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ABSTRACT:  

 In the lifetime of structures, they may be exposed to damage that deviates their parameters to a new 

uncertain state. To predict these parameters, they must be updated using experimental data through 

various model updating methods. Among model updating methods, the Bayesian approach enables 

the exploration of all the probable models. Many approaches are available, like those that require 

the solution of the eigenvalue problem and those that do not require the resolution of the eigenvalue 

problem. Most existing studies have assumed proportional damping, which gives real modal data, 

which is not the case always. In this paper, a new Bayesian model updating methodology is 

proposed based on introducing system mode shapes, damping ratios and natural frequencies as 

additional uncertain parameters. A dynamic condensation technique is used to restrain the model 

updating problem to work on the observed degrees of freedom (DOF) field only. To decrease the 

number of uncertain parameters, system mode shapes are integrated out, and Transitional Monte 

Carlo Markov Chain (TMCMC) is used to sample from the posterior probability density function. 

The proposed approach has been applied to the 3-storey shear building model. Results show that 

the proposed methodology can predict the updated structural parameters in many cases, like the 

cases where the number of observed modes is greater than the number of observed DOF and if the 

observed modes are not the lowest-frequency modes. 

1. INTRODUCTION 

Finite element (FE) is widely used in civil engineering applications, specially, FE model 

updating are found to be useful in many applications such as Structural Health Monitoring 

(SHM), estimating the structural responses, and structural control applications. In most of the 

works in the literature [1–3] two assumptions are made: first, the system is assumed to be linear, 

and second, the system is assumed to be undamped or classically damped, giving identical 

results. However, the second assumption does not always reflect the actual systems for many 

reasons, such as the availability of different damping sources in the structural model that will 

dis-preserve the modes orthogonality [4] or if the system is equipped with supplemental viscous 

dampers.  
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The deterministic [5] or probabilistic [1, 6, 7] approach can be followed to update the FE model. 

The probabilistic approach has the advantage of exploring the whole family of probable models 

and quantifying for uncertainties [8]. Many probabilistic model updating approaches are 

available; the Bayesian approach is the most used one [9–11] Recently, the approaches that do 

not require the eigenvalue problem's solution have gained importance since they can be applied 

with a considerable reduction in computational efforts [12, 13]. 

Model updating requires measured data to update the FE model. Various form of dynamic tests 

data has been used. Modal data, i.e., (natural frequencies, damping ratios, mode shapes) 

acquired using modal identification techniques [14–16] are universally used in model updating. 

In this paper, a stochastic approach for updating linear dynamic systems using modal data 

acquired from non-classically damped mechanical system. To demonstrate the effectiveness of 

the approach, a 3-DOF simulation example has been applied and the results shows that the 

approach is working properly when the number of the measured DOFs are less than the number 

of the full DOFs of the model. 

1. BAYESIAN APPROACH FOR MODEL UPDATING 

The Bayesian approach for model updating is a probabilistic approach based on the Bayes 

theorem. As a probabilistic model updating approach, probability represents the degree of belief 

of an uncertain event conditional on some given information [17].  

In Bayes' theorem, conditional probability is used to measure the plausibility of some parameter 

given other fixed parameters in the model.  Using the standard notations in the literature: 

𝑝(𝜽|𝐷) = 𝑝(𝐷|𝜽).
𝑝(𝜃)

𝑝(𝐷)
        (1) 

In Eq. (1), 𝛉 ∈ Θ ∈ Rnθ (where Θ denotes the bounded space of the uncertain parameters) is the 

uncertain model parameters, D is data, p(𝛉) is the prior probability density function (PDF) 

which is constructed in the absence of the observed data,  p(𝐷|𝛉) is the likelihood function 

which represents the likeliness of observing the measured data given some model parameters. 

The posterior PDF p(𝛉|𝐷) gives the probability model for the updated parameters and the 

denominator 𝑝(𝐷)  is the normalization constant. 

Experimental modal data can contain an 𝑁𝑠 set of data identified from the real structure. A two-

stage Bayesian approach is presented by [18] states that for model updating to be performed, a 

two-stage is followed in which firstly the modal data is identified and then they are used to 

update the FE model. A major assumption in this approach is to assume a uniform prior to the 

first stage. Furthermore, since the modal data are globally identifiable from the vibration test, 

then it will be reasonable to model the likelihood function in the first stage as a normal 

distribution with mean and covariance matrix identified from the posterior statistics of the first 

stage. Thus, the posterior PDF of the first stage is given by: 
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where, ˆr
+  denote the most probable values (MPVs) of the modal frequency; 

,
ˆ

rC   

denote the posterior variance of r . Similarly, the initial posterior PDF is formulated for the 

damping ratios ˆr
+  and the mode shapes ˆ mn

r   represents the mode mn  observed DOF 

(
* 1/2ˆ ˆ ˆ|| || ( ) 1r r r  = = , where || ||  denotes the Euclidean norm and 

*

r  denotes the Hermitian 

transpose of complex vector r ). The posterior PDF given in Eq. (2) is subscripted with '0' to 

denote that this posterior is related to the stage one assuming uniform prior. 

2. NON-CLASSICALLY DAMPED LINEAR DYNAMIC SYSTEMS 

In the systems that incurred non-classical damping, the conventional solution to the 

eigenequation Eq. (3) will not be feasible. Some or all the N-differential equations are coupled 

through the mode shapes term and cannot be reduced to an N second-order uncoupled equation. 

𝐌𝑥̈(𝑡) + 𝐂𝑥̇(𝑡) + 𝐊𝑥(t) = 0      (3) 

In such cases, the equation of motion can be expressed in state space form by changing of 

variables and defining the velocity 𝜈(𝑡) = 𝑥̇(𝑡), so that 𝑥̈(𝑡) = 𝜈̇(𝑡) and solving Eq. (3) for 

𝑥̈(𝑡) which gives :
𝑑

𝑑𝑡
𝜈(𝑡) ≡ 𝑥̈(𝑡) = −𝐌−1𝐊𝑥(𝑡) − 𝐌−1𝐂𝑥̇(𝑡) and re-write these two sets of 

first order differential equations in matrix form:                                         

𝑑

𝑑𝑡
{
𝑥(𝑡)

𝜈(𝑡)
} = [

𝟎 𝐈 

−𝐌−𝟏𝐊 −𝐌−𝟏𝐂
]

 

{
𝑥(𝑡)

𝜈(𝑡)
}          (4) 

where the matrix  𝐀 = [
0𝑁×𝑁 𝐈𝐍𝐗𝐍

−𝐌−1𝐊 −𝐌−1𝐂
]

 
is the system matrix. The solution to the eigenvalue 

problem specified by the system matrix A yields a complex eigenvalue 𝜆̄𝑟  and complex 

eigenvectors 𝜓̅𝑟 given by: 

𝛙̅𝑟 = [
𝜑̅𝑟

𝜆̄𝑟𝜑̅𝑟
],           𝜆̄𝑟 = −𝜁𝑟𝜔̄𝑟 + 𝑖𝜔̄𝑟√1 − 𝜁𝑟

2      (5) 

where (𝜔̄𝑟, 𝜁𝑟 , 𝜑̅𝑟) represents the 𝑟𝑡ℎ mode modal frequency, damping ratio and mode shapes, 

respectively.  

In this paper, the modal pair [ , ]rr   is replaced with additional uncertain parameter pair 

[ , ]r r  which need to be updated and hence avoid the solution of the eigenvalue problem.  

3. MODEL REDUCTION 

Dynamic tests usually are limited to the available sensors. Thus, the full system is 

reduced to a system that is corresponding to the measured DOFs. This can be accomplished by 

the using of dynamic condensation method. 

To reduce the full system model into a smaller model, mass ( ) d dn

s

n 
M θ , damping 

( ) d dn

s

n 
C θ  and stiffness ( ) d dn

s

n 
K θ  matrices (with dn  being the number of DOF of 
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the structural model) parameterized by uncertain structural model parameter set s

s

nθ ,  are 

split into master 𝑛𝑚  and slave 𝑛𝑠  DOF, (𝑛𝑑 = 𝑛𝑚   𝑛𝑠)  where master is corresponding to 
observed and slave to unobserved DOFs as follows: 

([
𝐊𝐦𝐦(𝛉𝐬) 𝐊𝐦𝐬(𝛉𝐬)

𝐊𝐬𝐦(𝛉𝐬) 𝐊𝐬𝐬(𝛉𝐬)
] + 𝜆̅

𝑟 [
𝐂𝐦𝐦(𝛉𝐬) 𝐂𝐦𝐬(𝛉𝐬)

𝐂𝐬𝐦(𝛉𝐬) 𝐂𝐬𝐬(𝛉𝐬)
] + 𝜆̅

𝑟
2

[
𝐌𝐦𝐦(𝛉𝐬) 𝐌𝐦𝐦(𝛉𝐬)

𝐌𝐦𝐦(𝛉𝐬) 𝐌𝐦𝐦(𝛉𝐬)
]) [

𝜑𝑚

𝜑𝑠
] = 𝟎.    (6) 

By eliminating the slave DOF field, Eq. (6) yields: 

𝐌R(𝜆̄𝑟 , 𝛉s) = 𝐓(𝜆̄𝑟 , 𝛉s)𝑇𝐌(𝛉𝐬)𝐓(𝜆̄𝑟 , 𝛉s)

𝐂R(𝜆̄𝑟 , 𝛉s) = 𝐓(𝜆̄𝑟 , 𝛉𝑠)𝑇𝐂(𝛉𝐬)𝐓(𝜆̄𝑟 , 𝛉s)    

𝐊R(𝜆̄𝑟 , 𝛉s) = 𝐓(𝜆̄𝑟 , 𝛉s)𝑇𝐊(𝛉𝐬)𝐓(𝜆̄𝑟 , 𝛉s)

    (7) 

where, 𝐌R ∈ ℂ𝑛𝑚×𝑛𝑚 , Damping 𝐂R ∈ ℂnm×nm  and Stiffness 𝐊R ∈ ℂnm×nm , are the reduced 

mass, damping, stiffness matrices corresponding to the rth mode.  

𝐓(𝜆̄𝑟 , 𝛉s) = (
𝐈

𝐭(𝜆̄𝑟 , 𝛉s)
) is the 𝑟𝑡h transformation matrix and 𝐈  : identity matrix of size 𝑛𝑚. 

𝐭(𝜆̄𝑟 , 𝛉s)𝜑𝑟
𝑚 = −(𝐊ss(𝛉s) + 𝜆̄𝑟𝐂ss(𝛉s) + 𝜆̄𝑟

2𝐌ss(𝛉s))
−1

(𝐊sm(𝛉s) + 𝜆̄𝑟𝐂sm(𝛉s) + 𝜆̄𝑟
2𝐌sm(𝛉s))𝜑𝑟

𝑚 = 𝜑𝑟
𝑠  (8) 

where 𝐭(𝜆̄𝑟 , 𝛉s) is the dynamic reduction matrix for the rth mode. 

4. BAYESIAN FORMULATION 

Bayesian theorem is applied to the current problem having the uncertain parameters set 

(𝛉, 𝛚, 𝛇, 𝐱𝜙) and the measured data 𝐃 = {𝜔̂𝑟, 𝜁𝑟 , 𝝓̂𝒓, 𝐶̂𝜔,𝑟 , 𝐶̂𝜁,𝑟 , 𝐂̂𝝓,𝒓, 𝑟 = 1, . . . , 𝑁𝑀} , applying 

this to Eq. (1) gives: 

𝑝(𝛉, 𝛚, 𝛇, 𝐱𝜙|𝐷) =
𝑝(𝐷|𝛉,𝛚,𝛇,𝐱𝜙)𝑝(𝛉,𝛚,𝛇,𝐱𝜙)

𝑝(𝐷)
      (9) 

According to the fact that the PDF of modal data do not require the information of the uncertain 

parameter 𝛉  i.e. 𝑝(𝐷|𝛉, 𝛚, 𝛇, 𝐱𝝓) = 𝑝(𝐷|𝛚, 𝛇, 𝐱𝝓)  and that 𝑝(𝛉, 𝛚, 𝛇, 𝐱𝜙) =

𝑝(𝛚, 𝛇, 𝐱𝜙|𝛉)𝑝(𝛉).Moreover, from total probability theorem gives:  

𝑝(𝐷|𝝎, 𝜻𝒙𝜙) = 𝑐𝑝0(𝝎|𝐷)𝑝0(𝜻|𝐷)𝑝0(𝐱𝛟|𝐷)𝑝(𝐷) (10) 

This will change the Eq. (9) to: 

𝑝(𝛉, 𝛚, 𝛇, 𝐱𝜙|𝐷) =
𝑐𝑝(𝛉)𝑝0(𝛚|𝐷)𝑝0(𝐱𝜙|𝐷)𝑝0(𝛇|𝐷)𝑝(𝛚,𝛇,𝐱𝜙|𝜃)𝑝(𝛚,𝛇,𝐱𝜙|𝛉)𝑝(𝛉)

𝑝(𝐷)
  (10) 

Since different modes are statistically independent, then: 

𝑝(𝛉, 𝛚, 𝛇, 𝐱𝜙|𝐷) = 𝑐𝑝(𝛉)[∏ 𝑝0(𝜔𝑟|𝐷)𝑝0(𝜁𝑟|𝐷)𝑝0(𝐱𝜙,𝑟|𝐷)𝑝(𝜔𝑟, 𝛇𝑟𝐱𝜙,𝑟|𝛉)𝑟 ]  (11) 

5. PROBABILITY MODEL OF PREDICTION ERROR  

The accounting for uncertainties in Bayesian model updating is done by introducing the 

prediction error probabilistic model. The prediction error is defined as the discrepancy between 

the measured responses of the system and the response of a system model parameterized by the 
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uncertain parameter set sθ . In the proposed methodology the prediction error, mn

r ε , is 

given by the following equation: 

2( , ) ( , ) ( , )s

R R R

r r r r rs r rs      + + = K Cθ θ M εθ  (12) 

Motivated by [6,19], the probability model for the prediction error re  is designed to produce the 

maximum uncertainty based on the Principle of Maximum Entropy [20]. Thus, re  is modelled 

as a discrete Gaussian process with mean assumed to be equal to zero and covariance matrix, 

2 2

,
m mn n

e r


C modelled as, 

2

Re,

, 2

Im,

r

e r

r





 
=  
 

I 0
C

0 I
, where m mn n

I  is an identity matrix, and 

2

Re,r , 
2

Im,r  are prediction error variance. 

6. FORMULATION OF THE POSTERIOR PDF 

The posterior PDF given by the Eq. (11) has large number of uncertain parameters 

making its estimation using any available any Markov Chain Monte Carlo (MCMC) algorithms 

a nontrivial task. In this approach, the sampling is intended to be done from the marginal PDF 

( , , | )p Dθ ζ ω instead of sampling from the full Posterior PDF ( , , , | )p Dθ ω ζ x . This demands 

the integration of the variable  x  from Eq. (11) as follows: 

0 0 0( , , | ) ( ) ( | ) ( | ) ( | ) ( , , | )p D cp p D p D p D p d  = θ ζ ω θ ω ζ x ω ζ x θ x  (13) 

Sampling from the marginal PDF above decreases the number of uncertain parameters from  

( 2 ) 2
s M M M M mn N N N N n + + + +  to 4

s Mn N + which can be handled using suitable MCMC 

algorithms. 

7. SAMPLING USING MARKOV CHAIN MONTE CARLO 

To deal with relatively large number of uncertain parameters, a special Monte Markov 

Chain algorithm is used which is Transitional Monte Carlo Markov Chain algorithm 

(TMCMC). TMCMC is an efficient simulation algorithm to sample from difficult PDFs. The 

distinctive feature behind the TMCMC is to sample from a series of intermediate PDFs that 

converge to the target PDF. 

8. ILLUSTRATVE EXAMPLE 

The example given in this section is a 3-storey shear building system ( 3dn = ), taken 

from [21] as shown in Fig. 1  The model has the system parameters shown in Table 1. 

For simulation of acceleration response, 100 independent acceleration response sets have been 

recorded. The acceleration response is corresponding to the first and third floor (𝑛𝑚 = 2) with 

an impact load applied to the second floor. Data has been recorded for 10 seconds at a sampling 

frequency of 1000 Hz. The measured acceleration is found by perturbing the acceleration of the 

nominal system with noises simulated from a Gaussian distribution with mean zero and a 



Eamon Henikish, Sahil Bansal, and Rajpurohit Kiran 

 

 6 

standard deviation equal to 0.05 × 𝑚𝑎𝑥(𝑎𝑏𝑠(𝑥̈𝑡(𝑡))),  with 𝑥̈𝑡(𝑡)  being the 𝑗𝑡ℎ  floor 

acceleration response.  

 

Fig. 1. 3-story shear building 

Modal data: Modal identification is executed firstly using an approach based on Hilbert-Hung 

analysis [21]. The statistical properties (MPVs and covariances) of the modal parameters have 

been acquired from 100 independent sets of simulated noisy data. Table 2 shows the nominal 

system modal frequencies, damping ratios, and mode shapes and the statistics of the modal 

parameters identified from measured data.  

Identification model: For identification of uncertain model parameters, the same 3-story shear 

model is considered with stiffnesses parameterized as 
0j j jk k = , and damping coefficients 

parameterized as 
0 dj j n jc c  += , for 1, 2,3j = , where 1 6[ ]s  =θ  are uncertain scaling 

parameters to be identified, that is 1 6[ ]s  =θ . Masses are assumed to be known.  

Prior PDFs: Scaling parameters 1 , 2  and 3  are assumed to be independently uniformly 

distributed in the range [0.5, 1.5], 4 , 5  and 6  are independently uniformly distributed in the 

range [0, 2], and prediction error variance, 2

Re,r  and 2

Im,r , are independently uniformly 

distributed over [0, 2000] (Nm-1)2. The updating has been done using three observed modes (

3MN = ). Correspondingly, in such a case: 2 2 2 2 2 2

Re,1 Im,1 Re,2 Im,2 Re,3 Im,3[ , , , , , , ]s      =θ θ . 

Results from the proposed approach: Results from a model updating using TMCMC algorithm 

(characterized by number of samples N = 5,000/stage and scaling parameter 0.2 = ), are 

presented in Fig. 2. These results represent the samples simulated in the last single run 

transitional PDF. The results show that the large uncertainty of the stiffness and damping 

parameters sθ  has been significantly reduced in the posterior samples which are distributed in 

a small region around the true mean values (true mean values=1).  

Table 1. System Parameters for 3-DOF shear model 

1 2 3980 kN/mk k k= =  Stiffness 

1 2 3980 kN/mm m m= =  Lumped Mass 

1 2 37.035 / , 2.814 / , 0.704 kNs/mc KNs m c KNs m c= = =  damping coefficients 
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Table 2. Modal properties of 3-story shear building system 

M
o

d
e Theoretical values Identified MPVs and COV* 

Freq. (Hz) Damping ratio (%) Mode shape Freq. (Hz) Damping ratio (%) Mode shape 

1 2.22 3.47 

1.0000 + 0.0000i 

1.8020 + 0.0543i 

2.2455 + 0.1006i 

2.22 

(0.0016) 

3.54 

(0.0354) 

1.0000 + 0.0000i 

- 

2.2190 + 0.0982i 

2 6.24 6.26 

1.0000 + 0.0000i 

0.4399 + 0.1489i 

-0.7957 - 0.0495i 

6.28 

(0.0116) 

5.69 

(0.0797) 

1.0000 + 0.0000i 

- 

-0.7733 - 0.0136i 

3 8.94 7.30 

1.0000 + 0.0000i 

-1.1909 + 0.2892i 

0.5077 - 0.2095i 

8.89 

(0.0026) 

7.44 

(0.0361) 

1.0000 + 0.0000i 

-1.2043 + 0.2137i 

0.5225 - 0.1513i 

*The COV values are provided in the parenthesis. 

 

 

Fig. 2. Posterior histograms and scatter plot of stiffness and damping contribution parameters. 

Table 3. Statistics of frequency and damping ratio parameters of 3-story shear building system 

Case Mode 

Statistics of ω  and ζ  samples 

generated at the last stage of TMCMC 

Statistics of ω  and ζ  obtained by solving eigen-

equation for each sθ  sample of the last stage of TMCMC 

Freq (Hz) Damping Ratio (%) Freq (Hz) Damping Ratio (%) 

1 

1 

2 

3 

2.22 (0.0014) 

- 

8.90 (0.0025) 

3.59 (0.0352) 

- 

7.33 (0.0310) 

2.22 (0.0543) 

6.32 (0.0551) 

8.87 (0.0064) 

3.22 (0.4177) 

6.02 (0.3103) 

7.31 (0.0966) 

2 

1 

2 

3 

2.22 (0.0007) 

6.23 (0.0071) 

8.90 (0.0011) 

3.57 (0.0180) 

5.91 (0.0249) 

7.68 (0.0258) 

2.23 (0.0150) 

6.24 (0.0103) 

8.90 (0.0058) 

3.16 (0.1176) 

6.10 (0.1161) 

7.40 (0.0690) 

*The COV values are provided in the parenthesis. 

3k

3c

2k

2c

1k

1c

3k 3c2k 2c1k 1c

3k

3c

2k

2c

1k

1c

Case 1

Case 2
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The statistics of the posterior frequencies and damping ratios samples from a single run are 

summarized in Table 3. It is observed that the posterior system frequencies and damping ratios 

are Gaussian with their sample mean and sample COV close to the MPV and COV of the 

observed modal frequencies. Table 2 also presents the statistics of ω  and ζ  samples obtained 

by solving eigen system equation for each sθ  sample generated at the last stage of TMCMC. It 

is observed that the natural frequencies and the damping ratios of the updated system are close 

to those for the nominal system. 

9. CONCLUSION 

A model updating approach for reduced linear non-classically damped dynamical 

systems is presented. Results from the example with simulated modal data show that when 

updating the model's structural parameters, the updated parameters are distributed in a smaller 

region than the prior region, indicating the efficiency of the updating approach. Moreover, the 

additional uncertain parameters, i.e., modal characteristics, have been successfully identified 

with matching posterior statistics. Finally, integrating the system mode shapes and sampling 

from marginal PDF proved helpful in reducing the dimensionality of the problem if an efficient 

MCMC algorithm was used. 
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