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Summary

The objective of this paper is to present a finite element formulation to solve the Stokes
problem with Coriolis force. This force results in a skew-symmetric term in the weak
formulation of the problem that deteriorates the stability of the standard Galerkin finite
element method when the viscosity is small. We show that the stability is worsened due
to the presence of the pressure gradient to enforce the incompressibility of the flow. The
relevance of this effect depends on the relative importance of the viscous force and the
Coriolis force, which is measured by the Ekman number. When it is small, oscillations occur
using the Galerkin approach. To overcome them, we propose two different methods based
on a consistent modification of the basic Galerkin formulation. Both methods eliminate the
oscillations, keeping the accuracy of the formulation and enhancing its numerical stability.

1 Introduction

When the Navier-Stokes equations for an incompressible viscous fluid are written in a
rotating frame of reference two new terms appear. One is the centrifugal force, which is
independent of the velocity and the pressure and can be considered as a body force (or
included in the pressure, since it can be written as the gradient of a scalar function). The
other term is the Coriolis force, which can be expressed as w X u, where w is twice the
velocity of rotation of the frame of reference and w is the velocity field referred to this
rotating reference. Our interest in this work is focussed precisely on the effects that this
term causes in the numerical solution of the flow equations and, in particular, in the Stokes
problem. In the stationary case that we shall consider throughout, these equations are

—vAu+Vptwxu=Ff (1a)
V-u =0, (1b)

where p is the kinematic pressure, f is the vector of body forces (accounting also for the



centrifugal force) and v is the kinematic viscosity. The domain where the problem is to be
solved (open, bounded and polyhedral) is denoted by £2.

Boundary conditions have to be appended to Egs. (1). To simplify the exposition, we
take the homogeneous Dirichlet prescription u = 0 on the whole boundary 0f2.

There are two main numerical difficulties associated with problem (1). The first of them
is classical and concerns the compatibility of the finite element spaces for the velocity
and the pressure. It is well known (see, e.g., Ref. [1]) that they have to satify the so
called Babugka-Brezzi stability condition. There is also the possibility of using the same
interpolation for both the velocity and the pressure by modifying the standard Galerkin
variational form. See Refs. [2-4] for examples of such methods. We shall describe one
of these possibilities later on, namely, the Galerkin/least-squares method. Its extension
to problem (1) is precisely one of the methods that allow to solve the second numerical
difficulty described next.

The other difficulty encountered when one tries to solve problem (1) with very small
values of the viscosity is the presence of spurious oscillations when the standard Galerkin
finite element formulation is used. We shall show that they are due to the pressure p, which
may be understood as a Lagrange multiplier to enforce the. incompressibility of the flow
dictated by Eq. (1b). If this incompressibility were not imposed, small viscosities could
lead to local oscillations, only in the neighborhood of the boundary layers, but not to global
ones. This phenomenon is well known and appears in problems with dominant absorption
terms, that is, with terms proportional to the unknown function. In this case it 1s not
possible to obtain a global stability estimate in the 1 horm, although it is in the L? one,
thus explaining why these local oscillations may exist but can not deteriorate the solution
globally. However, for problem (1) it is not possible to obtain the aforementioned estimates
(at least in a straightforward manner) due to the presence of the pressure. Therefore, not
only local boundary layer oscillations may appear, but also global ones may be expected.
The situation is, in a sense, similar to what happens in the linear convection-diffusion
equation when the diffusive term is very small compared to the convective one—the stan-
dard Galerkin method has a global lack of stability. In our case the study is complicated
by the fact that the phenomenon is genuinely multi-dimensional.

The dimensionless number that allows to quantify the relative importance of the viscous
and the Coriolis forces in Eq. (1a) is the Ekman number Ek, defined as
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Here, w = |w| and L is a characteristic length of the computational domain 2. We shall
also consider the element Ekman number Ekj,, defined as in Eq. (2) but replacing L by
the diameter h of an element under consideration.

Our purpose in this work is to develop a finite element formulation free of spurious
oscillations even in the case in which Ek is very small, that is, when the Coriolis force
dominates the viscous one. This will be accomplished by adding to the original Galerkin
formulation stabilizing terms that shall be described in Sections 3 and 4, after presenting
in the following section the standard Galerkin formulation of the problem and discussing
the origin of its misbehavior. In Section 5 some numerical experiments will be presented,



showing the type of oscillations that can be found using the Galerkin approach and how
the stabilizing techniques proposed in this paper allow to remove them.

2 Galerkin finite element approximation
2.1 Statement of the problem

Let ngg = 2 or 3 be the number of space dimensions and consider the following function
spaces

V= (H&(Q)) ted
2 )
@={ser¥@) [ qaa=0}
Q
and the forms )
a(u,v) = 1// Vu : Vv dQ2
Q
W(g,v) = / gV - v dQ)
Q
c(u,v):/(w X u)-v dQ
Q

l(v):/ﬂf-de

(4)

with w, v € V and ¢ € Q. Having introduced this notation, the weak form of problem (1)
consists in finding a velocity w € V and a pressure p € ) such that

a(u,v) —b(p,v) + c(u,v) =1l(v) YveV .
b(g,u) =0 Vg e Q. ®)

Existence and uniqueness of solution for this problem can be proved exactly as for the
classical Stokes problem without the Coriolis force. Observe that the bilinear form c(u,v)
is continuous and skew-symmetric and thus a(u,v) + ¢(u,v) is continuous and coercive in
V, since a(u,v) is coercive in this space.

The finite element approximation of problem (5) that we consider is obtained simply
by replacing V and Q by finite element subspaces Vj, C V and Q) C Q (here and below,
we introduce a subscript h to refer to the discrete finite element problem). This is the
standard conforming Galerkin approximation of the problem.

It is well known that the discrete spaces V}, and @ have to satisfy the inf-sup or
Babuska-Brezzi condition

b
sup ((Ih ) vh)

——== > Kpllanllo  VYan € Qn, (6)
vr llvell



where the supremum is taken over all the v, € Vj \ {0}, I is a positive constant and
Il - llo and || - ||1 are the standard L? and H! norms, respectively.

In the method to be described in Section 4 we shall assume that condition (6) holds,
although it will not be necessary in the method presented in Section 3, since it allows to
circumvent it. Several combinations of velocity and pressure interpolations that satisfy
condition (6) can be found, e.g., in Refs. [5, 6]. A particular one will be described in
Section 5 and used in the numerical example.

2.2 Stability properties of the Galerkin method

We are interested now in studying the stability properties of the discrete finite element

version of problem (5). First, let us introduce the bilinear form A acting on (Vi x Qp) X
(V}, x Qp,) and defined as

A(wp, privn, an) = a(ug,vp) — b(pp, vp) + c(up, vp) + b(gp, wp) (7)

and the linear form £ defined on Vj, x Q) as

/:'('Uh.’(lh) = l('vh)' (8)

The discrete counterpart of problem (5) can now be written as: find a pair (up,pp) €
V}, X Qp, such that

A(uh’Ph; Vh, (Ih) = L{vp, (Ih) (9)

for all (vh’Qh) €V xQp

The numerical stability of the problem is provided by the coercivity of the bilinear form
A in the space V}, and by condition (6). Let a > 0 be a given scalar. It may be readily
checked that

9 2
Awy,, pi; up + a(w x up),pp) = vI[Vupllg + allw x wllg

(10)
+a [ o (9 x up) 4
Q

where we have made use of the relations

up - (wxup) =0 (11a)
Vuy: V(w xup) =0 (11b)
V-(wxup)=—-w-(Vxuy). (11c)

From Eq. (10) it is observed that for a = 0 we have control over IVupllo, wp, being the
solution of problem (9). By invoking the Poincaré-Friedrics inequality we could obtain an
a priori bound for ||uy||;. However, these estimates are multiplied by the inverse of the
kinematic viscosity v. If it is very small, they are useless from the numerical standpoint
and the Coriolis force w x u), will be completely out of control. Observe that if the problem



is written in dimensionless form v may be replaced by the Ekman number Ek defined in
Eq. (2).

If we take a > 0 in Eq. (10) it is seen that the possible control that we could have over
w X wj, may be destroyed by the last term in this equation. It is clear that this term would
not appear if we do not impose the incompressibility condition, that is, if instead of the
bilinear form A defined in Eq. (7) we consider

AO(uhavh) =V ./Q; Vuy : Vo dfd + /Q(w X uh) -y A, (12)

which is the bilinear form associated with the finite element approximation of the contin-
uous vector equation

—vAutwxu=Ff (13)

with homogeneous Dirichlet boundary conditions. Therefore, the possible lack of stability
due to the term w x uy, is a problem originated exclusively by the presence of the pressure
pp, associated with the (weakly imposed) incompressibility of the flow. The solution of
Eq. (13) using finite elements may exhibit only local boundary layer oscillations. They
will be further analyzed in the following subsection.

Numerical experiments indicate that the above mentioned lack of stability in problem (9)
in fact exists. Global oscillations occur when the element Ekman number is very small.

From Eq. (10) it is observed that if the angular velocity w is orthogonal to the vorticity
V x uy, then it is possible to bound |luy||o using the standard Galerkin method. This must
be kept in mind since the modification of the original formulation described Section 4
disappears when this orthogonality holds. Note also that this situation can only be found
in three-dimensional problems (for non-zero vorticities).

2.3 Truncation error for a 1D model problem
This subsection is intended to get more insight in the behavior of the numerical solution

of Eq. (13) with Dirichlet conditions u = 0 on 9. For that, let us consider the following
simple one-dimensional problem:

d2
—u——zf—wv:fl, O<e<l (14a)
dz?
d%v
—v—s t+wu = fg, 0<z<l1 (14b)
dz?
u(0) = u(1) = v(0) =v(1) =0, (14c¢)

where u(z) and v(z) are the unknown functions and f; and f are constants. Except for the
boundary conditions (that can be easily generalized), this models for example the so called
Ekman problem (see, e.g., Ref. [7]). As mentioned previously, no global oscillations have
to be expected when the standard Galerkin approximation 1s employed. Only localized
overshoots and undershoots may appear near the boundaries for very small values of the
viscosity v, in which case boundary layers are created.

[$2]



If the interval [0,1] is discretized using a uniform partition of linear finite elements
of length h, the standard Galerkin approximation applied to problem (14) leads to the
following set of difference equations:

" AN wh? N X

—8i1 + 20 — digy — o (i1 + 40 + dit1) = —fi (15a)
R . wh? . . X

—0i1 + 20 — Dig1 + 5 (Gi-1 + 40 — Uip1) = - fo, (15b)

where 4; and 9; are the nodal values of the approximated unknown functions at the jth
node of the mesh and i above stands for an interior node, the abcissa of which is denoted
by z; in the following,.

Let us concentrate on the truncation error for Eq. (15a). If u and v are the solution of
problem (14), we use the abbreviations

(n) _ d"u

YU = dzn

and u; = u(z;) (16)

T=x;

and similarly for v(z). Expanding u;_1 and ;41 in Taylor series we can write

ST LA S~ B ()
—ui—1+2u; +ujp] =— ZO(—l)"Fui + 2u; — z_:o Y
iy 4k n4_k+2 (17)
_ 5 Z h NCORIPY Z _h_u(4k+2)
ATk’ 3 1%
=t (4k)! = (4k 4+ 2)!
It can be easily verified that u(z) satisfies the following relation
44k kw2k )
(1;1;4]3 = (—1) —1/2_1» ('LL = E) ; k= 1,2,3, (18)
Using this in Eq. (17) it is found that
. D . —9 f_2_ . = 1)k f} 4k_1_ 1
—uj_ 1+ 2u;j+uip] =2 = LZ_:O(— —h @n) —
- (19)

@) v 00 . 5 4k4-2 1

The series appearing in this expression can be summed up and expressed in terms of simple
functions. This yields

—u;_1+ 2uj + ujpq =2 []:2 — ui] [cos (1 /%h) cosh (1 /;—Vh) - 1]
— 2u£2)£ [sin (ﬂ /%h) sinh ( %h)]

(20)



and a similar expression can be obtained replacing u by v and w by —w. Introducing the

= \/% (21)

and making use of Eq. (20) (and the analogous for v) we obtain that

dimensionless parameter

. wh?
—uio1 + 2ui + Uit — e (vi—1 + 4vi + viy1)
Y (22)

_ h_2 (._quQ) — wvi> + Ey i,
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where E, ; is the truncation error for the first equation of system (15) multiplied by h? /v
at the 7th node. It is given by

. 2
E,;=-2 vgz) [cos()\) cosh(\) — 1\3— sin(\) sinh(\) — 1]

g

, 9 (23)
- 2;u£2) [sin()\) sinh(\) — % (cos(\) cosh(A) + 2)} .

The value of the truncation error at each point is now found by replacing in Eq. (23) the
second derivatives of u and v by their exact expressions. After doing this, one finds that

Ey ;= 2[C3exp(az;) sin(azx;) — Cy exp(—az;) cos(az;))

2
X [sin(/\) sinh(A) — % (cos(A) cosh(X) + 2)]

24
+ 2[Cy exp(az;) sin(az;) — C1 exp(—az;) cos(az;)] (24)
2
® [cos()\) cosh(A) — % sin() sinh(\) — 1] ,
where a := \/h and the constants Cj, j =1,2,3,4, are given by
1 :
Cy = ——< [fisin(a) + fo (cos(a) + exp(a))]
1 :
Cs =~ fasin(e) — fi (cos(a) + exp(a))]
e (25)
w
Cy= 1 _ Co
w

A = exp(—a) + 2 cos(a) + exp(a).

We are interested now in studying the behavior of E, ; in the limit cases w — 0 and
v — 0. Let us consider the case of small \, either because w is very small or because



h — 0. From the expression of the constants Cj, j = 1,2,3,4,1n (25) it is easy to see that
they remain bounded as A — 0. Moreover, since the bracketed functions of ) in Eq. (24)
are of order A%, the truncation error vE, i/ h? will be of order A2 for all the nodal points.
This is what one could expect from the discretization of the equations that we have used.
What is more important for us is the case v — 0 (for a fixed w). From the expres-
sions (25) it is found that C; — —f2/w and Cy — f1/w as @ — oo, whereas Cg and Cy
behave like exp(—a). Therefore, up to constant factors (positive or negative), E, ; behaves

like
[exp(—a) exp(az;) exp(ah) + exp(—az;) exp(ah)] {1 + af2h2] . (26)

From this it is observed that the truncation error will tend to zero in the interior of the
domain, and will tend to infinity at the nodes next to the boundary. This reflects the typical
boundary layer oscillations found also in scalar equations with a dominating absorption
term [8-10]. It is important to observe that these oscillations are localized, and that they
can not propagate towards the interior of the computational domain. Thus, at least for
the linear equations that we are considering and for problems with smooth solutions, they
are only a minor problem from the practical point of view. )

In Figure 1 we have plotted the absolute value of E,, ; for different values of the viscosity.
In this case, we have discretized the interval [0,1] using 20 linear elements and we have
taken f1 = fo =1, w=1.

3 Galerkin/least-squares formulation

The methods to be described in what follows are motivated by the need of improving
the stability properties of the standard Galerkin approach applied to the finite element
solution of problem (1). In particular, we aim to improve the possitivity of the bilinear
form A defined in Eq. (7).

The first formulation that we discuss is the so called Galerkin/least-squares (GLS)
method introduced by Hughes et al. in Ref. [11]. See also Refs. [3, 12, 13]. The motivation
for this method is that it allows to circunvent the div-stability restriction (6) for the
velocity and pressure finite element spaces, allowing in particular equal interpolation for
both unknowns. It is precisely the possibility of using this equal interpolation that makes
the GLS method attractive from the computational standpoint. Here, we describe its
(straightforward) extension to the problem we are considering. For that, let us write
Egs. (1) as

S(u,p) = (S1(w,p), Sa(u,p)) = (£,0), (27)

where we have introduced the vector operator S, with components

Si(u,p) == —vAu+Vp+twxu

28
So(u,p) ==V - u. (28)

Later on we will also make use of the operator
S (w,p) :=Vp+w X u, (29)



which is equal to Si(u,p) without the viscous term.

The idea of the GLS method is to add to the discrete Galerkin formulation a stabilizing
term. This term is the L? product within each element of the operator S applied to
the test functions with the residual in the element multiplied by a matrix 7, that is,
r[S(unsp) — (£, 0]

Let us denote by {Q¢} the finite element partition of the domain {2, with index e ranging
from 1 to the number of elements n,). Instead of Eq. (9), the problem to be solved now is
to find uy, € Vj, and p;, € @, such that

A(wp, phi v an) — Lo, qn) + R(wp, prs v, qn) =0 (30)

for all v, € V,, and ¢, € Q. If we take the matrix 7 as diagonal, with the terms
corresponding to the momentum equations equal to a parameter 71 and those corresponding
to the continuity equation equal to 72, the stabilizing term R(wp, pp;vp, qp) is given by

Nel

R(wh, Phi s Gh) = ) /Q [11S1(vhs an) - (S1(wp,pr) — F) (31)
e=1

+ 7259(vp, ) - So(wp,pp)] dS.

The choice for the parameters 7, and 7 is discussed below.

In expanded form, Eq. (30) leads to two equations, one corresponding to the approxi-
mation of Eq. (1a) and another to Eq. (1b). With the term R defined above, this expanded
form reads

I(vg) = a(up,vp) = b(pp,vp) + c(wp, vp)
Tel
+ Z/ [Tl (—VA'vh + w X ’Uh) . (—VA’U,h + Vph + w X up — f)

+ 72 (V-vp) (V- )] dQ (32a)
0 = b(qp,up)

Nel
= Z/;) Tlet. ’ (—VAuh. + vPh + wXup — f) dQ (32b)

for all v, € V}, and ¢, € Q.
It is interesting at this point to write the matrix structure of the algebraic system
resulting from problem (32), that is
Ki+Ky Gi+Gy| |U| | Fy (33)
—-GY+GYy Ly P| |F)|

Subscripts 1 and 2 refer to terms coming from the Galerkin and the stabilizing term,
respectively, U is the vector of nodal velocities and P the vector of nodal pressures. The
stabilizing effect of the GLS method on the velocity-pressure interpolation comes from



matrix L9y (it is a discrete Laplacian matrix multiplied by the parameter 7y within each
element).

The important point is how to choose the parameters 7; and 7,. The goal is to obtain
a stable numerical scheme with optimal rates of convergence. For that, it can be shown
that 7; can be taken as [11]

= (34)

This parameter is evaluated for each element, h being its diameter. In Eq. (34), B is a
constant the precise value of which must affect the accuracy of the numerical calculation
but not its stability and convergence properties, provided it is taken within a certain range
(see Refs. [11, 13]).

The way we compute § is based on the study of the GLS method applied to the one-
dimensional convection-diffusion equation and considering the limiting situation of zero
convection. In this case, the parameter 7; can be computed as 71 = ah/2|u|, u being
now the convective velocity and a being a function of the Péclet number Pe := |u|h/2v.
For small values of this dimensionless number it is known that a must behave like SPe,
with f constant [14], thus leading precisely to expression (14) for 7. It turns out that the
constant B can be taken as 1/3 for linear elements and 1/9 for quadratics [15]. These are
the values that we use in our calculations.

Equation (34) for the choice of 7 was derived for the standard Stokes problem, without
the Coriolis force. When this force exists, we have observed from numerical experiments
that the GLS method fails to give reasonable results, especially when quadratic elements
are employed. The explanation we give to this misbehavior is that when the viscosity v
(or the Ekman number) is very small, 7; turns out to be very large. In Eq. (32b) the
dominating term is the one coming from the GLS formulation, and not that associated
with the Galerkin method, which is precisely the one responsible to enforce the (weak)
incompressibility of the numerical solution. When the Coriolis term does not exist, this 1s
not important at all, since the solution for the velocity field is uj, = wp 1/v, where up
is the solution for » = 1. From this it follows that the first term in the right-hand-side of
Eq. (32b) (with w = 0) will grow as the viscosity decreases like the second one, that is,
the relative importance of the two terms in this equation is not affected by the viscosity.
Therefore, very small values of this parameter may lead to numerical ill-conditioning, but
the solution of the GLS formulation will be correct (except, perhaps, in regions close to
the boundaries).

We still have the freedom to select the parameter 5. It is observed from Eq. (32a)
that it contributes to enforce the incompressibility of the flow, that is precisely what is
excessively relaxed by the term multiplied by 7;. In numerical experiments, we have taken
it as 5

7-2:7|wl h ’ (35)

v

with 4 a constant. We have observed that the solution improves when v > 0, and in
particular the incompressibility can be better approximated. The values of v that we have
employed are based on numerical experimentation. They are indicated in Section 5, where
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numerical results are shown demonstrating the effectiveness of the GLS method to remove
the oscillations of the Galerkin method due to the dominating Coriolis force. However, the
formulation described in the following section turns out to be more accurate, as we shall
see also in Section 5.

Before closing this section, let us remark that it is also necessary to take 7 > 0 for
the Navier-Stokes equations (see Refs. [16, 17]). In this case, the viscous force does not
compete with the Coriolis force, but with the convective one. However, the excessive
relaxation of the incompressibility for very small viscosities also appears, and 7, > 0 must
be selected to obtain reasonable numerical answers.

4 Divergence of the residual stabilization (DRS)

The idea of the method we propose is to add to the original Galerkin terms a least squares
form of the divergence of the residual within each element of the momentum equation (1a).
The reason for this is only the improvement of the stability that will be shown below. We
call this approach divergence of the residual stabilization (DRS).

Instead of problem (30), we propose to solve the problem of finding uy € V}, and ¢;, € Qp,
such that

A(ulnph; Vp, (Ih) - E(vh’ (Jh.) + D(ulwph; Vh, Qh) =0 (36)

for all vy, € V), and ¢;, € Q.
The stabilization term D(wuy,, pj,; vy, ¢ ) replaces the least squares form of the residual
of the GLS formulation, that is, the term R(uy, py; vy, qp)- Its expression is

el

D(wp, ppivh,qn) = Y /Q [TV - S{(vp, ) (V - S{(wp,pp) = V - £)] (37)
e=1
and 7 > 0 is a parameter that we take for each element as
= §— 38
r= (39)

where § is a function of the local Ekman number Ekj,. A form for it is given below, although
from numerical experiments we have observed that setting it equal to zero when Eky is
high and taking it as a constant when it is small is an effective option. The particular
values of this constant will be indicated in the next section.

The discrete variational equation (36) is consistent, in the sense that the exact solution
of problem (1) satisfies it (for sufficiently smooth solutions). Observe that we have used
the operator S} defined in Eq. (29) and not Sy, given by Eq. (28). Since the exact solution
is divergence free, this keeps the consistency of the method, because

VSY(’U,,p) :v51(’u,p) (39)

11



The use of SY for the discrete problem avoids the need for computing the third derivatives
of the shape functlons which would be clearly expensive and involved at the moment of
implementing the method on the computer.

It is important to remark at this point that the added term D(wp,pp;vp,qy) is not
introduced to stabilize the velocity-pressure interpolation. As a consequence, we still need
to use div-stable finite elements.

Let us consider now the expanded form of problem (36). It reads: find u; € V}, and
pp, € Qp such that

l(vy,) = a(up,vy) — (P, vp) + c(up, vp)

+ Z /Qer[v (wxv)][App+ V- (wxuy)— V- f] dQ (40a)
Nel

0= b(Qha 'Uzh) + Z /Qe TA(H;, [Aph + V- (w X uh.) —X7 . f] dQ (40b)
e=1

for all vj, € V}, and ¢;, € Q-

The matrix form of the algebraic system resulting from problem (40) is the same as
for the GLS formulation, i.e., the one given by Eq. (33). However, now the matrix L9 in
this equation results from the integral of the product of two Laplacians of pressure shape
functions evaluated element by element. Therefore, this matrix is zero if the pressure
interpolation is linear.

Let us consider precisely the above mentioned situation to explain the improved stability
provided by the term D. The bilinear form associated with the problem is

-ADRS(Uh, PhiVhs (Ih) = A(uha Ph; Vh, (Ih)

Nel

+Z:1/ET[V-(wXv,l)][v.(wx,uh)] a6 (41)

Using Eqs. (11), we obtain the following stability estimate

Tl

2 2
Avrs(wp, s un,pp) = vIIVullg + > méllw - (V x up)ll§ e, (42)
e=l1
where || - ||g e denotes the L? norm restricted to the eth element of the partition. Equa-

tion (42) shows that we improve the stability of the original Galerkin formulation by
gaining control over the term w-(V x u},). If this term is zero (or very small), we retrieve
the stability properties of problem (9). However, from Eq. (10) it is observed that the
Galerkin method has good stability in this case and therefore there is no need to modify
it, except, perhaps, if one does not even want to allow local oscillations near the boundary.
In this sense, our motivation is completely different from that leading to the Galerkin-
Gradient/least-squares formulation proposed in Ref. [8] for the scalar diffusion equation
with a dominant absorption term, although apparently the idea is similar.

12



Taking into account the previous considerations, let us suppose that
lw - (V x wp)llg ge = Colwl* IV x unllg (43
|w up)llg e 2 Colw uplg e )

for a certain constant Cp > 0 independent of the element e, and that the function é in

Eq. (38) is of the form

§(Ekj,) = min{i%l, CQ}
44

{ |w|h2 (44)
= ming C ”

,CQ},

where C] and Cy are positive constants. Assuming that in Eq. (41) 7 is the same for all
the elements, from Eq. (42) it follows that

9, C1C, 12,4
ADRS(uh,Ph; ull.7pll.) > I/”V’U,]LH() + —I/—|w| h Hv X uh”?) (45)

when Ekj, is high, that is, when the viscous force dominates, and
2 2 2
Aprs(wp, phs why Ph) 2 VIVl + C2Cpl wlR7IV X upllp (46)

when the viscosity is small and therefore it is the Coriolis force the dominating one.

From the estimates (45) and (46) it is observed that the term added to the original
Galerkin formulation has an important influence only when the viscosity is small, provided
Eq. (43) holds true. In particular, from estimate (46) we see that the term on which we
gain control is the curl of the velocity, i.e., the vorticity. On the other hand, the velocity
is weakly solenoidal and is zero on the boundary. Under these conditions, a bound for the
vorticity implies a bound for the whole velocity gradient Vuy (cf. Ref. [18]), which in turn
results in an estimate for the velocity itself by using the Poincaré-Friedrics inequality. In
conclusion, the stability is enhanced.

5 Numerical examples

In this section we present the numerical results obtained using the formulations proposed
in this paper for a simple 2D example. The domain is the sector of a centrifugal fan
comprised between two flat blades. The angle between the axes of these blades is 45°,
whereas they form an angle of 30° with the cylinder of radius 1 to which they are fixed
and they ocupy a sector of 7.5°. The flow is confined by an outer cylinder of radius 2,
forming a gap of 0.2 with the blades. This is at rest and the fan is rotating anticlockwise
at an angular velocity of 1 rad/s, i.e., w = 2 rad/s, so that the relative velocity of the outer
cylinder has norm |u| = 2 and is tangent to it.

The boundary conditions for the velocity expressed in the reference system fixed to
the rotating fan are zero velocity on the blades and the inner cylinder, prescribed tangent
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velocity on the outer one, tangent velocity on the upper part of the blades (concentric with
the cylinders) and periodic velocity on the inlet and outlet of the domain.

The computational domain and a finite element mesh of bilinear elements is shown
in Figure 2. This mesh consists of 461 nodal points and 416 elements. We shall refer
to it as mesh 1. Also, two other finite element meshes will be considered, obtained by
splitting successively each element into four. They will be referred to as mesh 2 and mesh
3, respectively. Their number of nodal points is 1753 for mesh 2 and 6833 for mesh 3.
Also, we shall consider the use of biquadratic elements whose finite element meshes are
obtained by grouping together four bilinear elements of meshes 1, 2 and 3.

We shall solve numerically Eqs. (1) with a value of the viscosity v = 5 x 1078, for which
oscillatory results are obtained using the standard Galerkin method.

The exact solution to this problem is exactly the same as that of the Stokes problem
without Coriolis force. This is due to the fact that for 2D incompressible flows the Coriolis
force is curl-free, since

Vx(wxu)=wV-u=0 (47)

Thus, the Coriolis force must be the gradient of a scalar function that can be included in
the pressure. Of course, this can not be done if the tension i1s prescribed on part of the
boundary, since in this case we have a condition involving the physical pressure.

The streamline pattern obtained with w = 0 and using the @9/Q; element (continu-
ous biquadratic velocity, continuous bilinear pressure), known to satisfy the div-stability
condition (6) [18], is shown in Figure 3. The coarsest mesh (mesh 1) has been used. We
have also plotted the velocity variation along the straight line joining the centers of the
two concentric cylindric walls in Figure 4. We refer to this line as middle section. These
results will serve us as a reference for the following cases with w = 2.

Let us consider first the use of bilinear elements. It is well known that there is no mixed
velocity-pressure interpolation with continuous bilinear velocities satisfying condition (6).
However, the Q1/P; element, with piecewise constant pressures, is known to yield good
results most of the times, even though a spurious pressure mode needs to be filtered in
some cases (see [1] for further discussion about this controversial element). We have used
it in this example and, as we shall see, with good results.

The streamlines obtained using the Galerkin method with mesh 1 of 1/ F elements are
shown in Figure 5. It is observed that the solution is completely oscillatory, as well as the
pressure contours shown in Figure 6. The solution improves as the mesh is refined, although
in this case the streamline pattern is still very bad using mesh 3 (Figure 7). Pressures are
not so bad using this mesh, mainly because the component due to the centrifugal force
dominates (Figure 8).

The streamlines obtained using the GLS method are shown in Figure 9. The numerical
parameters that we have employed are § = 1/3 and y = 0.005 (see Egs. (34) and (35)). It is
observed that the oscillations have been completely removed, although the solution is still
not very good. The incompressibility has been poorly approximated, and our algorithm
to compute the streamfunction from the velocity field, which is based on the fact that the
solution is divergence-free, yields streamlines with the origin on the blades. It has to be
remarked that in this and the following cases we present the best results obtained with
several tries of algorithmic parameters. This in particular is true for the solution obtained
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using the Q1/Fy element and the DRS technique shown in Figure 10. We have taken
6 = 0.02 in this case (see Eq. (38)). It is observed that the solution is clearly better than
using the GLS method, with a better approximation of the incompressibility and with
peaks of the streamfunction closer to those obtained in the case w = 0 (Figure 3). From
Figure 11 it is observed that the velocity variation along the middle section does not vary
excessively from one mesh to the other. Results are also close to those of the case w = 0
(Figure 4). The pressure variation along the middle section is shown in Figure 12. It is
observed that the solution obtained using the Galerkin method on mesh 3 is basically that
due to the centrifugal force, without reproducing the pressure decrease close to the outer
cylinder that can be observed using the DRS method.

Let us consider now the case of biquadratic elements. The solution obtained using the
Galerkin method on meshes 1, 2 and 3 is shown in Figures 13, 14 and 15, respectively. It
is clearly observed how the solution improves as the mesh is refined. Using mesh 3 there
are no oscillations in the streamlines, although the position of the central vortex is still
not correct if we compare it with the result obtained in Figure 3. Also, the streamfunction
peaks have an important error.

Figure 16 shows the streamlines obtained using the GLS method with g = 1/9 and
v = 0, which are the parameters that yield the best results in the case w = 0. Clearly, this
solution is wrong. The incompressibility condition is far from being approximated and the
fluid flows basically close to the outer cylinder. No improvement is obtained by increasing
the parameter 7. As explained in the main text, this behavior is due to the fact that
the term multiplied by the parameter 77 in the continuity equation dominates the original
Galerkin term, which is responsible to enforce the incompressibility. This can be verified
by decreasing the value of 8. In Figure 17 we have plotted the streamlines obtained with
P = 1076 and vy = 103, showing a dramatic improvement with respect to the results of
Figure 16. It must be pointed out that the value g = 1076 yields completely oscillatory
results in the case w = 0.

Results obtained using the DRS method are shown in Figure 18 for the Q9/Q1 element
and in Figure 19 for the Q9 /P element (discontinuous piecewise linear pressures). In both
cases we have used § = 0.002, a value ten times smaller than that employed with bilinear
elements. It can be observed that the performance of the DRS method is very good. This
is also seen from the variation of the velocity and the pressure along the middle section
plotted respectively in Figures 20 and 21.

6 Conclusions

In this paper we have discussed the problems encountered when one considers the presence
of a dominating Coriolis force in the Stokes equations. We have shown that oscillations
occur when the standard Galerkin formulation is used. To overcome this misbehavior,
two different possibilities have been studied. The first of them is the GLS method, for
which we have made some remarks concerning the election of the numerical parameters
that define this method. The second formulation is novel, and based on the addition of



a least-squares form of the divergence of the residual of the momentum equations to the
basic Galerkin terms. We have given theoretical indications to explain why the stability is
enhanced. From the numerical experiments that we have carried out it is observed that the
performance of this method is excellent. It precludes the numerical oscillations without
being excessively overdiffusive.

Concerning the extension of this technique to the incompressible Navier-Stokes equa-
tions, it has to be pointed out that the values of the Ekman number for which the Galerkin
formulation fails correspond to extremely high values of the Reynolds number. Therefore,
in realistic physical situations the problem of important Coriolis force appears together
with complicated flow behavior and, probably, turbulence. We think that the model prob-
lem studied in this paper and the techniques designed to solve it will allow to discern the
sources of numerical difficulties.
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Error

Figure 1. Truncation error (multiplied by 22 /v) for the Galerkin solution of problem (14)
using linear finite elements.
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Figure 2. Computational domain and mesh 1 in the case of bilinear elements (461 nodal
points).

Figure 3. Streamlines for the case w = 0 and using the Q2/Q; element. The peaks of
the streamfunction are 0.301 and -0.0588.
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Figure 4. Velocity variation along the middle section for the case w = 0 and using the

Q2/Q1 element.

Figure 5. Streamlines using the QQ1/Py element and the Galerkin method. Mesh 1.
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Figure 10. Streamlines using the DRS method with @Q;/P, elements. Mesh 1. § = 0.02.
Streamfunction peaks: 0.346 and —0.0546.
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Figure 11. Velocity variation along the middle section using the Q1/Py element. From
the top to the bottom and from the left to the right: Galerkin method with
mesh 3, DRS method with mesh 1, DRS method with mesh 2 and DRS
method with mesh 3.
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Figure 12. Pressure variation along the middle section using the Q;/Py element. From
the top to the bottom and from the left to the right: Galerkin method with
mesh 3, DRS method with mesh 1, DRS method with mesh 2 and DRS

method with mesh 3.

Figure 13. Streamlines using the Q5/Q; element and the Galerkin method. Mesh 1.
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Figure 14. Streamlines using the Q2/Q; element and the Galerkin method. Mesh 2.

Figure 15. Streamlines using the Q»/Q; element and the Galerkin method. Mesh 3.
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Figure 16. Streamlines using the GLS method with Q2/Q3 elements. Mesh 1. f =
1/9, y=0.

Figure 17. Streamlines using the GLS method with Q2/Q> elements. Mesh 1. 8 =
1075, v = 103. Streamfunction peaks: 0.208 and —0.0563.
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Figure 18. Streamlines using the DRS method with Q+/Q; elements. Mesh 1. § = 0.002.
Streamfunction peaks: 0.311 and —0.0755.

Figure 19. Streamlines using the DRS method with Q+/P; elements. Mesh 1. § = 0.002.
Streamfunction peaks: 0.299 and —0.0502.
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Figure 20. Velocity variation along the middle section using the @Q2/@Q: element. From
the top to the bottom and from the left to the right: Galerkin method with
mesh 3, DRS method with mesh 1, DRS method with mesh 2 and DRS

method with mesh 3.
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Figure 21. Pressure variation along the middle section using the @Q3/@Q; element. From
the top to the bottom and from the left to the right: Galerkin method with
mesh 3, DRS method with mesh 1, DRS method with mesh 2 and DRS
method with mesh 3.
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