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SUMMARY

A Petrov-Galerkin formulation based on two different perturbations to the weighting
functions is presented. These perturbations stabilize the oscilations that are normally ez-
hibited by the numerical solution of the transient advective—diffusive equation in the vecinity
of sharp gradientes produced by transient loads and boundary layers. The formulation may

be written as a generalization of the Galerkin Least Square method.
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5t Fgmz T8, =0

with initial condition

¢(zvt0) =0

and boundary conditions

¢(0,2) =0
$(2,1) =1

(1.2)

solved using a f-scheme for the time integration with § = 1/2 and 14 equal size linear
finite elements. With k& = 1 and v = 10~3 the solution is dominated by diffusion and

shows strong oscillations at the early stages of the calculation.
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Fig. 1 First 3 time steps and 20th time step
for the diffusive dominat problem.
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shock capturing term to stabilize the reactive effects. However, this approach introduces
a non-linearity even in linear one—dimensional problems.

To the authors knowledge, none of the above mentioned ideas on reactive—difusion—
advective problems have been used to solve the transient advective—diffusion equation.
In this paper we will use the approach reported in [8], which may also be seen as a
generalizaton of the Galerkin Least Square method (GLS),to approximate the solution of
the time dependent equation (1.1).

It is well known that in the Petrov—Galerkin approach, a “balancing diffusion” k* is
added in order to have the exact nodal solution of the homogeneous one-dimensional linear
problem. In the present formulation, both a “balancing diffusion” k* and a “balancing
advection” u* will be added as shown below.

Let _

k=k+k*

t=u+u*
be the total diffusion and advective velocity coefficients. For a uniform mesh of size h
and linear finite elements the Galerkin formulation applied to Eq(2.3) gives the following

difference equation at each node ¢ :
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The exact solution to equation (2.3) with f; = 0 is of the form

b(z) = ae*® 4 be*3® (2.8)
where
U u\2 ¢
Al, 9 = ﬂ + (E) + E _,(2.9)

Replacing (2.8) in (2.7) we find:

2 + eAlh + eAgh + 26(A1+A2)h
6(1 — errh)(1 — erah)
1 _ e()q-{-Az)h
= ¢h
(1 . eAlh)(l _ eAgh)

kE+k* = —ch?®

(2.10)

u+ u* (2.11)

When the reactive term c is small, the k* tends to the known balancing diffusity:



2 uh uh
k* = —k+ ? coth (%) (2.12)

and the numerical advection u* goes to zero.

On the other hand, when the advective term is small, the numerical diffusion behaves
like:

h? h?
k*:_k+66 n c
4 sin h? (,/%)

and u* goes to zero, which is the result obtained by Tezduyar et al. [Ref.10] for reactive

(2.13)

dominant flows.

3. THE GENERALIZED GALERKIN LEAST SQUARE METHOD (GLS,)

A consistent alternative to introducing the numerical coefficients &* and u*, as shown
in the previous section, is to find weighting functions that yield the same results as Eqs.
(2.7) through (2.11). In this way the physical equation is not changed, and the weighting
functions are perturbated in order to obtain the desired effect. These methods are called, in
general, Petrov-Galekin methods [Ref. 1-3]. The best known Petrov—Galerkin methods are
the streamline—diffusion algorithms in which the weighting functions are perturbed in an
unsymmetrical way in the upwind direction and the perturbation function is proportional
to the gradient of the weighting function. The SUPG (streamline upwind Petrov-Galerkin)
method is one of them, and it has been shown to be effective for the finite element solutions
of linear advective—diffusive systems [Ref.3]. More recently, the Galerkin Least Square
method [Ref. 9] has been introduced as a general methodology to obtain consistent finite
element schemes that can accomodate a wider class of interpolation functions. In the
GLS approach, the perturbation functions are not only proportional to the gradient of the
shape functions , but to the whole operator including the Laplacian of the function. We
will generalize this concept in order to include the stabilization of the reactive—diffusive—
advective problem.

Let equation (1.1) be written as

Zﬁi(d’) =f (3.1)

where



La($) = —V - kV (3.2)
L1(¢) = uVe (3.3)
Lo($)=c ¢ (3.4)

A weighted residuals method applied to equation (3.1) consists in finding $ such that
$d=> wia)d (3.5)
=1
by imposing that

/ﬂ () £i($) - £)an =0 (3.6)

where w; are weighting functions.
The following approaches are recovered by an appropiate selection of the weighting

functions:

a) The Galerkin approach

&
Il
g

(3.7)

b) The SUPG technique

W =w 4 7L1(P) (3.8)

where 7 is the upwind coefficient necessary to achieve stability in the proposed scheme

¢) The GLS method

& =w+ (3 L)) (3.9)

The name of Least—Square method was used because the perturbation to the weighting
functions are the same as the operator itself.
In the proposed Generalized Galerkin Least Square method (GLS2) w is given by

2

b =w+ Yy 75 Li(d) (3.10)

i=0

which requires the use of different stabilizing parameters for each of the operators involved.



In fact, we can normalize one of the coefficients 7; in order to have 2 independent

parameters as

W =w+ nuVw + 7(—V - kVw) (3.11)

This formulation, includes all the previous ones as particular cases i.e.,

71 = 19 = 0 — Galerkin
71 # 0; 7, = 0 — SUPG
71 =72 # 0 — GLS
1 #12 # 0 — GLS,

In order to evaluate the stabilizing parameters 73 and 7, we will write the weighting
functions (3.11) as in Ref [8]
W =w + ahey,Vw + yP,(z) (3.12)

where

71 |ul
h

h is the size of the element and e, is unit vector in the direction of u.

i Y=—k72; Py(z)=V-Vw (3.13)

o =

The weak form of equation (3.6) is

/(vus quS—l—u';uV¢+'J:c¢—zBf)dQ—/zbquS-ndI‘:O (3.14)
Q T

and using (3.12)

/(Vw kVéo+w uVed+wec d—w f)dQd
Q

+/(P2 kahe,Vé+Vwahe,Vp+Vwahceyd—Vw ah e,f)dd
Q
+/(VP2’YkV¢+P2’YUV¢+P2 ¢y ¢— Py £

Q

- /(w +ae,Vw+vy P) kVé-ndl' =0 (3.15)
P -

For linear finite elements (V¢ = constant) and constant f , equation (3.15) shows
that the results involve specific averages of P;(z) and VP,(z) . For simplicity, we denote

such averages as:



1 1
a= —/ Py(z)dQ; m; = —/ z; Py(z); Po =/ V Py(z)dQ (3.16)
QC ne th ﬂe nc

where 2. is the volume of each finite element.

For linear finite elements, the definition of P,(z) as (3.13) is rather arbitrary because
V . Vw vanishes within each element and it is a Dirac §-function at the interfaces. On
the other hand, equation (3.15) shows that the results are independent of the precise
definition of P,(z), depending only on some average values over each element. Thus, any
function giving the same a, m; and P, values yields the same results. In Ref. [8], the
authors analyzed the effect of varying the parameters a, m; and Py. A basic requirement
is that the proportionality constants a and -y must be bounded for all combinations of the

coefficients k and ¢ . In that reference, the use of

a=1/6 ; m;=1/12 and Py =0 (3.17)

was proposed, but different values may be used with similar results.

The stabilizing parameters a and « (and then, 7, and 73) are computed so as to obtain
the exact nodal values in the one—dimensional homogeneous problem. This situation is
equivalent to the use of balancing diffusion k* and balancing advection u* defined in (2.10)
and (2.11) respectively.

The following Peclet and reaction dimensionless numbers are defined

h 2
Pe= % and r= % (3.18)

in which 7 , for transient problems, is a function of the time step and the time integration
technique used according to eq.(2.5).
The values of o and « are obtained by solving the following 2 X 2 system:

o el 1= 15 619
where
gj1 = 4Pe(1 — cosh(};)) — r sinh(};)
gj2 = 2cosh(A;)(r m; — Py) + 4Pe a sinh();)+
+2(Pp—m;r+ar) (3.20)
hy = 2cosh(,\j)(%r 1)+ 2Pe sinh();) + (2 + gr)
\j = Pe+ (—1)"(Pe? +1)3



Figure 2 shows the curves of a and < for different values of Pe and 7 when a =
1/6; m; =1/12 and Py, = 0.
It must be noted that both parameters o and v (and then 7; and 72) depend on both

dimensionless numbers Pe and r, i.e.,
71 =71(Pe, 1)
12 =72(Pe, T)

In the limit case in which one of these dimensionless numbers becomes zero, (eg: » = 0 for
the stationary case, or Pe = 0 for a non—advective problem), one of the parameters becomes

zero, and the other one becomes a function of the remaining dimenssionless number,

T:O—){Tl:Tl(Pe)

7'2:0
pe—0—{ =0
T2 = T2(7)

4. THE TRANSIENT SOLUTION

Using the GLS,; method with the stabilizing parameters proposed in previous section,
the reactive-advective—diffusive problem with constant source terms can be solved giving
exact nodal values in the one—dimensional case. However, the transient advective-diffusse
problem proposed in equation (2.3) has a variable generalized source term f™ which is not
constant even in the case when the source term f is. In particular, in the stationary limit,
the generalized source terms f™ becomes equal to the reactive term c¢™*! (see equations
(2.3). and (2.4)). In this limit, the equation must be solved as a non-reactive equation and
the stabilizing parameter becomes the optimal parameter for the advective-diffuse case.

To overcome this difficulty a modification on the definition of the coeficient ¢ is intro-

duced. Equation (2.3) is now written: ‘

c*(z, )"t — V- kVH™ T + uVe ! =0 (4.1)
with
. c ¢n+1 _ fn

The problem is transformed into a homogeneous one but with a nonlinear reactive

coefficient that varies both in space and time.
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The problem is transformed into a homogeneous one but with a nonlinear reactive
coeflicient that varies both in space and time.

This coefficient may be approximated in order to retain the linearity of the problem

using:
. c ¢n+1 = ¢n qbn _ ¢n—1
Cc (:c,t) =~ ¢n+1 ~c T (4.3)
furthermore, to obtain a constant average c*(¢) on all the domain:
n_ 4n—1

max (|$"()

This last approximation has been used in the examples presented below. It must be
noted that the value of c¢* , given by Eq.(4.4) should be used in the evaluation of the
stabilizing parameters a and 7 (or 7; and 72) only. That is, the approximation (4.4) is
introduced only for the evaluation of the perturbations to the weighting functions w but
not in the equation to be solved. This is important in order to retain the consistency of
the solution. -

Using the GLS; method for the transient advective—diffusive equation, with the ap-
proach (4.1)—(4.4) in the evaluation of the time dependent parameters, no spurious oscil-
lations during the transient part and an optimally stabilized solution near the stationary

state are ensured as it will be shown in the next examples.

5. NUMERICAL RESULTS

The problem of finding numerical approximations to the equation:

o 0’¢ 04
E—kazz +ua—0 (5.1)
with initial and boundary conditions: ¢

é(z, o) =0
#(0, t) =0 (5.2)
#(2,t)=1
is presented for various combinations of parameters and boundary conditions.
This simple equation was chosen because it has the two types of sharp gradients under
consideration. For high Peclet numbers, a boundary layer develops in the right end due
to the elliptic-hyperbolic character of the equation. On the other hand, for all Peclet



numbers, a sharp gradient appears at the right end during the first few time steps due to
the transient solution. This sharp gradient, which is similar to a shock in a fluid mechanics
problem, disappears after a few time steps if the problem is dominated by diffusion, and
it will remain as the solution approaches the stationary state if the problem is dominated

by advection.

It is important to note, that the way to eliminate the spurious oscillations is different
when the sharp gradients are induced by the transient evolution, than when they are

produced by the advective terms.

Figure 3 shows the first three time steps and the 20th time step for ¥ = 1 and » = 10.
This is a case dominated by diffusion. The time step used was At = 1072 , we use 14

equal size linear elements in space and § = 1/2 for the time integration scheme.

We can see that the Galerkin approach as well as the upwinded approach using the
standard SUPG with optimal upwinding parameter both give very similar results, with
spurious oscillations during the first time steps. These local oscillations dissappear before
the 20th time step. The solutions using the new Galerkin Least Square method (GLS,)
do not present any significant oscillations.

Figure 4 shows the same problem for u = 20. This case represents a more interesting
situation because the advective terms are important enough to induce oscillations in the
stationary state. The Galerkin approach (Fig. 4a) produces spurious oscillations at all
time steps, including the stationary state. The optimal upwinding approach stabilizes the
stationary solution but not the initial steps where large negative values of the function are
present. Figura 4c shows the perfectly stabilized GLS, solution from ¢ — 0 until the last

time step.

Finally in Figure 5 the advection dominated flow with » = 100 is tested, for which
the boundary layer is smaller than the first element, even in the stationary state. The
exact solution will be ¢ = 0 in all the interior nodes from the first time step. Figure
5a displays the oscillating behaviour obtained with the standard Galerkin approach. In
Figure 5b, the optimal upwinding solution is shown. Note that no negative oscillations
are obtained although the first three steps are over—diffusive. The solution approaches the
correct steady-state but from above, which is not in agreement with the physics of the
problem. Figure 5¢ shows the GLS, method in which the stationary solution is obtained
from the first time step.
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