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Abstract. In today’s agile business ecosystems, digital twins (DTs) and especially digital twins 

of organizations (DTOs) allow for adaption through dynamically evolving models depicting 

organizational aspects such as production processes, data flows, human actors and interactions. 

A hybrid modelling approach is utilized, as the establishment of such DTOs either considered 

on their own or as part of a DT ecosystem is not trivial. Meta modelling and meta model 

merging patterns are applied to integrate heterogeneous perspectives and domain models. Two 

main research questions with respect to digitization towards digital twinning are discussed: 

First, which digitization principles/patterns are appropriate for DTOs? Patterns ranging from 

“counting” to “estimation” are introduced to fill digital models serving as a foundation for DTs 

with data. As a starting point, potential digitization principles for relevant characteristics of 

BPMN – “Modelling Method for Business Processes” and KPI – “Modelling Method for Key 

Performance Indicators” models are considered. Second, which principle/pattern is appropriate 

for which organizational structure? In order to ease the selection of suitable patterns for specific 

application scenarios, those will be associated with organizational structures like but not limited 

to construction processes, assembly processes or production processes each of them with 

domain-specific characteristics. A prototype consisting of three phases – use case requirements 

collection, model design and digitization assistance – builds upon (a) physical experimentations 

in the OMiLAB Innovation Corner using physical assets such as edge devices or sensors, (b) 

domain specific services considering software related aspects such as timeseries databases or 

simulation algorithms, and (c) modelling methods enabling the integration of physical and 

digital components. The paint production pilot from the European Change2Twin project serves 

as an application scenario evaluation use case. A notion of what the use case company intends 

to achieve by digital twinning and what is possible by introducing digital services is touched. 

The outlook presents how artificial intelligence may be introduced for the prototype to leverage 

the paint production use case and further application scenarios. 
 

1 INTRODUCTION 

According to Deloitte [1] digital technologies can accelerate reaching enterprise goals by 

22%. This paper focuses on digital twinning – especially DTOs [5] – promising when dealing 

with digitization during digital transformation. A recent study [2], estimated the global DT 
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market at 3.1 billion USD in 2020 and projects a growth to 48.2 billion USD in 2026. 

Nevertheless, only 30% of digital transformations [3] achieve the objectives, due to barriers [4] 

related to technologies, competencies or strategies. Hence, the transparent identification of 

appropriate digitization concepts enabling DTs to leverage industrial application scenarios – 

accelerating DT in an organizational context [6] – is considered critical. Especially, DTOs and 

their models evolve dynamically depicting processes, data flows or interactions for instance. 

In general, digital transformation may be seen as a process [7] where digital technologies 

create disruptions triggering strategic, organizational responses considering both, value creation 

as well as change management including organizational barriers. Among the plethora of digital 

technologies, DTs look at various perspectives ranging from production processes, human 

actors, skills to process inputs/outputs that are relevant for strategic responses and decision 

making towards a digitally transformed organization – advancing several industries such as 

manufacturing, healthcare, automobile or retail [8]. Especially, the dynamic behaviour of 

current business environments – impacting approaches systematically support competitiveness 

such as enterprise modelling – creates a need for agility. Here, DTOs support with providing 

means of digitalization towards real time scenarios by building upon enterprise models that are 

graph-based, machine readable knowledge representations [9]. DTOs can be considered either 

as (a) digital technology on its own resulting in targeted DTOs like in the paint production pilot 

of the European project Change2Twin [11], or (b) as a part of a DT ecosystem like in the 

European project COGITO [12], where DTs are used to plan a construction site. 

However, DTOs come with several challenges like but not limited to blurred boundaries of 

organizations (e.g. diverse stakeholders) and dynamic, irrational behaviour of humans and 

organizations (e.g. official rules, social or personal aspects) [10]. Here, hybrid intelligence 

enables resilient DTs by bridging human and machine intelligence. Supporting both 

perspectives, humans and machines, in dynamic environments, this paper proposes a hybrid 

model-based approach – the ‘physical experiment designer’ – facilitating digitization via 

targeted digitization principles (synchronously term for ‘digitization patterns’ in this paper). 

The following section presents the approach and methodology of this paper by outlining the 

research questions, the role of modelling and the OMiLAB Innovation Environment. In section 

3 related work is cited. Afterwards, the prototype of the physical experiment designer is 

introduced in section 4, followed by section 5 describing a paint production scenario as an 

evaluation sample. Finally, section 6 provides an outlook. 

2 APPROACH AND METHODOLOGY 

Basically, a design science approach [12] is followed using a research and experimentation 

environment. Specifically, a (meta) modelling approach is pursued to depict the application 

scenario in form of a digital model with BPMN [13] – typically used to model business 

processes. A prototypical approach is proposed to tackle two main research questions (RQ).  

RQ1 – Which digitization principles/patterns are appropriate for DTOs?  

RQ2 – Which principle/pattern is appropriate for which organizational structure?  

Underlying aspects such as data integration are covered by discussing how to fill the digital 

model – like but not limited to a BPMN process – with process data. For this purpose, basic 

principles aiming at facilitating the digitization process are presented and can be instantiated 

with different digital technologies. 
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2.1 Hybrid Modelling 

Modelling information systems in business has long tradition and is still relevant due to 

continuous dynamics [53]. A hybrid modelling approach is utilized, where meta modelling [14] 

and meta model merging patterns [15] are applied to integrate heterogeneous perspectives and 

domain models. Human interpretation such as intuition related to readability, representation or 

usability are addressed by hybrid models [16] as well as machine interpretation such as formally 

correct, complete and expressive models. Formal models – recognizable by artificial 

intelligence (AI) – can be referenced via semi-formal models. For example, BPMN presenting 

business processes in an intuitive graphical way can be extended like but not limited to deal 

with process variability [17], decision logic [18], simulation [19, 20] or non-functional 

properties like performance and reliability [21]. Discrete event simulation is not a new 

technique, however, predicting production alternatives supporting daily business seems to get 

more relevant – for instance in manufacturing [22, 23]. 

Meta modelling is applied to create hybrid models linked to the BPMN process models, as 

conceptual modelling can be seen as knowledge schemas [22]. Here, DTs enable simulation via 

integrating data into the process models. “A digital twin is a digital replica of an artefact, 

process or service that is so accurate that it can be used as basis for taking decisions. The digital 

replica and physical world are often connected by streams of data [11].” Using the OMiLAB 

Innovation Environment, the (hybrid) digital models can be accompanied with physical 

experiments to further elaborate on the more physical aspects towards DTs, specifically DTOs. 

2.2 OMiLAB Innovation Environment 

A guarded environment for dealing with industrial application cases is offered by the 

OMiLAB Innovation Environment [25] covering diverse perspectives. The OMiLAB layer 

concept (Fig. 1) consisting of business, conceptual modelling and physical layer provides 

means of reducing the complexity of business scenarios and guiding the digitization – 

respectively the digital twinning – process. Starting with modelling, several standardized as 

well as domain specific modelling languages are used for abstraction and simplification. 

Integrating simulation allows for flexibility via more dynamic interactions and processing 

capabilities building upon the graphical models. Physical equipment ranging from sensors over 

robots to related infrastructure is provided to support the creating of physical experiments. 

The modelling components are leveraged by the meta modelling platform ADOxx [35] – 

free for academic purposes – facilitating the creation of domain-specific modelling languages,  

coming with a 

microservice framework 

[36] and bringing 

together more than 5.000 

developers in an open 

community. Community 

support is also provided 

by the OMiLAB NPO 

[37] powering the 

OMiLAB laboratory 

environments. 

 
Figure 1: OMiLAB Layer Concept (left) and Realization of the Industrial 

OMiLAB Innovation Corner at BOC Vienna (right) [25] 
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3 RELATED WORK 

Recently, diverse challenges emerge from integrating virtual (network, software, 

communication protocols, etc.), social (human roles, organizational structures, etc.) and 

physical (sensors, robots, buildings, etc.) components [34], such as intertwining components, 

models varying in concepts, formality and abstraction, or uncertainty and disruptions due to 

dynamic contexts. Increasing complexity – e.g. related to scale, connectivity and uncertainty – 

raises a need for considering multiple disciplines and heterogeneous perspectives. 

3.1 Digital Twins of Organizations 

While traditionally DTs were considered as a digital representation of an asset such as a 

manufacturing machine, in these days digital copies of nearly everything – promising for most 

industries – can be created [29]. Three evolutionary stages for DTs – digital model, digital 

shadow and DT – can be differentiated [30]. While digital models are usually characterized by 

manual dataflows interacting with the real-world object, they allow for processing enabling 

digitization, visualization, simulation, emulation, extraction, orchestration, prediction or 

advanced individual usage scenarios [31]. A digital shadow can be considered as a hybrid 

version of digital model and twin, while a DT is characterized by automated data flows.  

Several classifications such as DT of products, production and performance [32] as well as 

various specifications such as targeted DT [43] facilitating both, technology and business 

considerations [33] can be found in literature. A DTO enables an organization to adapt – ranging 

from the identification of business processes to informed decisions making – according to 

Gartner [5] and increases agility via digitization [9]. Five principles are followed during the 

dynamic evolution of a DTO [6]: starting with what is available, data is set free, digitization is 

increased, new digital opportunities are considered, and models are progressed. In contrast to 

classical DTs often focusing on machine or sensor data, DTOs aim at more holistic digital 

models considering data flows ranging from organizational assets over people to their 

interactions. While the complexity of such comprising models – including social, ethical, 

policy, technical, etc. issues – must somehow be handled, at the same time advanced simulation 

and decision making for increased efficiency, competitiveness and agility are facilitated. 

3.2 Digitization Principles and related Concepts 

The digitalization of processes in enterprises is challenged by the systematic identification 

of digitalization potentials – a pattern-based approach seems promising compared to time 

consuming expert analysis [52]. The bigger picture counts for digital transformation affecting 

whole organizations [40]. Digital technologies are rapidly developing, creating a need for 

synergizing technological and managerial expertise. Proactive management and organizational 

agility are critical when thinking of the high technological dependence (e.g. for remaining 

competitive), as companies experience a lack of understanding when it comes to digital 

transformation and its implementation. [38] presents four design principles, in which digitally 

mature companies are clearly advanced compared to those in digital development – design 

thinking to develop different perspectives for more flexibility, prototyping following an 

engineering philosophy to accelerate the adaption process, development sprints for emergent 

processes managed iteratively and in short sequence and open stakeholder integration handling 

expectations. Those principles were developed in accordance with the strategic management 
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principles from [39]: (1) renewal through development of new competencies, (2) application 

scenarios define complexity handling, (3) strategic options are a development process and not 

predefined, and (4) strategic processes through integration instead of hierarchy. For instance, 

management approaches such as lean principles (e.g. management by walking around or value 

stream mapping) can be target oriented at digitizing checklists and workorders [48]. 

In contrast, [49] aims at mapping and associating business procedure elements to digital 

services, not covering physical aspects such as sensors. A set of services is provided that can 

be directly incorporated into models via a web application. Not only (micro-)services but also 

engineering software can be integrated following a process driven approach [50]. Industry 4.0 

– specifically cyber physical systems consisting of various components (e.g. sensors, actuators, 

etc.) – creates a need for managing complex resources in a flexible, scalable way considering 

performance and reliability analysis, for instance enabled by a BPMN extension [51]. [54] 

approaches discovering process models and creating high level BPMN models based on real-

life event logs reflecting process behaviour. However, underlying process aspects such as 

resources (e.g. times or costs), responsibilities and states need sophisticated digitization for 

being reflected in digital shadows and interact with DTs, while basics such as textual process 

task descriptions can be collected in digital models without advanced digitization needs. 

Considering implications from literature, this paper aims at proposing an open, integrative 

and design-oriented approach for assisting digitization journeys towards DTOs.  

4 PROTOTYPE – „PHYSICAL EXPERIMENT DESIGNER” 

Physical experiments are established following three development phases. First, the use case 

requirements collection covers use case relevant aspects such as application scenario details, 

domain characteristics, expectations and goals. Among the plethora of existing methods, any 

suitable technique for requirements engineering (e.g. successfully utilized in software 

engineering) can be applied like but not limited to observations, interviews, workshops or user 

stories [26]. Second, the model design phase supports the design of digital models building 

upon the identified requirements. Starting with, creative approaches such as design thinking 

[27, 28] can facilitate conceptualizing relevant knowledge in form of models. Ideally, this phase 

can be concluded with the design of BPMN processes and related KPI models. However, 

depending on the application case, several model design iterations including different 

modelling approaches ranging from standardized to domain specific modelling methods – 

consisting of a technique divided in a (graphical) language and a procedure, and mechanisms 

& algorithms [14] – may be necessary. Third, digitization assistance is provided in form of 

digitization patterns supported and implemented by hardware, software, models and so on. The 

idea is to create, design and engineer physical experiments in order to bridge use cases with 

digitization patterns facilitating the development of DTOs. Fig. 2 shows an overview of the 

physical experiment designer. Use case requirements and key questions are used to extract the 

digitization needs. By applying simplification and abstraction, the models are designed focusing 

on the digitization relevant aspects. If the use case envisions a digital shadow or twin, the digital 

model is extended by selecting appropriate digitization patterns for sensing and 

actuating/triggering. Among several concepts – discussed in a targeted meta model (see Fig. 3) 

presenting also their relationships – the suitable ones must be selected considering the target 

digitization degree and with respect to the application case and its requirements. 
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Figure 2: Creating, Designing and Engineering Physical Experiments for bridging Use Case and 

Experiment Requirements with Digitization Patterns towards Digital Twins 

Building upon the models from the model design phase, the question on how to fill the digital 

models with data emerges (RQ1). Supporting this step, predefined digitization principles are 

proposed to facilitate the digital transformation process. These digitization patterns can be 

classified in two groups: sensing and actuating patterns (see Table 1). Sensors and actuators can 

be seen as key concepts for enabling interoperability in dynamic environments such as Industry 

4.0 [55]. The remaining question is, which characteristics of the digital model should be 

physically digitized by which pattern – considering if high reliability or dynamic decision 

making is required for the use case. Sensing patterns can be characterized by the reliability 

degree (e.g. compare review on sensor reliability [56]), while actuating patterns are 

characterized by the point of decision (e.g. compare decision making with wireless sensor and 

actuator networks based on local/global information [57]). 

Table 1: Creating, Designing and Engineering Physical Experiments for bridging Use Case and Experiment 

Requirements with Digitization Patterns towards Digital Twins 

 Pattern Characteristic Sample Usage 

S
en

si
n

g
 

Ignore n/a n/a 

Estimate low reliability camera for image recognition 

Count & Calculate medium reliability RFID for inventory counting 

Measure high reliability scale sensor for weight measurement 

Measure & Check very high reliability 
scale sensor compared with usage 

and historical data  

A
ct

u
a

ti
n

g
 

Guided Action no decisions needed 
robotic vehicle with a line follower 

for following a guided path 

Random Action 
random conduction of automated 

behaviour 

robotic vehicle selecting movements 

randomly for vacuum cleaning 

Fixed Binding 
fixed decisions before triggering 

automated behaviour 
LED sensor for traffic light 

Pre-Binding 

selected decisions directly at the 

beginning of triggering automated 

behaviour 

face recognition for door opening 

Late Binding 
decisions directly before each 

automated behaviour action 
AI for self-driving vehicles 
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For example, when thinking of BPMN models, execution times can be digitized by 

measuring process steps via timestamps, while the count & calculate pattern may be used to 

deal with resources (such as raw materials) in a production process. When selecting the suitable 

pattern, the organizational patterns and their characteristics – partially evaluated through 

requirements collection – must be taken into account (RQ2). For instance, when having a non-

critical paint production process, sensing patterns with lower reliability may be enough, while 

critical medication transportation processes may require very high reliability (e.g. ensure 

perfect temperature for cooled medication). So far, basic reliability levels are defined by the 

sensing patterns. However, also the selection of specific sensors for implementing the pattern 

can influence the cost-efficiency ratio and may come with minor reliability improvements. 

The digitization designer prototype aims at heterogeneous stakeholders dealing with 

digitization, digital transformation and digital twinning use cases. The open and design-oriented 

requirements collection and modelling phases aim at integrating stakeholders with technical 

background as well as those focused on business aspects. Basic knowledge of the application 

scenario, the use case company and the industry are assumed, but not necessarily required when 

going through the phases of the digitization designer. When it comes to implementing the 

physical experiment in the real use case environment, technology expertise is presumed. 

Basically, the physical experiment builds upon the following three main building blocks. 

4.1 Modelling Methods 

A plethora of different modelling approaches – specifically applied in the model design 

phase – ranging from BPMN describing a sequence of actions to DMN [18] allowing for data 

interpretation based on specified conclusions exists. Therefore, the selection of a modelling 

method sufficiently expressing organizational assets, interaction and data flows as well as 

handling complexity related to DT of organizations must be chosen for the development of the 

digital model.  

Meta modelling is applied 

to reference and merge 

concepts ranging from 

physical digitization assets 

over use case considerations 

to digital models. Fig. 3 

depicts the proposed meta 

model (created with [41]) 

covering the most relevant 

concepts for digitization and 

specifically for the physical 

experiment designer. 

Depending on the selection of 

physical elements, either a 

digital model, a digital 

shadow using sensors or a DT 

using actuators is developed.   

Figure 3: Meta Model for the Physical Experiment Designer 
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So far, the meta model builds upon physical experiments such as the paint production 

experiment described in [58] and [59]. In contrast to this bottom-up approach, the idea is to 

switch the perspective and start with the meta model to facilitate the experiment establishment 

in future. Additional functionality extending the meta model should enable making notes in the 

models, interpreting simulations and searching for suitable digitization solutions. 

4.2 Domain Specific Services 

Service orientation is a means of supporting flexibility and changeability when dealing with 

production processes [42]. Two major types of services are differentiated in the meta model – 

services that enable the creation of the DT and services that facilitate the operation of the DT. 

The provision of software (e.g. for edge devices, sensors, etc.) required for the development of 

DT can be considered as enabler, while services like but not limited to time series databases 

[45], (meta) model database for provided by ADOxx, visualization with dashboards building 

upon microservices [36], discrete event simulation of graph-based models [46] or prediction 

[44] leverage the operation of DTs. Numerous services – e.g. implemented as microservices 

and provided in the meta model in form of knowledge and algorithms – facilitate the DT 

building and operation. For instance, the digital model can be leveraged with services capturing 

sensor data, dashboards can be used to visually present models as well as simulation results and 

querying can be applied on top of the models to ensure compliance with defined KPIs. 

4.3 Physical Experimentations 

The OMiLAB Innovation Environment offers physical experimentation equipment, in order 

to capture physical aspects of digitization such as integrating sensors and actuators or 

underlying considerations such as connectivity or power supply. For instance, equipment like 

but not limited to edge devices (e.g. Raspberry Pi or Arduino microcontrollers), domain 

substitutes (e.g. paper figures representing raw materials), sensors (e.g. RFID readers or 

cameras), or actuators (e.g. robotic arms or vehicles) is provided. 

Depending on the purpose of the physical experiment in the laboratory setting, the physical 

experimentation equipment may differ from the actual use case digitization equipment, for 

example in terms of reliability, costs or equipment producers. For instance, as in contrast to the 

physical experiment, more sophisticated considerations related to the ecosystem and the 

environment are required in a real-world setting (e.g. dusty production halls or legal policies). 

5 H2020 EU-PROJECT CHANGE2TWIN: PAINT PRODUCTION USE CASE 

Starting with the use case requirements collection, key questions for (a) the use case and 

(b) the experiment emerged based on textual use case descriptions and in discussion sessions. 

The former covers questions related to the establishment of a real time inventory, the 

traceability and the documentation of the production process. Based on the requirements of the 

paint production company (e.g. currently using analogue machines), among others, the 

digitization of the raw material warehouse and the digitization of the production process could 

be derived as use case challenges. In contrast, the experiment aims at reviewing the technology 

(e.g. RFID sensors, etc.) that supports dealing with the digitization challenges in a lab setting. 

BPMN is applied for the production process model design. Modelling workshops were 

conducted in which the company’s leading computer engineer and an external software 
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engineering consultant contributed relevant domain knowledge. The resulting digital model of 

the production process was used to depict and review the digitization challenges. In this use 

case, BPMN was chosen due to the familiarity of the stakeholders. However, a targeted domain 

specific modelling language could be reasonable for optimally supporting the industrial case, 

for instance by allowing to model raw material flows from warehouses to production lines.  

Digitization assistance is applied 

in form of implementing patterns 

such as ignore and count & calculate 

by introducing sensors. The 

experiment presented in Fig. 4 shows 

an association in form of a tea 

production experiment depicting 

similar characteristics compared to 

the paint production use case. The 

raw material warehouse in the top 

part of the figure consists of two 

types of materials. Basic materials in 

silos are ignored as they can be 

considered to be always available 

and specialized materials that need 

 
Figure 4: Physical Experiment – OMiLAB Innovation Corner  
[innovation-laboratory.org/experiments/paint-production/overview/] 

some inventory management can be counted & calculated to digitize the inventory monitoring. 

Basically, the physical experiment applies means of abstraction, simplification and association 

to focus on the digitization and DTO relevant aspects and ease the understanding and awareness 

among diverse stakeholders. In this use case, the physical experiment is used to evaluate the 

technology before implementing it in the real factory setting. Required software (e.g. BPMN 

modelling tool, microservices, etc.), hardware (e.g. microcontrollers, RFID readers, camera, 

etc.) and infrastructure assets (e.g. database, network, etc.) for the experiment are provided in 

the OMiLAB Innovation Environment. Table 2 presents selected components relevant for the 

digitization process, where the components may differ between the use case and the associated 

physical experiment, as the key questions for the use case cover for instance the digitization of 

the warehouse considering a dusty environment, while the experiment focuses on evaluating 

the technology in a laboratory setting. 

Table 2: Comparison of selected Components relevant for Digitization 

 Use Case (1) Experiment (2) 

 

Edge Devices Raspberry Pi 4, ESP32 Raspberry Pi 3B, ESP32 

Sensors MFRC522 Module 
NFC Module, RC522 RFID 

Sensor, C920 Logitech Webcam 

Infrastructure 
Company Network, SQL 

Server DB, Edge Device Box 

OMiLAB Network, KairosDB, 

Paper Box 

Software Node JS, WebApp, REST IoT Adaptor, Dashboard, REST 

Environment 
Raw Material Warehouse, 

Paint Production Line 

OMiLAB Innovation 

Environment, Laboratory Setting 

Ecosystem 
SAP System, Production 

Workers, Managers 

Microservice Framework 

 

1 

2 
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6 OUTLOOK 

The physical experiment designer raises the question of how to guide human-decision 

making towards a smart physical experiment. AI has not only the potential to contribute up to 

$15.7 trillion to the global economy by 2030 [47], but also to enrich hybrid decision making. 

Hence, AI may provide support in all three phases of the physical experiment designer. For 

instance, AI may facilitate the information retrieval when thinking of the requirements 

collection (e.g. with prediction or pattern recognition), support the model processing during the 

model design phase (e.g. with simulation, optimization or trust indication), as well as leverage 

the physical experiment with targeted AI services for interaction (e.g. with chatbots or speech 

recognition). So far, the presented paint production use case aims at technology evaluation and 

review by establishing the physical experiment. AI may be used to leverage the scenario for 

instance by introducing image recognition for monitoring the raw material status facilitated by 

(a) a modelling method supporting KPI models and indicating trust levels, (b) domain specific 

services such as neuronal networks processing the images and presenting the results on a 

dashboard, and (c) physical experiment equipment such as a Raspberry Pi and a camera 

implementing the estimate pattern by continuously taking material pictures. However, other use 

cases such as the railway construction in COGITO rather focus on discussing tracking the 

equipment on a dynamic construction site or optimizing the work line balance. Hence, the 

physical experiment may rather focus on checking the applicability and plausibility of the 

digitization concepts used for dynamic monitoring instead of evaluating the technology. 

Ideally, the digitization journey towards a DT should not start with experiment building but 

count on the presented meta model that allows integrating business and technology aspects via 

hybrid modelling and meta model merging. Hence, the perspective will be switched to model 

use cases, interpret simulations and identify solutions via the physical experiment design. In 

contrast, the above proposed AI integration focuses on use case content related aspects, whereas 

in future AI functionalities will be integrated into the meta model in order to leverage the 

physical experiment designer with advanced decision support capabilities during the 

experiment creation. For instance, the pattern selection can be facilitated via a list of predefined 

pattern alternatives automatically extracted from the identified use case requirements. 
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