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Abstract. Estimations of the grid size and computational cost for direct numerical simulation
(DNS) and large-eddy simulation (LES) of Rayleigh-Bénard convection (RBC) are presented
in the {Ra,Pr} phase space. Computational requirements to reach the so-called asymptotic
Kraichnan or ultimate regime of turbulence using DNS are far too expensive. Therefore, we
turn to LES to predict the large-scale behavior at very high Ra-numbers. However, a priori

alignment studies clearly show why the modelization of the SGS heat flux is the main difficulty
that (still) precludes reliable LES of buoyancy-driven flows at (very) high Ra-numbers. This
inherent difficulty can be by-passed by carrying out simulations at low-Pr numbers where no
SGS heat flux activity is expected. This opens the possibility to reach the ultimate regime
carrying out LES of RBC at low-Pr using meshes of 1010−1011 grid points. Nevertheless, to do
so, we firstly need to combine proper numerical techniques for LES (also DNS) with an efficient
use of modern hybrid supercomputers.

1 INTRODUCTION

Buoyancy-driven flows have always been an important subject of scientific studies with nu-
merous applications in environment and technology. The most famous example thereof is the
thermally driven flow developed in a fluid layer heated from below and cooled from above,
i.e. the Rayleigh-Bénard convection (RBC). It constitutes a canonical flow configuration that
resembles many natural and industrial processes, such as solar thermal power plants, indoor
space heating and cooling, flows in nuclear reactors, electronic devices, and convection in the
atmosphere, oceans and the deep mantle.

In the last decades significant efforts, both numerically and experimentally, have been directed
at investigating the mechanisms and the detailed scaling behavior of the Nusselt (Nu) number as
a function of Rayleigh (Ra) and Prandtl (Pr) numbers in the general formNu ∝ RaγPrβ. In this
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Figure 1: Estimation of the Nusselt number of a RBC in the {Ra, Pr} phase space given by the classical
GL theory [1] and its subsequent corrections [2]. Green solid isolines represent the log10 of the Nusselt.
Three dashed horizontal lines correspond to three different working fluids: water (Pr = 7), air (Pr = 0.7)
and liquid sodium (Pr = 0.005). Black dash-dotted line is an estimation for the onset of turbulence in
the thermal boundary layer.

regard, Figure 1 shows the predictions of theNu-number based on the classical Grossmann-Lohse
(GL) theory [1] and its subsequent corrections [2, 3] where different scaling regimes, characterized
by their corresponding exponents γ and β, are identified. Assuming this power-law scalings and
following the same reasonings as in Ref. [4] leads to the estimations for the number of grid points
shown in Figure 2 (top). This corresponds to mesh resolution requirements for DNS and clearly
explain why nowadays DNS of RBC is still limited to relatively low Ra-numbers. However,
many of the above-mentioned applications are governed by much higher Ra numbers, located
in the region of the {Ra,Pr} phase space where the thermal boundary layer becomes turbulent
(see the black dash-dotted line in Figure 2). This region corresponds to the so-called asymptotic
Kraichnan or ultimate regime of turbulence, with γ = 1/2. On the other hand, reaching such
Ra-numbers experimentally while keeping the basic assumptions (Boussinesq approximation,
adibaticity of the closing walls, isothermal horizontal walls, perfectly smooth surfaces...) is a
very hard task; therefore, the observation of the Kraichnan regime also remains elusive [2, 3].

2 LARGE-EDDY SIMULATION OF BUOYANCY-DRIVEN TURBULENCE:

CHALLENGES AND OPPORTUNITIES

2.1 Antecedents and failure of the eddy-diffusivity models

In this context, we may turn to LES to predict the large-scale behavior of incompressible
turbulent flows driven by buoyancy at very high Ra-numbers. In LES, the large-scale motions
are explicitly computed, whereas the effects of small-scale motions are modeled. Since the ad-
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Figure 2: Estimation of the mesh sizes for DNS (top) and LES (bottom) simulations of RBC in the
{Ra, Pr} phase space. LES estimations assume that thermal scales are fully resolved, i.e. no SGS heat
flux model is needed. Green solid isolines represent the log10 of the total number of grid points. Three
dashed horizontal lines correspond to three different working fluids: water (Pr = 7), air (Pr = 0.7) and
liquid sodium (Pr = 0.005). Dots displayed on top of these lines correspond to the DNS simulations
carried out in previous studies [4–6]. Black dash-dotted line is an estimation for the onset of turbulence
in the thermal boundary layer.

vent of CFD, many subgrid-scale (SGS) models have been proposed and successfully applied to
a wide range of flows. However, there still exits inherent difficulties in the proper modelization
of the SGS heat flux. This was analyzed in detail in the PRACE project entitled ”Exploring
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Figure 3: Joint probability distribution functions (PDF) of the angles (α, β) plotted on a half unit
sphere to show the orientation in the space of the mixed model. From left to right, alignment trends of
the actual SGS heat flux, q, the Daly and Harlow [7] model (Eq. 6) and the Peng and Davidson [8] model
(Eq. 5). For simplicity, the JPDF and the PDF magnitudes are normalized by its maximal. For details
the reader is referred to [9].

new frontiers in Rayleigh-Bénard convection” (33.1 millions of CPU hours on MareNostrum4 in
2018-2019), where DNS simulations of air-filled (Pr = 0.7) RBC up to Ra = 1011 were carried
out using meshes up to 5600M grid points (see dots displayed in Figure 2, top). These results
shed light into the flow topology and the small-scale dynamics which are crucial in constructing
the turbulent wind and energy budgets [5]. Moreover, it also provided new insights into the pref-
erential alignments of the SGS and its dependence with the Ra-numbers [6], highlighting that
the modelization of the SGS heat flux is the main difficulty that (still) precludes reliable LES of
buoyancy-driven flows at (very) high Ra-numbers. Shortly, large-eddy simulation (LES) equa-
tions arise from applying a spatial commutative filter, with filter length δ, to the incompressible
Navier-Stokes and thermal energy equations,

∂tu+ (u · ∇)u = (Pr/Ra)1/2 ∇2u−∇p+ f −∇ · τ, (1)

∂tT + (u · ∇)T = (Ra/Pr)−1/2∇2T −∇ · q, (2)

where u, T and p are respectively the filtered velocity, temperature and pressure, and the
incompressibility constraint reads ∇·u = 0. The SGS stress tensor, τ = u⊗ u−u⊗u, and the
SGS heat flux vector, q = uT −uT , represent the effect of the unresolved scales, and they need
to be modeled in order to close the system. The most popular approach is the eddy-viscosity
assumption, where the SGS stress tensor is assumed to be aligned with the local rate-of-strain
tensor, S = 1/2(∇u + ∇ut), i.e. τ ≈ −2νeS(u). By analogy, the SGS heat flux, q, is usually
approximated using the gradient-diffusion hypothesis (linear modeling), given by

q ≈ −κt∇T (≡ qeddy). (3)

Then, the Reynolds analogy assumption is applied to evaluate the eddy-diffusivity, κt, via a
constant turbulent Prandtl number, Prt, i.e. κt = νe/Prt. These assumptions have been shown
to be erroneous to provide accurate predictions of the SGS heat flux [9–11]. Namely, a priori

analysis showed that the eddy-diffusivity assumption, qeddy (Eq. 3), is completely misaligned
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Figure 4: Comparison of LES (and no-model) versus DNS results of liquid-sodium (Pr = 0.005) RBC at
Ra = 7.14× 106 and 7.14× 107. Left: average Nusselt for different meshes at Ra = 7.14× 106 (top) and
Ra = 7.14 × 107 (bottom). Corresponding computational costs at the MareNostrum 4 supercomputer
are shown in the top of the plots. Right: LES results of turbulent kinetic energy at cavity mid-width for
a 64× 36× 36 (top) and 96× 52× 52 (bottom) meshes compared with the DNS results obtained with a
mesh of 488× 488× 1280 ≈ 305M .

with the actual subgrid heat flux, q (see Figure 3, left). In contrast, the tensor diffusivity
(nonlinear) Leonard model [12], which is obtained by taking the leading term of the Taylor
series expansion of q,

q ≈
δ2

12
G∇T (≡ qnl), (4)

provides a much more accurate a priori representation of q (see Figure 3, left). Here, G ≡ ∇u

represents the gradient of the resolved velocity field. It can be argued that the rotational
geometries are prevalent in the bulk region over the strain slots, i.e. |Ω| > |S| (see Refs [4, 9]).
Then, the dominant anti-symmetric tensor, Ω = 1/2(G − GT ), rotates the thermal gradient
vector, ∇T , to be almost perpendicular to qnl (see Eq.4). Hence, the eddy-diffusivity paradigm
is only valid in the not-so-frequent strain-dominated areas.

2.2 Nonlinear SGS heat flux models for LES

Since the eddy-diffusivity, qeddy, cannot provide an accurate representation of the SGS heat
flux, we turn our attention to nonlinear models. As mentioned above, the Leonard model [12]
given in Eq.(4) can provide a very accurate a priori representation of the SGS heat flux (see
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Figure 3, left). However, the local dissipation (in the L2-norm sense) is proportional to ∇T ·
G∇T = ∇T · S∇T + ∇T · Ω∇T = ∇T · S∇T . Since the velocity field is divergence-free, λS

1 +
λS
2 + λS

3 = ∇ · u = 0, the eigenvalues of S can be ordered λS
1 > λS

2 > λS
3 with λS

1 > 0 (extensive
eigendirection) and λS

3 6 0 (compressive eigendirection), and λS
2 is either positive or negative.

Hence, the local dissipation introduced by the model can take negative values; therefore, the
Leonard model cannot be used as a standalone SGS heat flux model, since it can produce a finite-
time blow-up. Attempts to overcome these instability issues are the so-called mixed model [10],
where the Leonard model is combined with an eddy-diffusivity model, or the regularization
technique proposed in [13] that projects the Leonard model onto a tensor with no energy transfer
in case of a negative dissipation event. Similar stability problems are encountered with the
nonlinear tensorial model qPD proposed by Peng and Davidson [8],

q ≈ Ctδ
2
S∇T (≡ qPD), (5)

q ≈ −TSGSτ∇T = −
1

|S|

δ2

12
GG

T∇T (≡ qDH), (6)

whereas the nonlinear model qDH proposed by Daly and Harlow [7] relies on the positive semi-
definite tensor GGT . Here, TSGS = 1/|S| represents the SGS timescale. Notice that the model
proposed by Peng and Davidson, qPD, can be viewed in the same framework if the SGS stress
tensor is estimated by an eddy-viscosity model, i.e. τ ≈ −2νeS and TSGS ∝ δ2/νe. These two
models have shown a much better a priori alignment with the actual SGS heat flux, especially
the DH model (see Figure 3, middle). Moreover, the DH is numerically stable since the tensor
GGT is positive semi-definite. Hence, it seems appropriate to build models based on this tensor.
However, the DH model does not have the proper near-wall behavior, i.e. q ∝ 〈v′T ′〉 = O(y3)
where y is the distance to the wall. An analysis of the DH model leads to GGT∇T = O(y1) [6].
Therefore, the near-wall cubic behavior is recovered if TSGS ∝ O(y2). This is not the case of
the timescale used in the Daly and Harlow [7] model, i.e. TSGS = 1/|S| = O(y0). Then, in the
quest for more accurate models, we proposed [6] a new family of tensorial SGS heat flux models

qS2PQ = −Cs2pqP
−5/2

GGT
QGGT

δ2

12
GG

T∇T , (7)

qS2PR = −Cs2prP
−3/2

GGT
R

1/3

GGT

δ2

12
GG

T∇T , (8)

qS2QR = −Cs2qrQ
3/2

GGT
R

5/6

GGT

δ2

12
GG

T∇T , (9)

where PGGT , QGGT and RGGT are the first, second and third invariant of the GGT tensor. This
tensor is proportional to the gradient model [14] given by the leading term of the Taylor series
expansion of the subgrid stress tensor τ(u) = (δ2/12)GGT + O(δ4). Among all the possible
candidates, we chose the so-called S2PR model given in Eq.(8) with Cs2pr ≈ 12.02 [6]: it shows
a very good representation of the SGS heat flux both in direction and magnitude. Moreover,
apart from fulfilling a set of desirable properties (locality, Galilean invariance, numerical stability,
proper near-wall behavior, and automatically switch-off for laminar and 2D flows), the proposed
model is well-conditioned, and has a low computational cost and no intrinsic limitations for
statistically in-homogeneous flows. Testing a posteriori this new tensorial SGS heat flux model
for air-filled RBC problems at Ra up to 1011 is part of our near future research plans.

6



F.X. Trias, D. Santos, J.A. Hopman, A. Gorobets, A. Oliva

10−4

10
−2

10
0

10
2

10
4

10
6

10
8

10
10

10
12

10
14

10
16

P
r

Ra

Computational cost for DNS ( CPUh )

Ra=1e8 Ra=1e10 Ra=1e11

1.7e7 6.0e8 5.7e9

Ra=7.14e6 7.14e7

3.0e8 1.9e9

Onset turb−BL

water

air

liquid sodium

−5

 0

 5

 10

 15

 20

 25

 30

lo
g
1
0
( 

C
P

U
h
 )

14
14

14
14

14

14

14

14

14
14

14

14

14

14

14

12 12
12

12
12

12

12

12

12
12

12

12

12

12

12

12

12

10

10
10

10
10

10

10

10

10
10

10

10

10

10

10

10

10

8

8 8
8

8
8

8

8

8
8

8

8

8

8

8

8

6

6 6
6

6
6

6

6

6

6

6

6

6

6

6

10−4

10
−2

10
0

10
2

10
4

10
6

10
8

10
10

10
12

10
14

10
16

P
r

Ra

Computational cost for LES (without modeling the SGS heat flux)

Onset turb−BL

water

air

liquid sodium

−5

 0

 5

 10

 15

 20

 25

lo
g
1
0
( 

C
P

U
h
 )

12
12

12

12

12

12

12

12
12

12

12

12

12

12

10
10

10

10

10

10

10

10
10

10

10

10

10

10

10

8 8
8

8
8

8

8

8

8
8

8

8

8

8

8

8

6

6 6
6

6
6

6

6

6

6

6

6

6

6

6

6

4

4

4
4

4
4

4

4

4

4

4

4

4

4

4

4

Figure 5: Estimation of the CPU-core hours for DNS (top) and LES (bottom) simulations of RBC in
the {Ra, Pr} phase space. LES estimations assume that thermal scales are fully resolved, i.e. no SGS
heat flux model is needed. Green solid isolines represent the log10 of the number of CPU-core hours.
Three dashed horizontal lines correspond to three different working fluids: water (Pr = 7), air (Pr = 0.7)
and liquid sodium (Pr = 0.005). Dots displayed on top of these lines correspond to the DNS simulations
carried out in previous studies [4–6]. Black dash-dotted line is an estimation for the onset of turbulence
in the thermal boundary layer.

2.3 LES at very low Prandtl numbers

This inherent difficulty can be by-passed by carrying out simulations at low-Prandtl numbers.
In this case, the ratio between the Kolmogorov length scale and the Obukhov-Corrsin length
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Figure 6: Nusselt versus Rayleigh scaling obtained for a set of LES simulations of RBC at Pr = 0.005
(liquid sodium). Configuration details are the same as those used in Ref. [6]. The SGS stress tensor
is model with the S3QR eddy-viscosity model [18] whereas no SGS heat flux is needed for this low Pr
number. The solid black squares are the DNS results obtained in Ref. [6].

scale (the smallest scale for the temperature field) is given by Pr3/4; therefore, for instance, at
Pr = 0.005 (liquid sodium) we have a separation of more than one decade. Hence, it is possible
to combine an LES simulation for the velocity field (momentum equation) with the numerical
resolution of all the thermal scales. Results displayed in Figure 4 seem to confirm the adequacy
of eddy-viscosity models for this kind of flows. Namely, Figure 4 (left) shows the Nusselt number
for a set of meshes and eddy-viscosity models: the WALE model [15], the Vreman model [16], the
QR model [17] and the S3QR model [18]. Results obtained without SGS model are also shown
to illustrate the effect of the eddy-viscosity models to improve the solution. At first sight it can
be observed that, in general, all LES solutions are in rather good agreement with the DNS data
even for the coarsest grids (48×26×26 for Ra = 7.14×106 and 96×52×52 for Ra = 7.14×107

whereas only the finest ones (128 × 72 × 72 and 192 × 104 × 104 at Ra = 7.14 × 106 and
512×288×288 at Ra = 7.14×107) can provide accurate results when the model is switched off.
A closer inspection shows that slightly better results are obtained for those eddy-viscosity models
(WALE and S3QR) that have the proper near-wall behavior, i.e. νe = O(y3). To emphasize the
benefits of LES modeling, the approximate computational cost of the simulations is displayed in
the top horizontal axis of Figure 4 (left): it was measured on the MareNostrum 4 supercomputer
and corresponds to a total integration period of 500 time-units. Finally, to see the effect of eddy-
viscosity models in more detail, results for the average turbulent kinetic energy are shown in
Figure 4 (right) for two meshes and two eddy-viscosity models (WALE and S3QR). All these
results seem to confirm the suitability of the eddy-viscosity assumption for buoyancy-driven
flows. For more details the reader is referred to [6].

3 CAN WE REACH THE ULTIMATE REGIME?

The results presented in the previous section confirm that low-Pr LES simulations are able
to provide accurate predictions of the overall Nu with meshes significantly coarser than for DNS
(e.g. in practice for Pr = 0.005 we can expect mesh reductions in the range 102-103 for the total
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number of grid points). This can be clearly observed in Figure 2 (bottom), where estimations
of the mesh size for LES are given with the assumption that thermal scales are fully resolved.
This huge gain becomes even more evident in Figure 5 where the number of CPU-core hours
(on the basis of MareNostrum 4 supercomputer) is estimated both for DNS and LES. In this
case, the difference between DNS and LES goes up to O(104) due to the fact that not only the
mesh resolution decreases but also the total number of time-steps. Nowadays, the typical size
of a Tier-0 PRACE project is O(108) hours. Therefore, according to the estimations displayed
in Figure 5, the so-called ultimate regime of turbulence can be potentially reached carrying out
LES at low-Pr using meshes of 1010-1011 grid points.

In this regard, Figure 6 shows preliminary LES results at Pr = 0.005 (liquid sodium) for
Ra-numbers up to Ra = 7.14 × 1010 using a mesh resolution (768 × 460 × 460 ≈ 163M grid
points for the highest Ra) equivalent to those used for the coarsest LES mesh (see Figure 4, top
right). Although no evidence of a change of regime is observed (yet), the measured scaling is in
very good agreement with the DNS results. Extending these studies to finer grids and higher Ra
numbers is part of our near future research plans. Furthermore, these (large-scale) simulations
should run efficiently on the variety of modern HPC systems (CPUs, GPUs, ARM,...) while
keeping the code easy to port and maintain. In this regard, our leitmotiv reads: relying on a
minimal set of (algebraic) kernels [19, 20] (e.g. sparse-matrix vector product, SpMV; dot product;
linear combination of vectors) is crucial for an efficient cross-platform portability.
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