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A simple algorithm for localized construction of non-matching
structural interfaces
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SUMMARY

A simple and e8ective algorithm for the modular construction of non-matched interfaces is presented
for the partitioned solution of large-scale structural problems. The formulation is based on a recently
developed four-;eld variational principle, which introduces a connection frame between the interfaced
partitions. A key result of the present study is a frame nodal placement criterion that uniquely determines
the frame discretization into piecewise linear elements so that the interface patch test condition is
satis;ed a priori. The method is demonstrated with several 2D and 3D example problems. Copyright
? 2002 John Wiley & Sons, Ltd.

KEY WORDS: non-matching grids; interface patch test; localized Lagrange multipliers; partitioned
analysis; four-;eld variational principle; interface frame concept

1. INTRODUCTION

The interface coupling of independently discretized ;nite element models is emerging as a key
technology in support of eAcient parallel computations, local mesh generation and re;nement,
contact-impact problems, and multiphysics simulations. Interfaced meshes are called matching
if interface nodes and degrees of freedom therein coincide, and element boundary motions
conform. In this case, the interface kinematic compatibility conditions are straightforward to
construct and enforce. If node locations do not coincide, degrees of freedom do not agree, or
boundary motions are non-conforming, the discretizations are said to be non-matching. Both
“partition” and “subdomain” will be indistinctly used here to denote interfaced discretizations,
although those two terms have physical and mathematical connotation, respectively.
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Non-matching meshes arise in practice because of physical, modelling or computational
reasons. Three examples: components of the complete structure are discretized by separate
teams using di8erent programs and mesh-generation tools; meshes are independently re;ned
to capture local or multiscale behaviour; or partitions are highly heterogeneous as in foam
surrounding a payload. In contact-impact problems, non-matching interfaces arise naturally
on account of physics. Methods for coupling non-matching meshes include primal and dual
methods. The latter introduce Lagrange multipliers as independent variables that physically
represent interaction forces or Juxes. This is the approach followed here.
The classical method of Lagrange multipliers [1] links the partition-boundary displacements

of a subdomain to those of interfacing subdomains. Interface compatibility conditions thus
derived are scaled by a corresponding Lagrange multiplier, giving rise to a constraint func-
tional. The total system energy functional is then obtained by adding the interface constraint
functional to the free energy of unconnected subdomains. Since in mechanics it involves the
displacements of the partitioned subdomains and the Lagrange multipliers, it is also called
a two-;eld formulation. Applications of two-;eld formulations to contact problems may be
found in References [2–5], among others.
Three-;eld formulations introduce interface displacements as an independently varied ;eld.

These have been studied for interface modelling in the context of local–global FEM anal-
ysis by Aminpour et al. [6; 7] and for mathematical analysis of FEM approximations by
Brezzi and Marini [8]. Much recent work concerns the mortar method, which begins with a
three-;eld formulation where the third ;eld is eliminated upon construction of the interface
approximations. This approach is extensively studied in References [9; 10]
From a practical viewpoint, an interface discretization method that preserves the patch

test passing features of individual subdomains would be extremely useful. This has been the
focus of recent work in contact problems by Taylor and Papadopoulos [4] and Cris;eld [5],
who identi;ed geometric gaps and interface force lumping as major sources of errors in
passing the test over contact interfaces. A key objective of the present paper is to develop an
interface patch test criterion that can be employed a priori for the localized construction of
non-matching structural interfaces. It should be noted that, with the notable exception of the
Free Formulation of Bergan and NygNard [11], the patch test has been used for a posteriori
evaluation after elements are constructed, rather than as a discretization design tool.
The theoretical foundation of the present study is a four-;eld variational principle [12; 13]

whose variables consist of subdomain deformation modes, Lagrange multipliers independently
de;ned along subdomain interfaces, displacements of a frame interposed between subdomains,
and self-equilibrium modes of the frame and subdomains. The two key features of this varia-
tional framework that are pertinent to our stated objective are: (i) the introduction of the frame
that localizes the Lagrange multipliers (interface forces); and (ii) the global self-equilibrium
of the frame veri;ed through its rigid-body motions as test functions. It will be shown that
(i) leads to a modular construction of interface constraints. If the frame displacement ;eld
is piecewise linear (ii) provides a frame node placement criterion that determines the frame
node locations so that the interface patch test condition is satis;ed a priori.
The remainder of the paper is organized as follows. Section 2 reviews the underlying

four-;eld variational formulation. Section 3 examines the interpolation schemes adopted for
the localized multipliers and derives the frame node placement criterion, which is a key
contribution of the present study. Once the frame nodal points are determined, the frame
interpolation follows by using the frame discrete nodes. Illustrative examples of frame node
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Figure 1. (a) A domain P with boundary @P= @P� ∪ @Pu; (b) partition into three subdomains: P1, P2

and P3 by cutting it through interface @Pb. Two FEM discretizations of (b): (c) matching submeshes;
(d) non-matching submeshes. Superposed hats distinguish discrete versions.

placement are shown in Section 4. These are followed by numerical examples verifying the
interface patch test. Finally we summarize our results and comment on the connection of the
present formulation to the master–slave approach currently used in commercial FEM codes.

2. REVIEW OF GOVERNING VARIATIONAL PRINCIPLE

This section is a streamlined review, combining statics and dynamics, of a lenghtier expository
presentation [13]. Consider the elastic body illustrated in Figures 1 and 2. The body of
Figure 1(a) occupies domain P, which is referred to a Cartesian system xi. The boundary
@P has exterior normal ni. For illustration the domain is partitioned into three subdomains
P1; P2 and P3 as depicted in Figures 1(b)–1(d). An internal boundary @Pb called a interface
frame or simply frame, is placed as shown in Figure 2(b). The displacements of @Pb are
varied independently from those of the subdomains. The partition frame is “glued” to the
adjacent subdomains by Lagrange multiplier ;elds 
‘, as shown in Figures 2(c) and (d). These
multipliers are said to be localized because they are associated with speci;c subdomains.

Copyright ? 2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2002; 53:2117–2142
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Figure 2. Interface treatment for functional construction: (a) the domain of Figure 1(a) divided into
three subdomain partitions; (b) functional SHWM2: linkup by localized multipliers and connection frame;
(c) functional SPEM2: multipliers are extended to include prescribed-displacement portions @Pu; (d) the

subdomain connection frame with its own independently varied displacement ;eld.

The interior ;elds of subdomain Pm, considered as an isolated entity, are: displacements
um
i , strain 
mij , stress �m

ij and d’Alembert force Ufm
i =fm

ii − �m
i Vum

i , where �m
i is the density

of the material and Vum
i denotes material acceleration. The boundary @Pm can be generally

decomposed into @Pm
u , @P

m
� and @Pm

b . @P
m
u and @Pm

� are portions of @Pm where displacements
Uui and tractions Uti, respectively, are prescribed. @Pm

b is the interface with other subdomains,
over which the Lagrange multiplier ;eld 
m

‘i has the role of surface traction. Subdomain linking
is done through the displacement ubi of the partition frame @Pb. The strain energy density
and symmetric displacement gradients are denoted by

U(
ij)= 1
2Eijkl
ij
kl; 
ij = 1

2(ui; j + uj; i) (1)

respectively, in which Eijkl are the elastic moduli, commas denote partial derivatives, and the
summation convention is in e8ect. With these ingredients in place, a three-;eld functional for
linear elastodynamics can be presented as a sum of subdomain contributions:

SPEM2(ui; 
‘i; ubi)=SPE − �u =
∑
m
Sm

PE −
∑
m

�m
u (2)
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in which

Sm
PE =

∫
Pm

[U(um
i )− um

i
Ufm
i ] dP−

∫
@Pm

�

um
i Ut

m
i dS

�m
u =

∫
@Pm

b ∪@Pm
u


m
‘i(u

m
i − ubi) dS

(3)

In the above equation, the sum over m extends from 1 to the number of subdomains Ns. For
the boundary integrals dS is used to denote the boundary di8erential instead of the clumsier
d@P. The only inter-partition connection is through ubi in �m

u , which is called an interface
potential or dislocation potential in continuum mechanics. The sum of the �m

u results in the
integral being carried out twice over each interface, once on each side of @Pb. It should be
noted that variants of the preceding functional were proposed and studied by Atluri [14],
Tong [15], and Felippa [16; 17] for the construction of hybrid ;nite elements for which the
interior displacements ui and interface forces 
‘i are eliminated at the element level.

For several applications of partitioned analysis such as inverse problems and parallel solu-
tion, it has been found convenient to explicitly separate the rigid-body modes in the governing
equation of Joating subdomains. Following Fraeijs de Veubeke [18; 19] this can be accom-
plished by decomposing the total displacements into deformational and rigid-body components,
i.e., di(xk) and ri(xk), respectively:

ui(xk)=di(xk) + ri(xk) such that
∫
Pm

�mdm
i r

m
i dP=

∫
Pm

�m(um
i − r m

i )r m
i dP=0 (4)

Since u(i; j) =d(i; j) the strain energy density U becomes function of the deformational dis-
placements di only: U(di)= 1

2 Eijkld(i; j)d(k; l). Inserting (4) into (1) we obtain the four-;eld
functional presented in Park and Felippa [13]

SFF(di; ri; 
‘i; ubi)=SPE − �u =
∑
m
Sm

PE −
∑
m

�m
u (5)

in which

SPE =
∫
Pm

[U(dm
i )− (dm

i + rm
i ) Ufm

i ] dP−
∫
@Pm

�

(dm
i + rm

i )Ut
m
i dS

�m
u =

∫
@Pm

b


m
‘i(d

m
i + rm

i − ubi) dS
(6)

To carry out the variation of this functional we introduce the rigid-body displacements rm
i of

each partitioned subdomain, which can be expressed as

rm
i =Rm

ij �
m
j (7)

where �m
j are subdomain rigid-body mode (RBM) amplitudes and Rm

ij are entries of a dimen-
sionless full-rank matrix Rm whose columns span the RBMs. The entries of Rm are at most
linear in the co-ordinates xi. Rm is formed by selecting a linearly independent RBM basis for
its columns, followed by orthonormalization:

∫
Pm Rm

ji R
m
ik =V m�jk , in which �jk is the Kronecker

delta and Vm =
∫
Pm dP is the subdomain volume (area in 2D, length in 1D).
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Substituting (7) into (5) and performing the ;rst variation on the resulting functional
leads to

�SFF(di; �i; 
‘i; ubi)=
∑
m
{Gm

di +Gm
�i +Gm


‘i +Gm
ubi}

Gm
di =

∫
Pm

pm
i �d

m
i dP−

∫
Pm
(fm

i − �m
i
Vdm
i )�d

m
i dP−

∫
@Pm

�

Ut mi �dm
i dS

−
∫
@Pm

b


m
‘i�d

m
i dS

Gm
�i = −

∫
Pm
( Ufm

j Rm
ij − �mRm

ij V�
m
j )��

m
i dP−

∫
@Pm

�

Ut mj Rm
ij ��

m
i dS

−
∫
@Pm

b


m
‘iR

m
ij ��

m
i dS

Gm

‘i = −

∫
@Pm

b

[dm
i + Rm

ij �
m
j − ubi]�
m

‘i dS

Gm
ubi = −

∫
@Pm

b


m
‘i�ubi dS

(8)

Here pm
i is the internal force density that results from the variation of the internal energy

density: �Um =pm
i �d

m
i . Setting the variation (8) to zero provides weak forms of deforma-

tional equilibrium, rigid-body equilibrium, interface compatibility (including prescribed dis-
placements) and interface equilibrium (Newton’s third law at subdomain boundaries) condi-
tions, respectively. The ;rst two are localized at the subdomain level. The only connection
between subdomains is done through the last two conditions, which bring in the partition frame
displacements ubi.

3. FRAME NODE PLACEMENT

As noted in the Introduction, non-matching meshes arise from many sources: separately con-
structed discretizations, localized mesh generation and re;nement, global–local analysis and
multiphysics problems. The functionals (2) and (5) provide adequate tools to treat non-
matching meshes of mechanical ;nite elements. This section discusses the discretization pro-
cedure associated with the use of Lagrange multipliers. It should be noted that master–slave
techniques have been developed to couple non-matching meshes, and are available in com-
mercial FEM codes. Such techniques are appropriate when master and slaves interfaces can be
readily identi;ed; for example a ;ne mesh linked to a coarse one as common in global–local
analysis.
For de;niteness the discussion refers to the 2D con;guration illustrated in Figure 3. Upon

discretization the nodes on the connection frame @Pb match neither those on subdomain P1

nor subdomain P2. Throughout this section, the displacement ;eld is kept as ui, without
decomposing into ri and di, to clarify the exposition. The frame equilibrium operator Gubi
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Figure 3. Two connection schemes for non-matched 2D mesh interfaces: (a) connec-
tion by frame (global) displacements and node-collocated local multipliers; (b) two-;eld

connection by global multipliers.

derived in (8) for the two-partition problem illustrated in Figure 3(a) is given by

Gubi(
1‘i; 

2
‘i; �ubi)=

∫
@P1

b


1‘i�ubi dS +
∫
@P2

b


2‘i�ubi dS (9)

In the above expression, @P1
b denotes the projection of attributes of @P1 onto @Pb, and simi-

larly for @P2
b.

The FEM interpolations assumed for the con;guration of Figure 3(a) are

{
1}=N1

[1; {
2}=N2


[2; {ub}=Nb
uub (10)

where the shape function arrays N1

 , N

2

 and Nb

u would be dimensioned 2×16; 2×14 and
2× 16, respectively, since there are two freedoms per node. Substituting these interpolations
into (9) the discrete version results:

Gub([1; [2; �ub) = [([1)TC1b + ([2)TC2b]�ub =0

Ckb =
∫
@Pk

b

(Nk

)

TNb
u dS; k=1; 2

(11)

in which Ckb are connection matrices.
The three factors that inJuence the interface discretization are: (i) interpolation of the

localized Lagrange multipliers [1 and [2, (ii) interpolation of the frame displacement ub, and
(iii) preservation of constant stress states when subdomains are connected. The last one is
known as the interface patch test. These factors are addressed next.

3.1. Interpolation of localized interface forces [‘
It has been shown in our previous work [12; 13] that discrete localized Lagrange multipliers
[1 and [2 in (11) become the physical nodal forces when they are collocated at the nodes
of the corresponding subdomain displacements along the partition boundaries. In interpolating
the continuum form of the present localized Lagrange multipliers, this property is preserved

Copyright ? 2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2002; 53:2117–2142
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Figure 4. Element-by-element computation of constant stress boundary forces.

by making the multipliers to be point (concentrated) forces at nodes that coincide with the
subdomain displacement nodes. This choice is indicated in Figure 3(a) by merging cross and
circle symbols. Symbolically, this can be expressed as


k
‘ =

Nk∑
j=1

D(x − xj)
k
‘(xj); k=1; 2 (12)

where


(xm)D(x − xm)=

{

(xm) if x= xm

0 otherwise

This choice results in the simplest interface compatibility expression.

3.2. Computation of constant stress-state interface forces

As prerequisite to the determination of frame node locations, it is necessary to determine
the interface forces associated to a constant stress state �c. Those forces are used to obtain
the locations of frame nodes that preserve that stress state. For simple elements the calcula-
tion of node forces associated to a constant state is straightforward. However, for complex
discretizations this task can become burdensome. To this end, we present a simple procedure.
We select a layer of elements along the interface of each partitioned subdomain as

illustrated in Figure 4. Consider a typical element (e). From the element library obtain the
strain–displacement relation B
 and evaluate this at the element centroid to get B(e)


 (0). The
contribution of the element to the constant stress node forces is

f (e) =V [B(e)

 (0)]T�c (13)

where V denotes the volume, area or length of the element depending on its dimensionality.
Once f (e) is computed for the Nb elements along the interface, the interface forces to be used
in the interface patch test for placing frame nodes can be obtained as

[‘(�c)=LTfb; fb =AT
bf ; f =[(f (1))T (f (2))T : : : (f (Nb))T]T (14)

where L is a Boolean extractor of the interface nodal degrees of freedom, and Ab is the
assembly matrix that maps elemental contributions into boundary node forces.
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Figure 5. Interface force processing: (a) Interface forces (not scaled, for illustration only);
(b) Forces mapped onto frame line; (c) Resultant transverse force nj and moment mj acting on frame

point j (shear forces not included for clarity).

3.3. Placement of frame displacement nodes

Recall that the three-;eld formulation (2) was extended to a four-;eld representation (5)–(6)
by decomposing subdomain displacements into rigid-body modes (for testing self-equilibrium)
and the deformation modes introduced in (4). A similar decomposition of the frame displace-
ment ubi plays a key role in the development of frame-node placement criterion. Thus, the
underlying formulation is labeled as a four-.eld variational principle.
Consider the collocated discrete interface forces [1‘ and [2‘ shown in Figure 5(a) that satisfy

a constant stress state over each of the two partitions. When those forces are mapped onto
the frame line as depicted in Figure 5(b), the frame, considered as a free body, must be in
self-equilibrium. If one restricts the interface forces to those satisfying a constant stress state
and if they are in self-equilibrium along the frame line, one concludes that the constant stress
state in both subdomains is preserved. This observation will be exploited in the development
of a frame-node placement criterion. To this end, consider the resulting force nj and moment
mj and the corresponding frame displacements acting at a frame point xbj =(xj; yj; zj). This
is depicted in Figure 5(c) for the 2D case, in which zj =0. De;ne

[bj =
{
nj
mj

}
; ubj =

{
u xj

u$j

}
(15)

If there are M frame nodes along the frame, we must have

Gub([b; �ub)=
∑
j=1

M[Tb�ub =
M∑
j=1
nTj �uxj +

M∑
j=1
mT

j �u$j =0 (16)

It should be pointed out that the displacements, {uxj; j=1; 2; : : : ; M} and {u$j; j=1; 2; : : : ; M},
are linearly independent if they are not to induce any perturbation in deformation energy in
the partitioned subdomains. This requirement will lead to a unique determination of frame
nodes.
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Figure 6. Rigid-body modes of a 2D frame line: (a) translational; and (b) rotational. Note that their
amplitudes are the same everywhere.

The frame motion or displacement ub caused by the forces and moments acting along the
frame, as illustrated in Figure 5(c), should not trigger changes in deformational energy when
the partitioned subdomains are assembled along the frame. In the context of the present four-
;eld variational principle, the frame displacements ub consist of the self-equilibrium modes
that do not create any perturbation in deformation energy ur

b and the deformation modes ud
b :

ub = ur
b + u

d
b (17)

The only admissible frame displacements that would not cause any deformation on the frame
are its self-equilibrium modes, which are in turn the rigid-body modes of the frame. This
means that the self-equilibrium translational and rotational nodal displacements are the same
for all the frame nodes:

ur
x1 = u

r
x2 = · · · = ur

xM = Qx

ur
$1 = u

r
$2 = · · · = ur

$M = Q$

(18)

in which Qx and Q$ denote the translational and rotational rigid-body amplitudes of the frame,
respectively. These two amplitudes are pictured (for the 2D case) in Figure 6.
Substituting (18) into (17) yields

Gub([b; �ur
b)=

[
M∑
j=1
nTj

]
�Qx +

[
M∑
j=1
mT

j

]
�Q$ =0 (19)

To express the forces and moments at the frame nodes in terms of the localized Lagrange
multipliers of each domain mapped onto the frame, we restack [1‘ and [2‘ so that they are
ordered from min(xb) to max(xb). For example, in the case shown in Figure 5(c) [‘ is
restacked from the left to the right:

[‘ =
{
n‘
m‘

}
=T‘

{
[1‘
[2‘

}
(20)

For the 2D case illustrated in Figure 5(c) the force nj and moment mj are readily obtained
from the contributions of the shaded area to the left of j. These resultants may be interpreted
as a transverse shear force and bending moment, respectively, if the frame line is viewed as
a beam [20].
We now pass to the 3D case illustrated in Figure 7, in which the frame is pictured as

planar for visualization simplicity. Using the reordered expression (20) the translational force
nk and the moment mk acting on the frame point k of co-ordinates xk can be expressed as{

nk
mk

}
=
∑
s

[
Is 0
�Ts Is

]{
n‘s
m‘s

}

Copyright ? 2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2002; 53:2117–2142
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Figure 7. Computation of 3D force resultants at a moving frame point k(xk ; yk ; zk) produced by interface
forces (nx; ny; nz) from a subdomain node s mapped onto the frame and located in the shaded area.

Point k sweeps through the frame.

�s =




0 −(zk − z‘s) (yk − y‘s)

(zk − z‘s) 0 −(xk − x‘s)

−(yk − y‘s) (xk − x‘s) 0


 if (xk¿x‘s; yk¿y‘s; zk¿z‘s)

and �= 0 otherwise

Is =



ixs 0 0

0 iys 0

0 0 izs


 ; ixs =

{
1 if xk − x‘s¿0

0 if xk − x‘s¡0
and similarly for other expressions

(21)

where (x‘s; y‘s; z‘s) are the locations where the interface forces are mapped onto the frame.
Substituting nk and mk from (21) into (19), the variational form of the frame equilibrium

condition can be expressed in terms of the constant stress state-satisfying interface forces
mapped onto the frame:

Gub(n;m; �Qx; �Q$) =
[

N∑
s=1
nT‘s

]
�Qx + [(nT‘ �̂1 +mT

‘ Î1) + · · ·+ (nT‘ �̂M +mT
‘ ÎM )]�Q$ =0

�̂Tk = 〈�(xk − x‘1)T �(xk − x‘2)T · · · �(xk − x‘N )T〉

ÎTk = 〈I(xk − x‘1)T I(xk − x‘2)T · · · I(xk − x‘N )T〉 (22)

I(xk − x‘s)=
{
I if xk − x‘s¿0

0 if xk − x‘s60

Copyright ? 2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2002; 53:2117–2142
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where N is the number of mapped nodes contributing to point k. Since Qx and Q$ are inde-
pendent we get the conditions

Translational force equilibrium:
N∑
s=1
nT‘s = 0 (23)

Moment equilibrium: [(nT‘ �̂1 +mT
‘ Î1) + · · ·+ (nT‘ �̂M +mT

‘ ÎM )]=0 (24)

Note that {�k ; k=1; 2; : : : ; M} given by (21) is a linear function of the frame co-ordinates.
Hence, the feasible locations for the frame nodes are those points which, for the frame co-
ordinates min{xb}6xk6max{xb}, satisfy the moment equilibrium condition (24). A direct
search for M nodes is computationally expensive, and is preferable to use the following step-
by-step approach. Instead of simultaneously searching for M -points, we incrementally sweep
the frame area as illustrated for 2D in Figure 5(c) and for 3D in Figure 7, and identify one
frame node at a time. Mathematically, this is equivalent for each term in (24) to vanish:

Moment equilibrium at each frame node: nT‘ �̂k +mT
‘ Îk = 0; k=1; 2; : : : ; M (25)

Observe that the translational equilibrium given by (23) remains independent of the frame
nodal co-ordinates {xk ; k=1; 2; : : : ; xM}. In fact, for the example two-domain problem shown
in Figure 5, (24) becomes

N 1∑
s=1
n1T‘s +

N 2∑
s=1
n2T‘s = 0 (26)

where the superscripts (1; 2) designate partitions 1 and 2, respectively. Moreover, this equation
is automatically satis;ed if the partitions are in self-equilibrium.
As for the moment equilibrium condition given by (25), let us consider only the case where

subdomains are discretized using only the translational degrees of freedom. If so the moment
equilibrium condition reduces, for the two-subdomain partition case, to

n1T‘ �̂1k + n2T‘ �̂2k = 0; k=1; 2; : : : ; xM (27)

A physical interpretation of this criterion is illustrated in Figure 6. The desired frame nodal
locations are determined by sweeping over the entire frame area and ;nding all the frame co-
ordinates that satisfy the condition (27). This can be extended to multi-partition cases without
any diAculty.
We now summarize the frame node placement criterion:

Frame node locations are determined by the roots of the moment equilibrium
condition (25):

Remark 3.1. The placement criterion (27) originally emerged from a study on 2D contact-
impact modelling by Rebel et al. [21], and may be viewed as a formalization of the contact
frame placement algorithm.
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Figure 8. Interface forces for constant shear test.

Remark 3.2. The node placement criterion indicates that piecewise linear interpolation of
the frame displacement ub is suAcient since the moment equilibrium condition is at most
linear in the frame co-ordinates. This suggests two-noded piecewise linear frame elements in
2D, and three-noded triangular or four-noded quadrilateral frame elements in 3D would be
suAcient, regardless of the order of the elements being connected.

Remark 3.3. The frame node placement criterion without the rotational degrees of freedom
given by (27) can be equivalently expressed in terms of a discrete moment equation for an
arbitrary point on the frame, x=(x; y; z), as follows:


mx

my

mz



k

=
∑
s




0 (zk − z‘s) −(yk − y‘s)

−(zk − z‘s) 0 (xk − x‘s)

(yk − y‘s) −(xk − x‘s) 0



T 


nx(xs)

ny(xs)

nz(xs)



‘

= 0 (28)

with the condition (xk¿x‘s; yk¿y‘s; zk¿z‘s).

For a constant shear interface patch test, the tangential interface forces on a 2D frame line
are depicted in Figure 8. Then (28) reduces to

mzk =
∑
s
(yk − y‘s) nxs (29)

which is insuAcient to de;ne frame node locations. Hence the frame node placement is
dictated by the normal load distribution, i.e. ny in 2D and nz in 3D.

Remark 3.4. In computing the roots of (27) when the frame surface is curved, the trans-
lational forces (nx(xs); ny(xs); nz(xs))‘ that are mapped on the frame surface must be trans-
formed to the local co-ordinates (x) at which (27) is to be evaluated.

3.4. Frame displacement interpolation

When two or more subdomains whose discretization order and mesh sizes are di8erent from
one another are brought to interface, two issues arise: possible geometrical gaps along the in-
terfaces and overlap due to di8erent interpolations. The frame displacement ub can be viewed
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Figure 9. Four linear elements (bottom) connected to two quadratic elements (top):
(a) interface forces associated with a constant �yy stress state (a factor of L�yy has been re-
moved for simplicity); (b) transported frame forces; (c) moment diagram showing candidate

frame nodes at zero moment points.

as a molli;er of gaps and overlaps. However, it should be emphasized that ub can be inter-
preted as the global displacement when the partitioned subdomains are assembled together.
That is, the deformed co-ordinates along the interface frame are determined by the unde-
formed co-ordinates at the frame nodes plus the frame displacement ub. Hence, the deformed
coordinates along the interface frame may be viewed as the equilibrated co-ordinates of the
partitioned subdomains.
A important question is: when the interfacing subdomains employ di8erent orders of element

interpolation, is the order of ub controlled by that information? To answer this question we
examine the example case depicted in Figure 9.
Partition 1 is discretized by four plane stress linear elements and partition 2 by two quadratic

elements. The �yy-constant interface forces [1p and [2p (with a factor of 2L�yy removed) are
shown in Figure 9(a) and transported to the frame line as shown in Figure 9(b). The moment
diagram m(x) as point x ≡ xk sweeps the frame is shown in Figure 9(c). This function has
three zero-moment roots at x=0; L; 2L, where L is the x-length of the quadratic element.
As noted in Remark 3.2, the linear dependence of the frame self-equilibrium equation (27)
suggest that the frame displacement ub be approximated by two-noded linear approximations:

ub =

{
(1− x

L)ub1 + x
Lub2; 06x6L

(1− x−L
L )ub2 + x−L

L ub3; L6x62L
(30)

Consequently, the frame displacement is discretized with less nodes than the number of nodes
on either side of the interface. To examine the impact of the frame interpolation (30), let us
discretize the interface constraint functional (3)

�u =
∫
@P1

b∪@P1
u


1‘(u
1 − ub) dS +

∫
@P2

b∪@P2
u


2‘(u
2 − ub) dS (3′)
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Since [1 and [2 are collocated with the interface displacement nodes, we obtain∫
@P1

b∪@P1
u


1‘u
1 dS=([1)Tu1;

∫
@P2

b∪@P2
u


2‘u
2 dS=([2)Tu2 (31)

where [1, [2, u1 and u2 are given by

[1 =





(1)

(2)

(3)

(4)

(5)




1

; [2 =





(1)

(2)

(3)

(4)

(5)




2

; u1 =




u(1)
u(2)
u(3)
u(4)
u(5)




1

; u2 =




u(1)
u(2)
u(3)
u(4)
u(5)




2

(32)

Using the Dirac’s delta function representation of the multipliers reduces the interface integrals
to point collocation

∫
@P1

b∪@P1
u


1‘ub dS=([1)TLb1ub; Lb1 =




1 0 0
1
2

1
2 0

0 1 0

0 1
2

1
2

0 0 1



; ub =




ub1

ub2

ub3




∫
@P2

b∪@P2
u


2‘ub dS=([2)TLb2ub; Lb2 =




1 0 0
1
2

1
2 0

0 1 0

0 1
2

1
2

0 0 1




(33)

Substituting (31) and (33) into (3′) we obtain

��u =

{
�[1

�[2

}T {{
u1

u2

}
−
[
Lb1

Lb2

]
ub

}
+

{
[1

[2

}T {{
�u1

�u2

}
−
[
Lb1

Lb2

]
�ub

}
=0 (34)

whence the discrete connection equations follow as{
u1

u2

}
−
[
Lb1

Lb2

]
ub =0; [LT

b1 LT
b2]

{
[1

[2

}
=0 (35)

In the foregoing, the terms associated with the variation of the subdomain displacements �u1

and �u2 do not vanish; they are combined with the equilibrium equations for completely free
subdomains. It should be noted that, although the ub interpolation does not explicitly connect
u1(2) to u2

(2), and u1(4) to u2
(4), once the solution of ub is obtained, the second equation of the
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Figure 10. Five linear elements (bottom) connected to two quadratic elements (top):
(a) interface forces associated to uniform �yy stress state (a factor of L�yy has been re-
moved for simplicity); (b) transported frame forces; (c) moment diagram showing candidate

frame nodes at zero moment points.

set (35) yields

{
u1(2) =

1
2 (ub1 + ub2)

u2
(2) =

1
2 (ub1 + ub2)

}
⇒ u1(2) = u2

(2) and similarly u1(4) = u2(4) (36)

Remark 3.5. In this particular example both nodes and degrees of freedom match yet
the interface is nonmatching. It would be a serious mistake to introduce two additional frame
nodes at x= 1

2L and x= 3
2L (as it would seem natural to practitioners of master–slave methods)

since the interface patch test for constant �yy would be violated.

4. ILLUSTRATIVE EXAMPLES

4.1. Linear–quadratic non-matching nodes

This example is depicted in Figure 10. Partition 1 consists of two quadratic plane stress ele-
ments whereas partition 2 consists of ;ve linear plane stress elements. As shown in Figure 10,
the nodes do not match. In order to construct the frame nodes, a uniform �yy stress state is
imposed on both partitions. The corresponding interface forces (with a factor L�yy removed)
are shown in Figure 10(a). They are transported to the frame line as shown in Figure 10(b).
The six roots of the moment diagram shown in Figure 10(c) and marked with ©, are at

xb = {0; 13=35; 11=25; 14=25; 22=35; 1}2L (37)
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Figure 11. Extension of con;guration of Figure 10 to three dimensions. The ;gures depict the two sides
of the interface. Dashed lines and circles identify frame meshes and frame nodes, respectively.

These are selected as frame node locations, and the frame displacements are interpolated
linearly between them. We ;nd that the frame-to-subdomain linking matrices Lb1 and
Lb2 are

Lb1 =




1 0 0 0 0 0

6=13 7=13 0 0 0 0

0 7=12 5=12 0 0 0

0 0 0 5=12 7=12 0

0 0 0 0 7=13 6=13

0 0 0 0 0 1




Lb2 =




1 0 0 0 0 0

17=52 35=52 0 0 0 0

0 0 1=2 1=2 0 0

0 0 0 0 35=52 17=52

0 0 0 0 0 1




(38)

The localized interface compatibility condition is given by the second of (35). It should
be emphasized that the frame-to-subdomain operator Lbi is uniquely determined once the
frame nodes are found. On the other hand, the classical Lagrange multiplier method which
interfaces the two partitions directly, does not lead to a unique connection matrix, as discussed
later.
The ;ndings for the 2D case are readily extended to a 3D con;guration if the interface

geometry is rectangular and planar. This is illustrated in Figure 11, where it is assumed
that a solid mesh with 2× 2=4 quadratic elements is interfaced to another solid mesh with
5× 5=25 linear elements. The frame nodes are obtained directly from a product application
of the solution of Figure 10(c).
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4.2. Linear–quadratic interfacing by master–slave approach

Let us reconsider the problem of Figure 10 using a master–slave approach. If partition 1 is
chosen as the master interface, the following interface condition is obtained:

u2 − L21u1 = 0; L21 =




1 0 0 0 0 0

0 3=4 1=4 0 0 0

0 0 1=2 1=2 0 0

0 0 0 1=4 3=4 0

0 0 0 0 0 1




(39)

On the other hand, if partition 2 is taken as master, the interface condition is

u1 − L12u2 = 0; L12 =
1
25




25 0 0 0 0

3 24 −2 0 0

−3 16 12 0 0

0 0 12 16 −3
0 0 −2 24 3

0 0 0 0 25




(40)

Since these matrices are not square, there exists no unique way of transforming one relation
to the other. This means that the master–slave approach does not lead to a unique result.
In terms of the classical Lagrange multiplier method, the use of either (39) or (40) leads

to a master–slave interface operator as shown by L21 and L12. Since there is no guarantee
that either of them will satisfy the interface patch test, one may pursue instead a least-squares
approach by solving the following equation:[

I2

L12

]
u2 −

[
L21

I1

]
u1 = 0⇒ u2 − LLS

21u
1 = 0; LLS

21 = [I2 + LT
12L12]−1[L21 + LT

12] (41)

This is a least-squares master–slave interface condition if partition 1 is chosen as the master
interface. If partition 2 is chosen as master, the resulting least-squares constraint condition
would be di8erent.
One can deduce a least-squares master–slave constraint from the localized interface condi-

tion (35) as follows. First, we express it as{
u1

u2

}
− Lbub = 0; Lb =

[
Lb1

Lb2

]
(42)

Second, a null-space Nb of Lb de;ned by

Nb =null(Lb) such that NbLb = 0 (43)

Copyright ? 2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2002; 53:2117–2142



SIMPLE ALGORITHM FOR LOCALIZED CONSTRUCTION 2135

Figure 12. Interfacing four 2D linear elements (top) to ;ve linear elements (bottom):
(a) interface forces associated with a constant �yy = 1

2 stress state; (b) forces transported
to frame line; (c) roots of moment diagram m(x).

is extracted. Third, ub is eliminated on pre-multiplying (42) with Nb to obtain

Nb

{
u1

u2

}
= 0 (44)

Remark 4.1. Matrix Nb is generally dense, hindering sparsity of the coupled system ma-
trices. This technique can be viewed as an approximation to the classical Lagrange multiplier
method applied with smooth global functions. Nevertheless, the master–slave operator obtained
from the present localized algorithm Nb should satisfy the interface patch test whereas there
is no de;nite theory as to whether LLS

21 or LLS
12 would pass the test.

4.3. Linear–linear non-matching localized interfaces

Consider next the case shown in Figure 12, where partitions 1 and 2 are discretized with 4 and
5 linear elements, respectively, across the interface of length L=4. The forces corresponding
from a uniform �yy=1

2 stress state are shown in Figure 12(a) and transported to the frame line
in Figure 12(b). The moment diagram m(x) is depicted in Figure 12(c). The zero moment
condition gives the eight roots

xb = {0; 32=35; 6=5; 46=25; 54=25; 14=5; 108=35; 4} (45)

as candidates for frame node locations. The mesh of partition 1 is slightly ;ner than that
of partition 2, with six interface nodes. The maximum number of frame nodes is eight,
which exceeds that of partition 1. However, this does not cause numerical problems since
the resulting localized compatibility matrix Lb has full column rank and its row size is at
least the same or larger than its column size. In fact, using the 8 roots one obtains through
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collocation the following interface compatibility relation:

u − Lbub = 0; u=

{
u1

u2

}
; Lb =




1 0 0 0 0 0 0 0
1=8 7=8 0 0 0 0 0 0
0 0 3=8 5=8 0 0 0 0
0 0 0 0 5=8 3=8 0 0
0 0 0 0 0 0 7=8 1=8
0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0
0 7=10 3=10 0 0 0 0 0
0 0 0 1=2 1=2 0 0 0
0 0 0 0 0 3=10 7=10 0
0 0 0 0 0 0 0 1



(46)

If all eight roots are used, the size of some frame elements may be considered too small, e.g.
the second and the sixth frame elements in Figure 12(c). If this is a concern some of the
frame nodes may be omitted. For example, if frame nodes 2 and 7 are discarded the retained
node positions are

xb = {0; 6=5; 46=25; 54=25; 14=5; 4} (47)

which yields the six-column frame-to-interface matrix

Lb =




1 0 0 0 0 0
1=3 2=3 0 0 0 0
0 3=8 5=8 0 0 0
0 0 0 5=8 3=8 0
0 0 0 0 2=3 1=3
0 0 0 0 0 1
1 0 0 0 0 0
1=6 5=6 0 0 0 0
0 0 1=2 1=2 0 0
0 0 0 0 5=6 1=6
0 0 0 0 0 1




(48)

The extension of this 2D con;guration to a regular 3D meshes is illustrated in Figure 13. Here
frame meshes and frame node location are constructed from (47). A master–slave approach
would not lead to an equivalent form of the present results.
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Figure 13. Extension of the con;guration of Figure 12 to three dimensions. The ;gures depict the two
sides of the interface. Dashed lines and circles identify frame meshes and frame nodes, respectively.

5. SYSTEM EQUATIONS

5.1. Partitioned dynamic system equations

As stated in (2) and (3), the discrete form of the energy functional for a completely free
undamped partitioned domain Sm

PE (3′) can be expressed as [12; 13]

�Sm
PE(u

m)= (�um)T [Kmum − (fm −Mm Vum)] (49)

where um is the displacement for subdomain m, Km is the sti8ness matrix, Mm is the mass
matrix, and fm is the sum of the applied force and prescribed boundary tractions.

For notational simplicity, we use um as the total degrees of freedom for subdomain m. The
subdomain interface degrees of freedom at subdomain m will be expressed as

um
interface=(Bm)Tum (50)

where Bm is a Boolean matrix that extracts only the subdomain interface nodal degrees of
freedom. The discrete energy functional for the completely free total partitioned domains can
thus be written as

�SPE(u) = �uT[Ku − (f −M Vu)]

K =



K1 0 0 : : : 0

0 K2 0 : : : 0
: : : : : : :

0 0 0 : : : KNs


 ; M=



M1 0 0 : : : 0

0 M2 0 : : : 0
: : : : : : :

0 0 0 : : : MNs




u =



u1

u2

:

uNs




; f =



f1

f2

:

fNs




(51)
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in which Ns is the total number of partitions (substructures). The variation of the localized
interface functional �u can be written as

��u(u; [‘; ub) = �[T‘{BTu − Lbub}+ [T‘{BT�u − Lb�ub}=0

B =



B1 0 0 : : : 0
0 B2 0 : : : 0
: : : : : : :
0 0 0 : : : BNs


 ; [‘ =



[1

[2
:
[Ns




(52)

where Lb is the collection of the frame-to-interface matrices as determined by following the
frame nodal placement criterion for all the frames of the partitioned subdomains.
The discrete form of the three-;eld functional �SPEM2 (2) for the total partitioned systems

is thus obtained by the sum of (51) and (52):

�SPEM2(u; [‘; ub) = �SPE(u) + ��u(u; [‘; ub)

=




�u
�[‘

�ub



T




K −M d2

dt2
B 0

BT 0 −Lb

0 −LTb 0





u
[‘

ub


−



f
0
0




 (53)

This is valid for matching as well as non-matching interface meshes. The preceding three-
;eld discrete variational equation can be expanded into a four-;eld equation by introducing
the discrete counterpart of (4):

u=RQ+�q (54)

with orthogonality conditions RTM�= 0 and RTK= 0. Substituting into the three-;eld equa-
tion (53) yields

�SPEM2(q; Q; [‘; ub)

=




�q
�Q
�[‘

�ub




T







K00 −M00
d2

dt2
0 �T

b 0

0 −M��
d2

dt2
RT

b 0

�b Rb 0 −Lb

0 0 −LTb 0






q
Q
[‘

ub




−



�Tf
RTf
0
0







(55)

K00 = �TK�; M00 =�
TM�; M�� =RTMR; �T

b =�
TB; RT

b =R
TB

For static problems the inertial terms are dropped and K00 may be kept as K while using
d=�q. Thus, the stationarity of (55) gives the following partitioned equations:


K 0 B 0
0 0 RT

b 0
BT Rb 0 −Lb

0 0 −LTb 0





d
Q
[‘

ub


 =



f
RTf
0
0


 (56)

Copyright ? 2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2002; 53:2117–2142



SIMPLE ALGORITHM FOR LOCALIZED CONSTRUCTION 2139

The nodal deformation vector q can be obtained from the ;rst matrix equation as d=F(f−B[‘),
where F=K+ is the free–free Jexibility, or Moore–Penrose generalized inverse of K. This
matrix can be eAciently obtained, subdomain by subdomain, as described by Felippa
et al. [22]. Substituting this into the third row of (56) gives

BTFB[‘ −RbQ+ Lbub =BTFf ; Fb =BTFB (57)

Combining the second and fourth rows with that equation, one arrives at the following parti-
tioned Jexibility equation:


Fb −Rb Lb

−RT
b 0 0

LTb 0 0





[‘

Q

ub


 =



hb

−f�
0


 ; hb =BT Ff ; f� =RTf (58)

The partitioned Jexibility equation (58) and its dynamic counterpart have been applied to
parallel computations [23–26], damage detection [27], system identi;cation [28], structural
joint identi;cation [29], and distributed vibration control problems [30].

Remark 5.1. The construction of the frame-to-partition interface nodal relation matrix Lb

can be implemented as a stand-alone software module because the construction of the interface
operators does not require detailed knowledge about the type of element being interfaced.
Hence, the modelling and analysis software for each partition is not seriously a8ected.

Remark 5.2. As shown in Sections 3 and 4, the construction of the frame-to-partition
interface nodal relation matrix Lb does not involve any global spatial interface integration.
They are simply the weighting factors for the locally interpolated shape functions of the frame
displacement ub.

Remark 5.3. The incorporation of the present interfacing method is not tied up to any
special solution algorithm. It can be implemented in a direct solver, or as a parallel iterative
algorithm [24; 26].

5.2. Analysis of solid with non-matching interface

The present interface algorithm is demonstrated in the problem shown in Figure 14. The
complete system models a solid bar of length 4 with a 1× 1 square cross-section. The FEM
model is partitioned into four subdomains along z, with one element in the longitudinal
direction. The lower two subdomains have a 5× regular mesh in their cross-section whereas
the top two domains have a 4× regular mesh. The elastic modulus and Poisson’s ratio are
E=2600 psi and 1=0:3, respectively. The boundary conditions set the z displacement of the
bottom subdomain equal to zero at the bottom while lateral expansion can occur freely to
ensure a constant stress state. The top domain is loaded by a prescribed displacement of 0.4
downward at its top face. As a result the z axial strain will be −0:1 which gives a uniform
�zz =−260 psi, which is also the Von Mises stress for this case. The ;nal z position of the
frame between subdomains 2 and 3 becomes 1.8, which is the value corresponding to the
green color of the frame.
There are three interface frames that lie between subdomains 1 and 2, subdomains 2 and 3,

and subdomains 3 and 4. Since subdomains 1 and 2 are both discretized by a regular (5× 5)
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Figure 14. A four-subdomain solid with non-matching brick-element discretizations: (a) partition into
four subdomains; (b) colour in subdomains 2 and 3 reJects von Mises stress level while colour in

frame reJects its normal displacements.

mesh, the frame nodes coincide with the interface nodes; and similarly for the frame that lies
between subdomains 3 and 4. As regards the frame between subdomains 2 and 3, the frame
nodes determined by the present frame node placement criterion (25) are located along the
x-coordinate at

xb = 〈0 32=140 46=100 54=100 108=140 1〉 (59)

Since the cross-section is square, yb is likewise determined as shown in Figure 14(b).
The four-subdomain problem is solved by using the partitioned Jexibility equation (58).

The resulting von Mises stresses are plotted in Figure 14(b) which shows a uniform stress
state, thus con;rming that a constant stress state is preserved by the present localized interface
treatment algorithm. It should be noted that the subdomain-to-global relation matrix for each
of the three translational degrees of freedom is given by (48), as discussed in Section 4.3.

6. SUMMARY AND CONCLUSIONS

We have presented an interface treatment that guarantees preservation of the constant-stress
interface patch test when the partitioned subdomains are connected. The present method is
especially attractive for non-matching interfaces. Once the frame node locations are selected,
the frame-to-interface connection matrices can be constructed simply by collocating frame
displacements at the partition boundary nodes, avoiding integrations over the interface. This
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enhances software modularity when the connected meshes come from di8erent sources and
are speci;ed simply in the form of matrices and node locations. The present treatment is
variationally based, which insures symmetry. We now summarize the major aspects of this
treatment.

(1) The method introduces connection frames between the partitioned domains. A frame is
endowed with its own independent displacements and the interface forces acting on it.
Hence, this is unique for the three-;eld as well as the four-;eld variational framework.

(2) The discrete nodes on the frame are determined by the frame node placement criterion
(25) or its specialized form (27). This is a key result of the present paper. Application of
the criterion requires only the location of partition boundary nodes and the nodal forces
corresponding to constant stress states to be preserved.

(3) The frame nodal placement criterion (25) requires that frame discretization be based on
piecewise linear displacements. In the case of general interfaces, the partition boundary
nodes are designed to lie along the interpolated frame curve or surface. This alleviates the
problem of gaps and interpenetration in problems of contact or in local mesh re;nement
processes.

(4) From the present treatment it would be possible to devise an equivalent global inter-
face interpolation procedure. While the resulting interface compatibility relations become
globally coupled, the relations thus obtained still o8er an important advantage: a unique
interpolation scheme for the global Lagrange multipliers. To the best of our knowledge,
no such algorithm has been previously developed.

Three extensions of the present approach remain largely unexplored. One is interfacing meshes
with di8erent degrees of freedom; for example solid domains with nodal translational freedoms
only to beam-plate-shell discretizations endowed with nodal rotational degrees of freedom. The
second is multiphysics interfacing such as a shell interacting with internal or external Juids.
The third is highly irregular grids on both interfaces. Owing to their practical importance in
the applications, these extensions deserve further investigation.
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