‘H Available online at www.sciencedirect.com

I

>

3 ScIENcE@DIRECT' @M@ APPLIED
;ﬁ <% NUMERICAL

MATHEMATICS

(]
A
8!

P
Vl.

ELSEVIER Applied Numerical Mathematics 51 (2004) 1-17

www.elsevier.com/locate/apnum

Error estimates for an operator-splitting method
for incompressible flows

J. Blascé*, R. Codina&

@ Departament de Matematica Aplicada I, ETSEIB, Universitat Politécnica de Catalunya, Campus Sud, Edifici H,
Avgda. Diagonal 647, 08028 Barcelona, Spain
b Departament de Resisténcia de Materials i Estructures a I'Enginyeria, ETSECCPB, Universitat Politécnica de Catalunya,
Campus Nord, Edifici C1, c/Jordi Girona 1-3, 08034 Barcelona, Spain

Available online 16 March 2004

Abstract

In this paper we provide an error analysis of a fractional-step method for the numerical solution of the
incompressible Navier—Stokes equations. Under mild regularity assumptions on the continuous solution, we obtain
first order error estimates in the time step size, both for the intermediate and the end-of-step velocities of the
method; we also give some error estimates for the pressure solution.
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1. Introduction

The numerical solution of the unsteady, incompressible Navier—-Stokes equations has received much
attention in the last decades, and many numerical schemes are now available for that purpose. The
difficulties encountered in this problem are mainly of three different kinds: the mixed type of the
equations, which is due to the coupling of the momentum equation with the incompressibility condition,
and, subsequently, the treatment of the pressure; the advective—diffusive character of the equations, whict
have a viscous and a convective term; and finally, the nonlinearity of the problem.

Fractional-step methods are becoming widely used in this context. By splitting the time advancement
into a number of (generally two) substeps, they allow to separate the effects of the different operators
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appearing in the equations (see, for instance, [3]). They have been used together with different space
discretizations: finite difference [4,14,15], finite element [8,17] and spectral element methods [26].
However, semidiscrete presentations of these methods, in which the space variables are not discretized
seem more appropriate to study the effect of the time discretization itself.

The origin of this category of methods is generally credited to the work of Chorin [4] and Temam [22].
They developed the well-knowprojectionmethod, which is a two step method in which the second step
consists of the projection of an intermediate velocity field onto the space of solenoidal vector fields, thus
enforcing incompressibility. The incompatibility of the projection boundary conditions with those of the
original problem may introduce a numerical boundary layer of sige/ i3 ) in these methods [18,25],
wherev is the kinematic viscosity and¥ is the time step size. However, convergence of this method to
a continuous solution a& tends to zero was proved in [23], for the semidiscrete method, and [5], for
a fully discrete method with periodic boundary conditions. The end-of-step velocities of the projection
method do not converge in the spa¢g(£2), since they do not satisfy the correct boundary conditions.

More recently, analytical studies of fractional step methods have turned into obtaining error estimates
in the time step size, so as to establish their order of accuracy. Thus, Shen proved in [20] that the
projection method, both with and without pressure correction, is first order accurate in a certain norm.
A more recent analysis given in [12] for a fully discrete, finite element implementation of the incremental
fractional step projection method yielded error estimates of first order in the time step size and optimal
order in the mesh size, assuming a finite element interpolation satisfying the discrete inf—sup condition.
First order error estimates were also obtained by Ying (see [16] and the references therein) for another
fractional step method, calledscosity splittingmethod, in which the viscosity is not fully uncoupled
from incompressibility. In this sense, a fully discrete version of the so-callechemg11], in which
viscosity and incompressibility are also coupled, was proved to converge to a continuous solution in [9]
(see also [6] for a convergence analysis of a related parallel scheme). In [19] another fractional step
method that keeps part of the viscous term in the second step is derived from an inexact factorization of
the fully discrete original problem; this method is referred to as Yosida scheme in this reference.

In this paper we provide some error estimates foopearator splitting fractional step method which
was introduced and studied in [1]. It is a two step scheme in which the nonlinearity and the incompressi-
bility of the problem are split into different steps. It allows to enforce the original boundary conditions of
the problem in all substeps of the scheme, which leads to convergence of both the intermediate and the
end-of-step velocities of the method to a continuous solution in the sh&¢&y andH}(£2) (see [1]).

Here we prove that these velocities are first order accurate in the time step size.

Moreover, the study of this method was originally motivated by the consideration of a well-known
predictor—multicorrector algorithm (see [2]), as detailed in [1]; this fact provides a theoretical explanation
of why the original boundary conditions of the problem can be prescribed in this algorithm, and in what
sense it can be understood as a fractional step method.

The paper is organized as follows: in Section 2 we introduce the notation we use and some generalities
about the incompressible Navier—Stokes equations, such as the regularity assumed for their solutions. Ir
Section 3 we recall the fractional step method of [1] and introduce a finite element spatial approximation,
while in Section 4 we give an error analysis of this method; we first obtain some error estimates for both
the intermediate and the end-of-step velocities and then analyze the pressure solution.
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2. Preiminaries

The evolution of viscous, incompressible fluid flow in a bounded dom@irc R? (d = 2, 3)
is governed, in the primitive variable formulation, by the unsteady, incompressible Navier—Stokes
equations:

88—’;+(u-V)u—vAu+vp=f in2 x (0,7), 1)
V.-u=0 inQ2x(0,7), (2)
u=0 ondaR x (0,7), 3)
u=u in2x {0}, )

whereu(x,t) e R? is the fluid velocity at positione € £ and timer e (0, T) (with T > 0 given),

p(x,t) € Ris the fluid kinematic pressure,> 0 is the kinematic viscosity (which is assumed constant),
f(x,t) is an external force tern¥ is the gradient operatok, - is the divergence operator aidis the
Laplacian operator (here, and in what follows, boldface characters denote vector quantities). We consider
only the homogeneous Dirichlet type boundary condition (3) for the sake of simplicity.

In order to study approximation schemes for this problem, we first introduce some notation. We
denote by(., ) the scalar product inL?(£2), and by |ulo = (u,u)¥? its norm; the quotient space
L3(£2) = L%(22)/R is needed in the case of Dirichlet type boundary conditions only, since the pressure is
then determined only up to an additive constant; moreover, giverN, the scalar product and norm in
H™(£2) are denoted byu, v),, and|«|,., respectively. IfD(£2) denotes the space 6f° functions with
compact support if2, then H3(£2) is the closure oD (£2) in H(£2); the Poincaré—Friedrich inequality
ensures thatVullo = (Vu, Vu)¥2is a norm onH}(£2), equivalent to the norm induced #y*(£2). The
dual space oti}(£2) is denoted by ~1(£2) with norm || - || _3, the duality pairing between these spaces
being denoted by, ). All these definitions carry over t@-dimensional vector valued function spaces.

Due to the incompressibility condition (2), closed subspaces of solenoidal vector fields of these Hilbert
spaces are also needed. Thus, we define:

H={uel?)/V-u=0, n-u,, =0},
V={ueHiR2)/V -u=0}.

In this notation, assuming € L?(0, T; H~1(£2)) andug € H problem (1)—(4) has at least one solution

(u, p) which satisfiest e L>(0, T; H) N L?(0, T; V) (see [24]). Uniqueness and more regularity of the
solution can also be proved by strengthening the assumptions on the data. In particular, we will assume
thatu and p satisfy:

(R1) ueC°0,T; HYNL>®(0, T; H?(R2)), Vp € L*(0, T; L%(2)),
(R2a) u, € L%(0, T; L%(R2)),
(R2b) u, € L*(0, T; H5(£2)),

(R3) Viu, € L%(0, T; H(£2)),
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so that we will assume either (R2a) of (R2b) depending on the context (the subinslemployed
hereafter ford /9t and V'’ stands for the dual space &f. Conditions (R1) and (R2b) can be proved, for
instance, assuming that:

upe H2(2)nv, feL>®0,T; H), f,eLY0,T; H)

and, ifd = 3, a condition relating, f, uo andT (namely, [24, 3.115, p. 304]), whef is of classC? or

is a convex polygon or polyhedron (see [24, Theorem 3.7, p. 303 and Theorem 3.8, p. 306]); under these
assumptions, (R3) follows from [13, Theorem 2.3, pp. 284—-285]. These results also hold2nisem

convex polygon, since some of them rely on the additional regularity of solutions of the Stokes problem
in £2 with right side inL2(£2), and are also generally believed to hold on a convex polyhedron (see [13]
and the references therein). Furthermore, we will also assume (see [20,21]) that:

(R4) u,, € L0, T; V'),

a condition which requires some nonlocal compatibility conditions.

Error analysis of time integration schemes for time-dependent partial differential equations are usually
given in terms of the following norms: given a Banach spBtwith norm|| - ||, a continuous function
u:[0,T] — W and two real numberp > 0 anda > 0, for each time step siz& > 0 letr, = ndr for
n=0,...,M =[T/ét], afamily of finite sequenceg:"},_1 .. IS said to be an order approximation
of u in [7(W) if there exists a constaiit such that, for albz:

M 1/p
(&Z |u(t,) —u” H@) < C 8.
n=1

Moreover,{u"},—1 .y IS an orderr approximation of: in [*°(W) if:

yeney

|utt,) —u"|, <Cé8t* Vn=1,....M.

Here, and in what followsC denotes a generic constant, possibly different at different occurrences,
which may depend on the dafg, uo, T and v, the domains2 and the continuous solutiom, but is
independent of the time stép and the mesh sizk.

For the treatment of the convective term in the momentum equation (1), the following trilinear form is
usually considered:

cu,v,w)= (- V)v,w), VueH (), veH(R), weH{R).

This form is well defined and continuous on these spaces (see [24]), and it is skew-symmetric in its last
two arguments it € H, thatis, if V-u =0andn - u = 0:

c(u,v,v)=0, YueH, veH). (5)
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Moreover,c has some continuity properties which hold wh@nis regular enough (see [7]) and which
we will use in our proofs, such as:

lalollvll2lw]s.
lalollvllzlw]2.
lal2llvll1lw o,
c(u, v, w) < C 4 lulg 2 luly?lvllwly,
lallallvllallwlig ?llwly?,
lalizllvllwl 2.

lalleco)llvlisliwlliese).

Although this form is suitable for our analysis of the semidiscrete method, we will use the skew-
symmetric part ofc in the fully discrete problem, since incompressibility is only enforced weakly in
the discrete setting; thus, we define:

E(u, v, w) = (1/2)(c(u, v, w) —c(u, w,v)), YueH(2), veH{R), weHy2).

Obviously, this form retains the continuity properties of the original fer(but for the fifth one), and is
skew-symmetric in its last two arguments for ang H(£2).

In some of our proofs we will also make use of the operatot, defined as the inverse of the Stokes
operatorA = — Py A, Py being the projection ontél. The latter is defined fav € D(A) = V NH?(R2),
and is an unbounded, positive, self-adjoint closed operator BntGivenu € H, by definition of A,

v = A~ u is the solution of the following Stokes problem:
—Av+Vr=u in§$2,
V.-v=0 in $2,
v=0 onos2. (6)

When 2 is of classC?, or is a convex polygon or polyhedron (see [13]), there exists a conStaat0
such that:

|A |, < Cilluls—2, fors=1,2. (7)
Furthermore, from (6) one gets\ ~u, u) = ||[A~1u||1, and then it is easily seen that:
luly = (A u, u), (8)

for all u € H. We will use these results in what follows.

3. Fractional-step method

The fractional-step method we analyze here was introduced in [1], where stability and convergence,
both in the space&™ (0, T; L?(£2)) and L2(0, T; H3($2)) and of both the intermediate and the end-of-
step velocities, where proved. Givefi € V, approximation ou atr = r,, the time advancement tp, ;
is split into two steps:
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First step. The first step of the method, which includes viscous and convective effects, consists of
finding an intermediate velocity”t'/2 such that:

un+l/2 —u"
— vAu"tY? 4 (u" - V)u”+1/2 = f(tis1), )
W' Y2),0 = 0. (10)

Second step. Givenu"+1/? from (9), (10), the second step of the method consists of findirng and
p"+1 such that:

un+l _ un+l/2

= _ vA(u”+1 _ un+1/2) + vpn+1 =0, (11)
Vourtt=o (12)
u" e =0. (13)

As can be observed in (11), the main difference between this method and the standard projection methoo
is the introduction of a viscous term in the incompressibility step, which allows the imposition of the
original boundary condition (13) on the end-of-step veloaity. Similar ideas can be found in the
0-methodof Glowinski and others (see [11], for instance) and in several other methods such as those of
[6,16,17] or [26], all of which involve an incompressible step with part of the viscous term. It can be
observed in (9), (10) and (11)—(13) how in this method convection is split from incompressibility, which
are the two main difficulties of the problem. We have adopted here a linearized, first order form of the
convective term, although there are obviously other possibilities.

The motivations that led us to the study of this fractional-step method are mainly twofold. First, it can
be used to explain theoretically a class of predictor—multicorrector algorithms widely used in practice
(see [1] for a more detailed explanation). These methods are based on an iterative scheme consisting
of two steps per iteration with the same structure as the two steps above. Second, the imposition of the
original boundary conditions on the end-of-step velocity. It is common practice among some users of
the classical projection method to enforce all the boundary conditions on this field, although this is in
principle not allowed if the viscous term in Eq. (11) is dropped. The present scheme, however, is not
subject to this controversy; moreover, the fact thét! satisfies the correct boundary conditions led
to improved convergence results in [1] with respect to those known for that variable in the standard
projection method, and will allow us to obtain improved error estimates here too.

The computational efficiency of the scheme (9)-(13) was studied in [1]. The first step of the method,
which is a linear, elliptic problem, can be seen as a linearized Burger's problem; on the other hand,
the second step has the structure of a Stokes (mixed) problem, the discretization of which leads to a
symmetric system of linear equations. Based on ideas taken from the predictor—-multicorrector algorithm
used in [2], we developed in [1] an iterative technique for the solution of these two problems, in which
each iteration consists of the solution of two linear systems with a diagonal matrix and a system with a
symmetric, positive (semi)definite matrix, which is the same for all iterations and time steps (and thus
needs being computed and factorized only once at the beginning of the calculations); this iteration showed
good convergence results in several test cases, which makes the present fractional-step method feasibl
from a practical viewpoint. One drawback of this method is the need for the spatial discretization used
to satisfy the discrete inf—sup compatibility condition, something which is nowadays known to apply to
most versions of the standard projection method too (see [12]).
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4. Error analysis

We present here an error analysis of the fractional-step method introduced in the previous section.
Although we consider the first order, linearized form of the convective tafmV)u"+/2, similar error
estimates can be obtained for other approaches, such as the fully nonlineagufort - V)u"+1/2;
likewise, other approximations of the viscous term than the backward Euler method used here, such as
the trapezoidal rule, could also be studied.

4.1. Error estimates for the semidiscrete velocities

Let us define the semidiscrete velocity errors as:

= u(tn+l) - un—&—l’

e’Z,+1/2 — u(tn+l) _ un+1/2’

n+1
€.

where the subscript refers to the fact that the space variables remain ‘continuous’. We give a first

estimate fore"** ande;**/* which shows that botia"+* andu”+/2 are order 12 approximations tax

in [°°(L2(£2)) and inl?(H}(£2)):

Lemma 1. Assume thafR1), (R2a)and (R3) hold; then forN =0, ..., [T/§t] — 1, and for all §z > O:

N
e g+ leX 2 g+ D {ller™ — e 2o+ [ er 2 — e}
n=0
N

+otv Yy {ler g+ e 2L+ et — e 2|5} < cor. (14)
n=0

Proof. The first part of the proof is similar to that of [20]. We c&f the truncation error defined by:
1
E(” (tn+l) - u(tn)) - l)A(u(l‘n+l)) + (u (tn+l) : V)u(l‘n-ﬁ—l) + Vp(l‘n+1) = f(tn+1) + Rn’ (15)
so that
Iyl
., 1
R" = 5 / (t —t,)uy,(r) dr.
n
Subtracting (9) from (15), we get:
1

E(egﬂ/z —e!) — vA(e’C”l/z) = (u" - V)u"+l/2 — (u(tasr) - V)ultur1) + R" = Vp(t,01).  (16)

We take the inner product of (16) wits" /2, use the identitya — b, 2a) = |a|? — |b|? + |a — b|?
and split the nonlinear terms on the right side of (16) as:

(" - V)u" Y2 — (u(ty11) - V)ultns1)
=—(e! - V)u" ™2 + ((uty) — u(turn)) - V)u" V2 — (u(tyyr) - V)e! /2, (17)
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to obtain:
n 2 n||2 n nl 2 n 2
fer 22 — et 2+ en 32 — e 2+ 2310 ] 22
= 281(R", €"Y/2) — 251(V p(t,.11), €"Y/?) — 281¢ (e, u Y2, 1Y)
+ 25tc(u(ty) — u(tyia), u"tz, eZH/Z) 28tc(u(tur), e't2, e’”l/z), (18)

We bound each term in the RHS of (18) independently:

e Taylor residual term:

Int1 2

/(f — 1)Uy, dt

In

‘”_V e t1/2 ”i

(R, €17 < 22 e

st

-1
In+1
n+l/2“ L+ Cét / tlu,, ||31 dr.

In

Sty H
S 3

e Pressure gradient term:

~281(V pltasr), €*?) = zar(Vp(an) erttz —et)
1
< > |erti/z — e HO +2562|Vp(t
sinceV - e’ =0.
e Nonlinear terms:

—25tc(el, u"t/?, /%) = —25tc(el, u(tyy1), €?)
Stv
< Csillerglutinin e 2], < e[+ st e |5,

n+1/2 e

25tc(u(t,) — u(tysr), u
= 251c(u(ty) = utas1), w(tay1), €2

< ottt — u o futren)] e,

n+l/2)

i1
n+1/2Hl—|—C6t fllutllédt 28tc(t(ty 1), €"Y2, " *Y/2) = 0,

In

Stv H
S 3

where we have used (R1) and the continuity and skew-symmetry properties of the trilineat fenom
all these inequalities we deduce:

n 2 nll2 1 n w2 ; 2
Jers 3212 — et g+ Sl — et o srv e
In+1 [
< Cst f tlu| , e +C8¢2/ lee 12l + 2807 |V p(tns0) |5 + C5t] e |2 (19)

tn In
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The proof is now different from that of [20]. We rewrite (11) as:
n+l eg+l/2
St

Taking the inner product of (20) withs2e"+1, we get, given tha¥ - "1 = 0:

e N UA(eZ+l _ eZJrl/Z) _ vanrl =0. (20)

et g — et 2lg+ et — er+2]g
+arv (e T - e 25+ et et =0, (21)

Adding up (19) and (21) for =0, ..., N, we find:
T 2 1 2
Jer il Do feret - exvi2| o Serei - e}
n=0

N
+80 Y {[lertts + entt — et

n=0

T T N
gCér(/tuunHEldt—i—ét/ llue; |20t + S[g?] ||vp(z)||§> +C8tZ e ||§.

o 0 tell, n=0

Applying the discrete Gronwall lemma to the last inequality and using the regularity properties (R1),
(R2a) and (R3) of the continuous solution, we obtain:

N
e Mo+ D flert —ert g+ e et o}
n=0

N
w0 3 (e 2+ er — et < o @
n=0

Finally, the bounds for"*1/2 follow from (22) and the triangle inequality, so that (14) is proved:
Remark 2. Lemma 1 shows, in particular, that the method provides uniformly stable velocities in

Hi(£2), that is to say, that there exists a constant 0 independent of the time stejp such that for
aln=0,...,[T/é] —1:

i RS antl RN (23)
sincelle" ™|, < C, ei %], < C andu € L>(0, T; Hi(£2)). Moreover, we also have:
x|, < a2, |er /2|, < st/ (24)

We will use these bounds later on.

Next we give a first order error estimate for bath™/2 andu”** in the norm of/2(L2(£2)), which is
what was proved for the standard projection method in [20] when applied to the (linear) Stokes problem,
that is, when dropping the convective term in (1):
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Theorem 3. AssumgR1), (R2a) (R3) and (R4) hold; then, forN =0,..., [T/8t] — 1 and for small
enoughdt:

N
[o 80 2 (et g+ et 2]g) < Car®. (25)
n=0

that is,u"** converges ta(z,,1) in (V") NI12(L2(2)) and w2 in 12(L2(£2)) with order §t.

H ei\’ﬂ—l

Proof. By adding (9) and (11), we get:

un+l n

St— u _ 1)Aun+l + (un i V)unJrl/Z + Vanrl — f(tn+l)- (26)
Calling 7"+ = p(t,,1) — p"** the pressure error and subtracting (26) from (15), we have:
1
E(e?“ —e) — vA(e’C”l) + Vit = (u" - V)u”+1/2 — ((tazr) - V)ultyrr) + R". 27)

We take the inner product of (27) witls24 ~te" 1, as in [20], and use the self-adjointnessdof* to get:
( n+1 AT 1 n+l) ( Z’Afleg) 4 (enJrl e JA” ( n+l n)) —2(”1)( n+1 JAT 1 n+1)
= 28tc(u ,u"t?, A_le’C”l)
— 28tc(u(tyrr), u(tyr1), ATl ) + 25t(R", A7 tel 1), (28)
Taking nowu = ¢ in (6), we get:
—23I1)(A€n+l A 1 n+l) 231‘1)( n+1 —A(A 1 n+l))
= 2810 (e, e — Vr) = 250 e+,

sinceV - e"t1 = 0. The RHS terms in (28) are bounded as follows. For the Taylor residual term, we have:

(R, A7) < 200 R, [ Al < 23t R e,

Iny1
+ C812 / Nl 1|2, dt.

In

<ol et

<orler |, + cor R i

[V

For the nonlinear terms, we use the splitting (17) again and bound the corresponding three terms as
follows:

—28tc(u(ty4), erti2, A_lechl) < Cor H”(tn+1) Hz“A_lelc1+l‘|1‘|ez+l/2H0

OV | erarz)2
4 "e o

Sty
{H n+l||0+ ||en+1 en+1/2“(2)

+6tv el |5+ S entt— el 2L - sevflert 2,

where we have used (5) and (21);

<corfer 2, +

—carfer|? +



J. Blasco, R. Codina / Applied Numerical Mathematics 51 (2004) 1-17 11

25tc(u(ty) — u(tyyn), w2, A el
< Cot|uty) — ultysn) o 2] Al

th+1 Iny1 8
t
< Cét /utdt ||e';+1||0<car2/ ||ut||8dt—i—7v“e?+l||(2),
In 0 n

where we have used (23); and:
—28tc(e" un+l/2 A—len+l)
=28tc(e’, A7 e u(t, 1)) — 28tc(el, At TV =T + T,
so that:
Ta< Cotflefola™el | Juttnin ],
< Cét ol < Cor(fler ™o+ et — e 2o + e — e o) e

&—UH PG+ Cor(flertt — e 2o+ et — el ) + Corfer .

due to (R1); and finally:
To< Cotller| oAt ] er 2], < Corleroer [ er2],

v

< Cor2| e e, < &Tv et 1g+ cor?fer2]L,
where we have used (24) Adding up (28) fo= 0, .. ., N, and using all these inequalities, we get:
( N+1 LA 1 N+l +Z n+l n" n+1 +8thHen+l||o

< Cor /Ilunllv dr + C8¢2 /||u,||odt+C8tZ||e”+l|V/_|_C3I2ZHen+1||i

n=0 n=0

+ C&Z{He’i” — e 20+ [lertt? — e o} + C&ZZ Jextt —ert2|]
— n=0

N
+Cor2Y " [erty?)2,
n=0
Using now (8), the regularity properties (R2a) and (R4) of the continuous solution and the estimates of

Lemma 1, we get'
12, + 0w Z ler 2|2 < Car% + Coi Z |ertt|2

|V,+Z”en+l n
n=0 n=0

For sufficiently smaIBt we can apply the discrete Gronwall lemma to the last inequality, and we get:

|V,+2H8n+l n

N+l

V/

N+l

12, + 80w Z ler 2|2 < car?, (29)
n=0
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and the estimate far"*! is proved. Fow"*%/2, we have:

N N
sv Y er g < 2800y (lert o+ [ert — et ]g) < s,
n=0 n=0
due to (29) and Lemma 1, so that (25) is proved

The estimates of Theorem 3 allow us to obtain now enhanced stability properties of the semidiscrete
solution.

Theorem 4. Assume thafR1), (R2a) (R3) and (R4) hold;, assume also thaf € L*°(0, T; H) and that
the domains2 is of classC? (or is a convex polygon or polyhedrprihen, forN =0, ..., [T/8t]—1, and
for small enougl$::

N N
n 2 n 2 n 2
oY {lw o+ w2 <e sy < c
n=0 n=0

that is, #"t1 and u"*¥/? are uniformly bounded in?(H3(£2)) and p"*! is uniformly bounded in
I2(HY(£2)).

Proof. We use a similar argument to that of [24, Theorem 111.3.8]. We rewrite (9) as:

_vAun+l/2 — f(tn+1) _ %(unJrl/Z _ un) _ (un . V)unJrl/Z. (30)
Then:
N 1 2
(12 _ on
(Stz 5 (u u ) ;

n=0

C N
<= 22 —ut o+ [ut — w5+ [ut) o[}
n=0

nll2
[ tuizan + Je: ||O] <c.
In
due to Theorem 3 and assumption (R2a). Moreover:

n V)un+l/2’ w)
W'V un+1/2 = Su (e
I ( ) ”L3/2(.Q) w€L322) lwll s

N

c 112
< gZ[nermnow
n=0

< Claf a2 < c

due to the continuity properties of the trilinear fornand Remark 2; from (30), we can now deduce that
Au"t1/2 is bounded in?(L%2(£2)). Next, we rewrite (11) as:

—vAu"t + vanrl = —pAu"tY? _ 1(1{”“‘ _ un+1/2)
8t ’

V. un+l — 0,
u" e =0. (31)
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The term2 (w"* — u"*%/2) can be easily bounded iR(L2(£2)) as before, so that, using the regularity
of solutions of the Stokes problem (31) on regular domains, we can assure"tHais bounded in
12(W?%/2(£2)) and p"*1 is bounded in?(W%2(£2)). Due to Sobolev's compactness theorem, we then
have thaw”*! is bounded in?(L8(£2)) both wherd = 2 and 3. Furthermore:

n n+1/2
| (" - V)2 HL3/5(Q) — sup (" - V)u"t/2, w)
wel 83(2) lwll ss2)

n+1/2

< CH"n HLs(.Q) H" ‘1’
according to the last property of the forron page 5, which ensures that’ - V)u"+/? is bounded in
12(L%5(£2)). Returning to (30), we improve the regularity afe"+1/2 to 1?2(L%5(£2)), and then that of
w1 to I2(W28/5(02)) and p"** to 12(W8/5(£2)), as solutions of the Stokes problem (31). Sobolev’s
theorem ensures now that*! is bounded in?(L>°(£2)). This fact, together with Remark 2, implies
that (u" - V)u"+1/2 is bounded in?(L2(£2)), which, returning to (30) once more, provides a bound for
Au1/? also inl?(L2(£2)), which is sufficient to bouna”*%2 in 1(H?(£2)) when 2 is regular enough
(see [10]). Finally, the bounds far't! and p"** follow again from the regularity of the Stokes pro-
blem. O

The error estimates of Theorem 3 can be improved to first order in the norm®S(bf(£2))
and [?(H}(£2)) for the end-of-step velocities*! assuming some slightly stronger regularity on the
continuous solution, namely, (R2b) rather than (R2a). Estimates in these norms were also obtained in [12]
for the intermediate velocities of a fully discrete, incremental version of the fractional step projection
method, assuming a finite element spatial discretization satisfying the discrete inf—-sup condition and
under much stronger regularity assumptions on the continuous solution:

Theorem 5. Assume thatR1), (R2b), (R3)and(R4) hold; then, forN =0, ..., [T/5t]— 1, and for small
enoughdt:

N
He?“’l Hé + 8tv Z He’j””i < C812, (32)
n=0

that is,u"+! converges tau(t,,1) in [°(L2(£2)) N 12(H}(£2)) with order§t.
Proof. Unlike in the standard projection method, we can take the inner product of (27) Mtﬁr‘?,
since in our case"*! € V, to get:
n 2 n 2 n n 2 n 2
||ec+1 HO - H ec HO + ||ec+l - ec HO + 25tv || ec+1 || 1
= 28tc(u", w2 eZ+l) — 2(Stc(u(t,,+1), u(tyi1), e’j“) + 28t<R", e’j+1>. (33)
The RHS terms in (33) are bounded as follows. For the Taylor residual term, we have:

In+1
8
ety < o et o [ o

In

25t(R", ') < 281 | R"|

vl

For the nonlinear terms, we use again the splitting (17) and bound the corresponding terms as:
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—28tc(u(ty41), e t2, et
Sty
< Cotfut) | le e 2o < = e+ Cot e,

28tc(u (ty) —u(tys1), u" 2, eZH)

Iyl
5t
< Crlutin) — utty a2 Jer < o [ o+ 2 e
In

—28tc(e, u" 2, ') = 281c(e, €' TV2, ) — 28tc (el u(tyy1), €M) = T+ To,
so that:

To<Cstler | er ]y fer2 ] " et 2],
1/2
0

Sty

< Corller ]y et | e g < corter] et ], < cor¥Ruler |5+ et

n n nl 2 Stv n 2
To < Cot e oluttnsn | ] e, < Corle o+ [ €3

where we have used (24) and the continuity properties of the trilinear foradding up (33) for
n=0,..., N and taking into account (21) and the previous inequalities, we get:

N N N
e g+ D et —erlg+8tv Y et 3+ CorPv Y et ™2
n=0 n=0 n=0

T T N N
< C812 f a1, cr + €512 f o3+ 8ty er ™o+ Co1 Y e —er™2g
0 0 n=0 n=0

N N
eI | T [ A i B Sy Sl P e
n=0 n=0
Using the regularity properties of the solution (R2b) and (R4) and the estimates of Lemma 1, we get:

N N N
eX Mo+ D" lertt —erllg+8tv )" flert s+ Csrv Y e
n=0 n=0 n=0
N N
<Cor24Cor Y |ertt|o+ oy et
n=0 n=0

For sufficiently smallsz, we can apply the discrete Gronwall lemma to the last inequality and take the
last term to the left side, to get:

N N
e 2o+ 3 lent — e+ 80 Y fertt |} < cor,
n=0 n=0
and (25) is proved. O
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4.2. Error estimates for the semidiscrete pressure
As a side product of the estimates of Theorem 5, we obtain ortettor estimates for the pressure

approximation in/2(L3(s2)), which is what one can expect for the present scheme. We first recall a
technical result, similar to that of [21, Lemma Al]. In Theorem 5 we have proved, in particular, that:

N
3 fertt—en|? < car2.
n=0
This implies that:

N
3 fertt—en]?, < car?, (34)
n=0

since for allv € L2(£2), ||v]|_1 < |[v]lo. This is what we actually use to prove the following error estimate
for the pressure:

Theorem 6. Assume thafR1), (R2b), (R3)and (R4) hold; then, forN =0, ..., [T/5¢t] — 1 and for small
enoughdt:

N
5t Y [ plt) = P72 o) < C81, (35)
n=0

that is, p"** converges t (t,11) in 12(L3($2)) with order §¢1/2.

Proof. We rewrite (27) as:

1
—VrfJrl = 5(6‘?“ — eZ) — vA(e’Z,H) —R"— (u” . V)u”“/2 + (u (tas1) - V)u(tn+1). (36)
Using the continuous LBB condition:
\v4 n+1’
”er ||L2(Q) <C sup s v)’ (37)
0 1 lvll1
veH3(2)

we need to bound the products of the RHS of (36) with an arbitrary13(£2). We have:
1

1
Lt menu) < et —er o, (=) n)= ]l ol

Iny1 1/2
(—R"v)< ||R”||_1||v||1<C(/z||un||21dr> ol

In

For the nonlinear terms, we use the following splitting:
—(@" - V)u" 2 4 (u(tyi1) - V)u(tygr)
= ((ultir) —uty)) - V)u(tysr) + (ef - V)u(tysr) + (u" - V)el 2, (38)
Calling I, Il and 111 the three terms obtained after testing (38) withive have:
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In+1 1/2
| < Cllutupr) —uy) || et ]|, vl < C(& / ||u,||%dt> lvll1,

In
< Cler|,|uttin) | vl < Cllel ], lvla.
< Clla| e ™2 vl < Clle 2] vl
where we have used (R1) and (23). Thus, we obtain:

c

e gy < 5 lee™ —etl g+ Cle™y+ ety + e ™2

In+1 1/2 Int1 1/2
+(/t”utt”2_1dt> + (5l/ ||u,||§dt> },
In In

which yields:

[re 15

C 2
@ S 512 ”eZH —e, H—l

In+1 In+1
+C }|e'g+1||§+}|ez}|§+}|e'g+1/2||f+ft||un||21dz+az/ a5l ¢
tn In

and (35) results from (34), the regularity properties (R3) and (R2a) (which is implied by (R2b)) of the
continuous solutiom, and the estimates of Lemma 10O
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