysis of the average e$ciential of an error estimator. In Finite Element Methods:
Superconvergence, Post-processing and a Posteriori Error Estimates, Kr\ mH z\ ek M. et al. (eds). Marcel Dekker: New York,
1997; 113}126.

34. Bank RE, Weiser A. Some a posteriori error estimators for elliptic partial di!erential equations. Mathematics of
Computation 1985; 44:283}301.

35. Ainsworth M, Oden JT. A uni"ed approach to a posteriori error estimation using element residual methods.
Numerische Mathematik 1993; 65:23}50.
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