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Abstract

A plastic–damage model for reinforced concrete frames is developed in this article, based on the classical plastic model and the con-
tinuum damage model. The plastic–damage constitutive law is implemented into a beam model for framed structures, in which these are
described by elastic beams and columns with two inelastic hinges at their ends. A numerical procedure for predicting the member and
global damage in framed structures using the matrix analysis is developed. Additionally, the article introduces a damage index useful in
evaluating the state of structural members and a meaningful global damage index for whole structure. The plastic–damage model,
together with the member and global damage indices, are adequate for the computation of the limit load of reinforced concrete frames
subjected to seismic actions. Examples of applications of the methodology to the non-linear analysis of reinforced concrete framed struc-
tures are finally given.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

When an urban area is affected by a strong ground
motion, many buildings are damaged at different degrees
and their safety is doubtful. It is essential to dispose of loss
scenarios (or seismic risk scenarios) for that area, envisaged
to guide decision making related to the seismic risk reduc-
tion and the emergency response. In order to develop such
scenarios in which the damaged state of the buildings and
of the infrastructure plays a crucial role, the seismic dam-
age of the structures has to be expressed by means of indi-
ces [1]. In many cases, these scenarios have as a starting
point the evaluation of the damage-related phenomena in
the structures of that area by using numerical simulation.
Because a large scale damage evaluation is required in an
urban area, it needs the use of more simplified structural
and numerical models, but able of providing reasonably
good results reducing the computational time. Therefore,
this article is oriented towards the development of such
models permitting the damage and safety evaluation of
buildings.

The structural damage will hereafter be defined as the
degree of degradation that allows conclusions about the
capacity of a structure to withstand further loadings. It will
be quantified through a damage index, which is the value of
damage normalized to the failure level of the structure, so
that a value equal to 1 will correspond to the complete
structural failure. The damage evaluation of framed struc-
tures is a topic extensively studied in the last decade. In this
article we contribute to this topic proposing a solution of
the problem using a continuum mechanical model incorpo-
rated into the classical beam formulation, oriented towards
improving the computational efficiency of the solution.

Different definitions of global damage indices have been
given in the literature for complex structures, generally
based on a weighted average of the indices corresponding
to different structural members [2]. Other works define a
damage index for structural members using a linear combi-
nation between ductility and an energy factor [3]. A global
damage index which is formulated starting from potential
energy considerations is developed in this paper for rein-
forced concrete structures, based on the concepts proposed
by [4–6]. This index uses a local damage constitutive model,
based on Kachanov’s theory [7]. In this article the label
‘‘member damage’’ is applied only to damage indices
describing the state of the members of the frames while
the ‘‘global’’ damage index refers to the state of the whole
structure. Both damages indices are independent of the
chosen constitutive models for the structural material.

The behaviour of the reinforced concrete can be
described by means of continuum constitutive equations
rates. Reinforced concrete shows two different phases dur-
ing the loading process: the cracking of the concrete and
the yielding of the reinforcement. The concrete cracking
phase can be described by means of Continuum Damage
Mechanics, while the yielding of steel is described by means
of the Plasticity Theory. Both effects, damage and plastic-
ity, can be solved simultaneously by means of an uncou-
pled plastic–damage model which allows describing
adequately the behaviour of the reinforced concrete ele-
ments of the framed structures. There are many models
based on Kachanov’s theory where plasticity and damage
are coupled [8–11]. This approach has the advantage of
allowing the development of independent constitutive
equations which simulate materials where the plastic defor-
mation is not significant, as in the case of concrete and
ceramic composites.

The elastoplastic behaviour of the frames has been
described by means of plastic hinges in agreement with
the classical Plastic Analysis Theory [12]. The evolution
of the plastic hinges has been formulated by means of yield
functions for both beams and columns [13]. Using the
lumped plasticity model, Refs. [14,15] adapted the damage
models to the analysis of framed structures in which the
damage is concentrated in plastic hinges, developing a con-
centrated damage model.

The objective of this paper is to develop an improved
analytical model for predicting the plastic–damage
response of multi-storey reinforced concrete frames, in
accordance with the classic theories of Continuum Damage
Mechanics and of classic Theories of Plasticity. Usually,
such studies are based on finite element models of the struc-
ture [6] which give support to the structural analysis and to
the implementation of the global damage indices. What
distinguishes this work from others is the fact the complete
plastic–damage constitutive model, as well as the global
damage, are here implemented into a beam model of the
framed structure, which is described by elastic beams and
columns with two inelastic hinges at their ends. The dam-
age in the hinges is obtained by means of the concentrated
damage concepts; however, its evolution is based on the
isotropic strain damage [8].

The paper is organized as follows: the theoretical bases
of the plastic–damage model are introduced as a support-
ing theory of the global damage methodology. The matrix
analysis implementation is then briefly outlined. Examples
of application of the methodology to non-linear analysis of
reinforce concrete structures are finally presented, includ-
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ing a three story and two bay reinforced concrete framed
structure subjected to a sine function and a six story two
bay reinforced concrete frame subjected to a seismic action.

2. Basic definitions

Let us consider a plane frame with b elements connected
into nodes. The generalized deformations Ub of the beam b

can be defined as

UT
b ¼ /i /j d

� �
ð1Þ

where /i and /j indicate rotations of the member at the
ends i and j, respectively, and d is its elongation. The gen-
eralized deformations Ub can be expressed in terms of the
global displacement U by

UbðtÞ ¼ Bb �UðtÞ ð2Þ
where Bb is the global displacement transformation matrix.
The generalized stress vector of the frame element b is de-
fined as [14,16]

MT
b ¼ mi mj nf g ð3Þ

which contains the final forces of the member, where mi

and mj are the moments at the ends of the member and n

indicates the axial force.
The relation between generalized stress and the history

of deformations can be expressed as follows:

MbðtÞ ¼ Se
bðUbðtÞÞ �UbðtÞ ð4Þ

where Se
bðUbÞ indicate the local elastic stiffness which can

be defined according to the deformed configuration of the
member. In the case of small strains, the elastic stiffness
matrix remains constant. In this context, Eq. (4) can be
rewritten as

Mb ¼ Se
b �Ub ð5Þ

The internal force is the sum of all generalized effective
stress Mb

FintðtÞ ¼
X3nth

b¼1

BT
b �MbðtÞ ð6Þ

while the vector inertial forces Fi(t) is obtained as

FiðtÞ ¼
X3nth

b¼1
mg

� �
b|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

½Mg �

�€UðtÞ ð7Þ

where €UðtÞ is the acceleration vector. The elemental mass
matrix for element b, [mg]b, can be consistent or concen-
trated if it has values different from zero only in the diag-
onal [17].

Using now the expressions of the inertial an internal
forces, the equation of motion is formulated as

Mg � €UðtÞ þ FintðtÞ ¼ FextðtÞ ð8Þ

where the Fext(t) is the vector of dynamic load. Inserting
Eqs. (5) into (8) and expanding the expression as a function
of displacements:

Mg � €UðtÞ þ
X3nth

b¼1
BT

b � Sb � Bb

� �
�UðtÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

FintðtÞ

¼ FextðtÞ ð9Þ

where Ke ¼
P

BT
b � S

e
b � Bb is the global stiffness matrix.

3. Concentrated plasticity approach for undamaged framed

structures

For many reinforced concrete cross-sections, the spread
of plasticity starting from the ends of the members along
the length is not very significant and the deformation is
concentrated at or near the ends cross-sections [13]. There-
fore, we will assume that the plasticity is concentrated at
the end cross-section. We also assume that the end cross-
sections plastify suddenly rather than gradually or fiber-
by-fiber, and that the material behaves in a perfectly
elastic–plastic manner.

3.1. Lumped plasticity model

A constitutive equation can be obtained relating the
generalized stress Mb with the generalized deformations
Ub by using the lumped dissipation model, considering
plasticity, hardening or any other energy dissipation mech-
anism. Energy dissipation is assumed to be concentrated
only at the hinges, while the beam and column behaviour
always remains elastic. With these concepts, we can express
the member deformations as

Ub ¼Fe
b �Mb|fflfflfflfflffl{zfflfflfflfflffl}
Ue

þUp
b ð10Þ

The term Ue ¼Fe
b �Mb corresponds to the beam–column

elastic deformations, Fe
b is the flexibility matrix, while

Up
b is called plastic hinge deformation

fUp
bg

T ¼ /p
i /p

j dp� �
ð11Þ

where /p
i and /p

j represent the plastic rotations of the mem-
ber at the ends i and j respectively, and dp is its plastic
elongation.

Using the generalized stress Mb from Eq. (10), we obtain
[18]

Mb ¼ Se
b � ðUb �Up

bÞ ð12Þ

Eq. (12) assumes that plastic hinges appear when the load
increases until the structure becomes unstable (or a mech-
anism) due to the development of various plastic hinges,
fact identified by the algorithm through the singularity of
the global stiffness matrix of the structure.

3.2. Internal variable evolution laws and plastic functions

For the internal variables defined in Eq. (11), for each
hinged end i and j of the beam subjected to bending, the
plastic deformation evolution laws are

_/p
i ¼ _kp

i
ofi

omi
; _/p

j ¼ _kp
j

ofj

omj
ð13Þ
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while for the case of axial mechanism, the plastic deforma-
tion evolution laws is [14]

_dp ¼ _kp
i
ofi

on
þ _kp

j
ofj

on
ð14Þ

In these equations fi 6 0 and fj 6 0 are the yield functions
for the hinges i and j, respectively. These functions depend
on the generalized stress Mb and also on the internal vari-
ables and the plastic multipliers _kp

i and _kp
j . The plastic mul-

tipliers, according to the Kuhn–Tucker conditions, are

No plasticity
_kp

i ¼ 0 if f i < 0 or _kp
i fi ¼ 0

_kp
j ¼ 0 if f j < 0 or _kp

j fj ¼ 0

(

Plasticity state
_kp

i > 0 if f i ¼ 0 and _kp
i fi ¼ 0

_kp
j > 0 if f j ¼ 0 and _kp

j fj ¼ 0

( ð15Þ

In order to have the plastic multiplier strictly positive, we
will consider that the plastic deformation is ‘active’; other-
wise it will be called ‘passive’. The solution of Eq. (15) re-
quires the use of the so-called ‘‘return-algorithms’’, as
proposed by [16].

3.3. Plasticity criterion

The plastic inner variables evolution laws are activated
when the yield criterion is verified (see Eq. (15)). This crite-
rion used for the end of beam hinges is a function of the
bending moment at each of the end cross-sections and of
the axial force along the beam [14,19]

f ðui; nÞ ¼
juij
my

þ n
ny

	 
2

� a ¼ 0;

f ðuj; nÞ ¼
jujj
my

þ n
ny

	 
2

� a ¼ 0 ð16Þ

ui ¼ mi � qi; uj ¼ mj � qj ð17Þ

where my is the yield moment or plastic moment, ny is the
yield axial force, and the parameters qi and qj are called the
back stresses and can be defined as [20]

dqi ¼ H d/P
i ; dqj ¼ H d/P

j ð18Þ

where H is the kinematics hardening modulus which is a
propriety of the material; the parameter a is an additional

hardening function of the material whose effect can be seen
in Fig. 1.

Despite the fact that the yield surface is the same for the
hinges i and j, the plastic multipliers are independent of
each other. Other yield functions can be formulated to
describe the complete yielding of the cross-section, the
residual stress effects, or the behaviour of different materi-
als, as proposed in Ref. [13].

4. Continuous damage model for unplastified framed

structures

Some basic concepts of continuum mechanics, necessary
for the subsequent development of the concentrated dam-
age concepts, are reviewed herein [8]. Here we applied the
damage effect on the properties of the elastic material while
its influence in the plasticity parameters has been neglected.
Physically, the degradation of the material properties is the
result of the initiation, growth, and coalescence of micro-
cracks or microvoids. Within the context of continuum
mechanics, one may model this process by introducing an
internal damage variable that can be a scalar or a tensorial
quantity. Let us consider A, a fourth-order tensor, which
characterizes the state of damage and transforms the effec-
tive stress tensor, �r, into the homogenized one, r, or vice
versa

r ¼ A : �r ð19Þ
For the isotropic damage case, the mechanical behaviour
of microcracks or microvoids is independent of their orien-
tation and depends only on a scalar variable d. For this rea-
son, A will simply reduce to A = (1 � d)I, where I is a rank
four identity tensor; thus, Eq. (19) becomes

r ¼ ð1� dÞ�r ð20Þ
where d is the scalar damage internal variable, r the Cau-
chy stress tensor and �r is the effective stress tensor, both
at time t. Here, d 2 (0,1] is a given constant. The coefficient
1 � d dividing the stress tensor in Eq. (20) is a reduction

factor associated with the amount of damage in the mate-
rial, initially introduced by Kachanov. The value d = 0 cor-
responds to the undamaged state, whereas a value d = 1
corresponds to a complete damaged state defining a local
rupture. Another possible interpretation is that, physically,
the damage parameter d is the ratio of the damage cross-
section area to the total cross-section area.

4.1. Flexibility matrix of damaged member

Consider that the concentrated damage of the frame ele-
ment b is defined as [21,22].

fDbgT ¼ di dj ddf g ð21Þ

where di and dj are a measure of the bending concentrated
damage at the ends i and j of the beam member, respec-
tively, and dd indicates the measure of the axial damage
of the member. These variables can take values between

my 
m

n

ny 

α=1 

my 
m

n

ny 

α≠1 

Fig. 1. Yield Surface in m � n space: (a) without hardening effect and (b)
with hardening.
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zero (no damage) and one (completely damaged). This
hypothesis of the decomposition into axial and flexural
damage variables allows avoiding the crashing effects in
the beam model and maintaining the structural stability
when the bending damage reaches the maximum value in
the concrete. In the same way as in the case of the plastic-
ity, all the bending concentrated damage parameters are
concentrated at the nodes. Supposing the existence of a
flexibility bending matrix of a damaged member ½Fd

b �bend

we have [16]

½Ub�bend ¼ ½Fd
b�bend � ½Mb�bend )

/i

/j

( )
bend

¼
fii fij

fji fjj

� �
bend

mi

mj

 �
bend

ð22Þ

½Fd
b �bend ¼

L
6EI

2
ð1�diÞ �1

�1 2
ð1�djÞ

" #
b

ð23Þ

The inverse of ½Fd
b �bend is the stiffness bending matrix of a

damaged member ½Sd
b �bend ¼ ½Fd

b �
�1
bend. If we also include the

influence of axial mechanism in an uncoupled form, and
redefine the stiffness matrix as a function of concentrated
damage vector Db for an element b, in small displacements
we have [16]

Sd
bðD

bÞ¼ ½Sd
b �bend 0

0 ½Sd
b �axial

" #

¼ k

12ð1�diÞ 6ð1�diÞð1�djÞ
6ð1�diÞð1�djÞ 12ð1�djÞ

� �
bend

0

0

0 0 EAð1�ddÞ
kL

h i
axial

2664
3775

ð24Þ

where k ¼ 1
4�ð1�diÞð1�djÞ

EI
L . In the particular case when Db

trends to zero, Sd
b reduces to the standard stiffness elastic

matrix Sd
bðDb ¼ 0Þ ) Se

b.

4.2. Damage evolution law

In order to apply the Continuum Damage Mechanics
concepts to the framed structures analysis, it is necessary
to express the damage variable evolution as a function of
the deformations at the hinges i and j, as well as of the
deformation due to the elongation d. In addition, another
necessary condition is that the evolutions of the damage
variable should be independent of each other.

4.2.1. Free energy potential

Defining the free energy We = 1/2e:C:e [23], where C is
the constitutive tensor, e is the total strain in each point
of the solid, and redefining it for a frame element b as a
function of generalized strains Ub and the stiffness matrix
Sb, we obtain the free energy potential as [18]

WðUbÞ ¼ W0 ¼ 1

2
Ub � Sb �Ub ð25Þ

By rewriting (25) in terms of the rotations /i and /j at the
ends of the element, as well as of the elongation d, we
obtain

W0 ¼ 1

2
4

EI
L

/i þ 2
EI
L

/j

	 

/i

þ 1

2
4

EI
L

/j þ 2
EI
L

/i

	 

/j þ

1

2

EA
L

d2 ð26Þ

In Eq. (26) we observe that the free energy potential is the
sum of the energies due to the rotations at the nodes i and j

and to the elongationd, in such a way that the free energy
potential can be redefined as W0 ¼ W0

i þW0
j þW0

d where

W0
i ¼

1

2
4

EI
L

/i þ 2
EI
L

/j

	 

/i;

W0
j ¼

1

2
4

EI
L

/j þ 2
EI
L

/i

	 

/j and W0

d ¼
1

2

EA
L

d2 ð27Þ

Introducing now mi ¼ 4 EI
L /i þ 2 EI

L /j, mj ¼ 4 EI
L /j þ 2 EI

L /i

and n ¼ EA
L d, we can express W0

i ; W0
j , and W0

d in terms of
the moments at the ends of the beam mi and mj and the ax-
ial force n as

W0
i ¼

1

2
mi/i; W0

j ¼
1

2
mj/j; W0

d ¼
1

2
nd ð28Þ

4.2.2. Energy norm for the undamaged structure and damage

evolution

The undamaged energy norm vector sb is defined in the
same way as the free energy, that is, as a function of
the rotations /i and /j at the ends of the element and by
the elongation d [22]

sb
k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ub � Sb �Ub

ph i
k

¼

sb
i ¼

ffiffiffiffiffiffiffiffiffi
2W0

i

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4 EI

L /i þ 2 EI
L /j

� �
/i

q
sb

j ¼
ffiffiffiffiffiffiffiffiffi
2W0

j

q
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4 EI

L /j þ 2 EI
L /i

� �
/j

q
sb

d ¼
ffiffiffiffiffiffiffiffiffi
2W0

d

q
¼

ffiffiffiffiffiffiffiffiffi
EA
L d2

q

8>>>>><>>>>>:
; 8k 2 ði; j; dÞ

ð29Þ

We characterize the damage state of the frame elements by
means of three different and independent damage criteria:
two of them are applied in the hinges at each end of the
beam (i and j) and the third one is used for the axial dam-
age control along the beam. This independent axial damage
criterion allows the control of the axial stiffness of the rein-
forced concrete beam when the bending damage is reached
in the concrete but the steel has only elastic/plastic
behaviour

gkðsb
k ; r

b
kÞt ¼

giðsb
i ; r

b
i Þt ¼ ðsb

i Þt � ðrb
i Þt 6 0

gjðsb
j ; r

b
j Þt ¼ ðsb

j Þt � ðrb
j Þt 6 0

gdðsb
d; r

b
dÞt ¼ ðsb

dÞt � ðrb
dÞt 6 0

8><>: ; 8k 2 ði; j; dÞ

ð30Þ
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Here, the subscript t refers to the value at current time
t 2 Rþ; rb

i ; r
b
j and rb

d are the damage thresholds at the cur-
rent time for the rotations /i and /j and for the elongation
d, respectively. We consider a vector r0, for t = 0, which de-
notes the initial damage threshold before applying any
load, defined as

ðrb
kÞ0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðMbÞy � S

�1
b � ðMbÞy

q
¼

ðrb
i Þ0
ðrb

j Þ0
ðrb

dÞ0

8><>:
9>=>;

)
ðrb

i Þ0 ¼ ðrb
j Þ0 ¼

ffiffiffiffiffiffiffiffiffiffiffi
L

3EI m2
y

q
ðrb

dÞ0 ¼
ffiffiffiffiffiffiffiffiffi
L

EA n2
y

q
8><>: ; 8k 2 ði; j; dÞ ð31Þ

where my and ny are the limit values of the bending moment
and axial force, respectively. The vector r0 can be consid-
ered as a property characteristic of the element, in such a
way that we must have ðrb

kÞt P ðrb
kÞ0; 8k 2 ði; j; dÞ. Eq.

(30) states that damage in the element is initiated when
the energy norm vector sb exceeds the initial damage thresh-
old r0. For the isotropic case, we define the evolution of the
damage variables by

_Db
t ¼ _kdHðsb

k ;D
b
kÞt ¼

_di ¼ _kd
i ðsb

i ; diÞt
_dj ¼ _kd

j ðsb
j ; djÞt

_dd ¼ _kd
dðsb

d; ddÞt

8>><>>: ;

ð_rb
kÞt ¼ _kd

t ¼
ð_rb

i Þt ¼ _kd
i

ð_rb
j Þt ¼ _kd

j

ð_rb
dÞt ¼ _kd

d

8>><>>: ð32Þ

where _kd
i P 0, _kd

j P 0 and _kd
d P 0 are damage consistency

parameters that define the damage loading/unloading con-
ditions according to the Kuhn–Tucker conditions

Damage state

_kd
i > 0 if giðsb

i ; r
b
i Þt ¼ 0 and _kd

i gi ¼ 0

_kd
j > 0 if gjðsb

j ; r
b
j Þt ¼ 0 and _kd

j gj ¼ 0

_kd
d > 0 if gdðsb

d; r
b
dÞt ¼ 0 and _kd

dgd ¼ 0

8>><>>:
ð33Þ

Let us now analyze the concentrated damage evolution at
hinge k. Conditions (33) are standard for problems involv-
ing unilateral constraint. If gk < 0, the damage criterion is
not satisfied and, according to condition (32), _kk ¼ 0, the
damage rule (32) implies that _dk ¼ 0 and no further dam-
age occurs. If, on the other hand, _kd

k > 0, further damage
occurs and condition (33) now implies that gk = 0. In this
case, the value of _kk can be determined by the damage con-
sistency condition, i.e.

gkðsb
k ; r

b
kÞt ¼ _gkð _sb

k ; _rb
kÞt ¼ 0 ) _kd

k ¼ ð _sb
kÞt ð34Þ

Finally, ðrb
kÞt can be calculated by means of the expression

ðrb
kÞt ¼ maxfðrb

kÞ0;maxs2ð0;tÞðsb
kÞsg. By applying it to all

parameters, we obtain

ðrb
kÞt ¼ maxfðrb

kÞt;maxs2ð0;tÞðsb
kÞsg

¼

max ðrb
i Þ0;maxs2ð0;tÞðsb

i Þs
� �

max ðrb
j Þ0;maxs2ð0;tÞðsb

j Þs
n o

max ðrb
dÞ0;maxs2ð0;tÞðsb

dÞs
� �

8>><>>: ð35Þ

If we now consider that Hððsb
kÞt;D

b
t Þ in condition (32) is

independent of the vector Db
t and we also assume the exis-

tence of a monotonic function G, such that Hðsb
kÞt ¼

oGðsb
kÞt=oðsb

kÞt, the damage criterion defined in (30) can be
rewritten as a function of G, i.e. at hinge kgkðsb

k ; r
b
kÞt ¼

Gðsb
kÞt � Gðrb

kÞt 6 0. In this way, the flow rule (32) and
loading/unloading conditions (33) become

_Db
t ¼ _kd

k

oGðsb
k ; r

b
kÞt

oðsb
kÞt

¼

_di ¼ _kd
i

oGððsb
i Þt ;ðr

b
i ÞtÞ

oðsb
i Þt

_dj ¼ _kd
j

oGððsb
j Þt ;ðr

b
j ÞtÞ

oðsb
j Þt

_dd ¼ _kd
d

oGððsb
d
Þt ;ðrb

d
ÞtÞ

oðsb
d
Þt

8>>>>><>>>>>:
;

ð_rb
kÞt ¼ _kd

k ¼

ð_rb
i Þt ¼ _kd

i

ð_rb
j Þt ¼ _kd

j

ð_rb
dÞt ¼ _kd

d

8>><>>: ð36Þ

Carrying out the time integration of the rate concentrated
damage vector, the result is an expression that indicates the
evolution of the damage variables as

Db
t ¼ G sb

k

� �
t
¼

Gðsb
i Þt ¼ di

Gðsb
j Þt ¼ dj

Gðsb
dÞt ¼ dd

8>><>>: ; 8k 2 ði; j; dÞ ð37Þ

The scalar function G(Æ) defining the evolution of the dam-
age variable must be monotonic in the range 0 6 G(Æ) 6 1
and can be defined according to the type of analysis. In
our work, the expression of the exponential softening pro-
posed by [24] was used

Gðsb
kÞt ¼ 1� ðs

b
kÞt
ðrb

kÞ0
e

A 1�
ðrb

k
Þ0

ðsb
k
Þt

	 

; 8k 2 ði; j; dÞ ð38Þ

where the energy norm vector is ranged 0 6 ðsb
kÞt 6 ðrb

kÞ0
and A ¼ 1 gf E0

ðrb
k
Þ20
� 1

2

� ��
. The parameter gf is the fracture en-

ergy of the material defined by the regularization gf = Gf/lc,
where Gf is the fracture energy and lc is the characteristic
length of the fractured member [24]. Alternatively,
lc ¼

ffiffiffi
A
p

, where A is the element cross-section area [25].
More and deep information about of the damage scalar
function G(Æ) can be seen in references [4,24,26].

5. Plastic–damage model for reinforced concrete frames

5.1. Thermodynamic basis

In the concrete of the structural elements, the effect of
damage modifies the constitutive plastic equation for small
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deformations by the degradation of the stiffness. A new
constitutive equation is formulated without time variation
of temperature for thermodynamically stable problems,
using the following mathematical formulation for the free
energy constituted by elastic and plastic terms [18,24]

Wb Ue
b;D

b; qp
� �

¼ We
bðUe

b;D
bÞ þWp

bðqpÞ ð39Þ

where Wp is a plastic potential function and WeðUe
b;D

bÞ is
the initial elastic stored energy. Additionally, qp indicate
a suitable set of plastic internal variables and the elastic
deformations Ue

b is the free variable of the process.
For this particular stable thermal beam problem, the

reduced form of Clausius–Duhem dissipation inequality
takes the form

_N ¼Mb � _Ub � _Wb P 0 ð40Þ

This inequality is valid for any loading–unloading stage.
Taking the time derivative of Eq. (39) and substituting into
(40), the following equation is obtained for dissipation:

_N¼ Mb �
oWb

oUe
b

� �
� _Ub þ

oWb

oUe
b

� _Up � oWb

oDb � _Db � oWb

oqp
� _qp P 0

ð41Þ

In order to guarantee the unconditional fulfilment of the
Clausius–Duhem inequality, the multiplier of _U, represent-
ing an arbitrary temporal variation of the free variable,
must be null. This condition provides the constitutive law
of the damage problem

M � oWb

oUe
b

� �
¼ 0 8 _Ub ð42Þ

from where the final generalized stress of a member b can
be defined as

Mb ¼
oWb

oUe
b

ð43Þ

Once imposed the condition Ue
b ¼ Ub �Up

b, the free energy
for an elastic–plastic frame element with stiffness degrada-
tion can be written for small deformations as

Wb Ue
b;D

b;qp
� �

¼ 1

2
Ub�Up

bð Þ � Sd
b Db
� �� �

� Ub�Up
bð ÞþWp

b qpð Þ

ð44Þ
where the stiffness matrix of the damaged member Sd

b Dbð Þ
is the same matrix defined in (24). By replacing this last
equation into (43), one arrives at the expression for plas-
tic–damage analysis [14,15,22]

Mb ¼ Sd
bðDbÞ � ðUb �Up

bÞ ð45Þ
This constitutive equation contains the internal variables of
plasticity and damage. In this expression, the following
hypotheses are also assumed: The change of the elastic
properties of the material is produced only by the damage
phenomenon and the plasticity only produces incompatible
strains.

5.2. Reinforced concrete model

The developments performed so far are appropriate for
beams made of homogeneous materials. Now we introduce
an approach which allows considering steel bars in this for-
mulation. It is well known from experimental observations
that damage in concrete is a continuous process that initi-
ates at very low levels of the applied loads and leads to an
increasing amount of damage when the levels of strain
increase. Conversely, the behaviour of steel bars is domi-
nated by plasticity laws and only at very high load the dam-
age materializes.

As proposed in Ref. [27], this highly non-linear behav-
iour can be roughly split into three intervals: the uncracked
elastic stage (phase I in Fig. 2), crack propagation (the
stress is within the elastic range, phase II in Fig. 2) and
plastic stage (the beam reaches its ultimate strength, phase
III in Fig. 2). The non-linear response is caused by the two
major material effects: (1) cracking of the concrete and
plasticity of the reinforcement and (2) compression of con-
crete. Thus, for reinforced concrete structures, plasticity is
physically associated to the flow of the reinforcement,
while damage indicates the cracking and rupture of the
concrete.

In design, it is often assumed that concrete fails in com-
pression when it reaches a compressive strain of ec = 0.003.
Compressive failure occurs by occurrence of cracks parallel
to the loading direction and is referred to as ‘‘splitting fail-
ure’’ [27]. The steel is assumed to have a linear stress–strain
relation until the yield stress, fy, is reached. Beyond this
value, it is assumed that the stress in the steel remains con-
stant while strain increases, without hardening. The steel
tensile strain at the beginning of yielding is ey.

The cohesive (crack-bridging) stresses of the tensile
cracks are significant only near the neutral axis, where they
have a very little contribution to the plastic moment mp or
the nominal bending moment according to the notation of
the American Concrete Institute [27]. As a rule based on
experiments, the compression stress–strain distribution

crm

pm

um

m

φ

phase I

phase III

Elastic

Uncracked

Cracking

Yielding of steel

Crushing of concrete

phase II

Fig. 2. Typical moment-deformation of a reinforced concrete beam: phase
I and II correspond to the serviceability limit state; phase III defines the
ultimate state.
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may be replaced by an equivalent rectangular stress block
having an uniform stress magnitude of 0.85fc and a depth
a that is less than the distance x from the compressive face
to the neutral axis fc (see Fig. 3) is the standard compres-
sion strength obtained by rupture test performed on con-
crete samples.

Consider first a single reinforced rectangular cross-sec-
tion of width b and depth d measured from the compres-
sion face to the centroid of the steal bars, as shown in
Fig. 3. The equilibrium of the horizontal forces requires
that (0.85fc)b a = Asfy = T, where T is the tensile steel
resultant fy is the uniaxial yield strength of the bars and
As is the combined cross-section area of all tensile steal
bars. Thus, according to [27]

a ¼ Asfy

0:85f cb
ð46Þ

Since the distance from the resultant C of the compressive
stresses in concrete to the tensile resultant T is d � 1

2
a; the

plastic moment is

mp ¼ Asfy d � 1

2
a

	 

¼ Asfy d � 1

2

Asfy

0:85f cb

	 

ð47Þ

Eq. (47) is valid only if the tensile steel yields before the
compressed concrete crushes. For those cases where the
longitudinal reinforcing steel bars are placed near the com-
pressed face of the beams, Eq. (47) can be rewritten as [27]

mp ¼ 0:85f cba d � 1

2
a

	 

þ A0sfyðd � d 0Þ ð48Þ

where d 0 is the distance of the compression steel centroid
from the tensile face, A0s is the compression steel cross-sec-
tion area, and

a ¼ ðAs � A0sÞfy

0:85f cb
ð49Þ

However, if we consider a typical moment–curvature dia-
gram of a reinforced concrete beam (Fig. 4), a critical bend-
ing moment mcr can be observed at a relatively small load,
usually 1/6 to 1/4 of the maximum service load, which indi-
cates the beginning of cracking at the tensile face. This mo-
ment can be calculated from Eqs. (47) or (48) by setting the

stress at tensile face fy equal to the so-called modulus of
rupture of concrete fr [27].

The plastic moment mp is used to determine the plastic
limit behaviour of the column–beam element, while the
critical bending moment mcr refers to the damage. Further-
more, the elastic modulus E is calculated by using Voigt’s
homogenization hypothesis [28] and the mixing theory
[29], which supposes that all the materials have a perfect
adherence each to other, leading to the following equiva-
lent elastic modulus:

E ¼ ð1� qÞEc þ qEs ð50Þ

6. Member and global damage indices

6.1. Member damage index

The idea for the member damage index definition
stemmed from a macroscale analogy with the continuous
damage model definition. The starting point for its deduc-
tion is the assumption that we can express the plastic–dam-
age free energy of a member WbðUe

b;D
b; qpÞ ¼ We

b;
Ue

b;D
b þWp

bðqpÞ of Eq. (44) in function of the non-dam-
aged free energy, W0, defined by Eq. (27), as

We
bðUe

b;D
bÞ ¼ ð1� Db

MÞW
0
b;

We
bðUe

b;D
bÞ ¼ 1

2
Ue

b � S
d
bðDbÞ �Ue

b

W0
bðUe

bÞ ¼ 1
2
Ue

b � S
0
b �Ue

b

(
ð51Þ

where Db
M is the member damage index.

−

+

 

As

h

b

x
d

εc

εt

T T

C C

k2 x a=β1 x
a/2

0.65≤β1≤ 0.85k2 x= a/2
Cross section of the 
reinforced concrete beam 

Planar strain
distribution 

Actual stress 
distribution 

Equivalent  rectangular
stress box 

Fig. 3. Singly reinforced rectangular beam: cross-section and distributions of strains and stresses.

mp 

m cr

m 

Curvature

E I 

1 under rein forced

over reinforced or
prestressed

Fig. 4. Moment–curvature diagram of reinforced concrete beams failing
by yielding of steel or by crushing of concrete.
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Solving (51) for Db
M , we obtain

Db
M ¼ 1�We

bðUe
b;D

bÞ
W0

b

ð52Þ

which is the expression of the damage index for the mem-
ber of a frame. We can notice in Eq. (52) that for those
cases where only damage is considered, that is Up

b ¼ 0,
we obtain that Db

M indicates the evolution of the concen-
trated damage at the hinges. Otherwise, when we have only
plasticity, that is Db = 0, Db

M indicates the increment of the
plasticity at the hinges.

6.2. Global damage index

The global damage index is defined as the sum of
We

bðUe
b;D

bÞ divided by the sum of the non-damaged free
energy W0

b

DG ¼ 1�
P3n

b¼1W
e
bðUe

b;D
bÞP3n

b¼1W
0
b

¼ 1�
P3n

b¼1ðUb �Up
bÞ � Sd

bðDbÞ � ðUb �Up
bÞP3n

b¼1U
e
b : S0

b : Ue
b

ð53Þ

where DG is the global damage index. Replacing
M0

b ¼ Se
b : Ue

b, as well as Mb ¼ Sd
bðD

bÞ : ðUb �Up
bÞ, the fol-

lowing equation is obtained:

DG ¼ 1�
P3nth

b¼1 U
e
b : MbP3nth

b¼1 U
e
b : M0

b

ð54Þ

This global damage index is similar to that proposed by
[6,30] for finite element analysis.

The global damage index, as well as the member damage
index, is a basic tool for assessing the overall state of
a structure. It gives a measure of the stiffness loss of a

Table 1
Non-linear time integration scheme (Newmark)

A. First iteration (passage from time instant i to time instant i+1)

i. Update relevant matrices

Ksec ¼
X3nth

b¼1

Bb � Sb � Bb; Ktan ¼
X3nth

b¼1

B�bSd
bðDbÞ � Bb; Mg ¼

X3nth

b¼1

mg

� �
b

ii. Compute

J ¼ 1

bDt2
Mg þ Ktan

bFð1Þiþ1 ¼ Fextðt þ 1Þ þMg �
1

bDt
_Ui þ

1

2b
� 1

	 

€Ui

� �
� Ksec �Ui

iii. Calculate the first approximations for the time instant i + 1

Du
ð1Þ
iþ1 ¼ J�1bFð1Þiþ1

€U
ð1Þ
iþ1 ¼ 1

bDt2 Du
ð1Þ
iþ1 � 1

bDt
_Ui � 1

2b� 1
� �

€Ui

_U
ð1Þ
iþ1 ¼ c

bDt Du
ð1Þ
iþ1 � 1� c

b

� �
_Ui � 1� 1

2b

� �
Dt €Ui

U
ð1Þ
iþ1 ¼ Ui þ Du

ð1Þ
iþ1

8>>><>>>:
B. Second and subsequent iterations (seeking the equilibrium for the time i + 1)

Loop over global convergence iterations: jth iteration
1. Compute the member stresses and the internal variables

½Mb�jiþ1 ¼ S Db
� �j

iþ1

h i
� Ubf gj

iþ1 � Up
bf gj

iþ1

� �
2. Update relevant matrices

F
ðjÞ
int ¼

X3nth

b¼1

Bb : Mb

 !
�UðjÞiþ1; Ktan ¼

X3nth

b¼1

Bb � Sd
b Db
� �

� Bb

J ¼ 1

bDt2
Mg þ Ktan

bFðjþ1Þ
iþ1 ¼ Fintðt þ 1Þ �Mg � €U

ðjÞ
iþ1 � F

ðjÞ
int

3. If the residual forces norm bFðjþ1Þ
iþ1

��� ��� 6 e, end of iterations and beginning of the computations in the next time step. If not, proceed calculating:

du
ðjþ1Þ
iþ1 ¼ J�1 : bFðjþ1Þ

iþ1

€U
ðjþ1Þ
iþ1 ¼ 1

bDt2 du
ðjþ1Þ
iþ1 þ €U

ðjÞ
iþ1

_U
ðjþ1Þ
iþ1 ¼ c

bDt du
ðjþ1Þ
iþ1 þ _U

ðjÞ
iþ1

U
ðjþ1Þ
iþ1 ¼ U

ðjÞ
iþ1 þ du

ðjþ1Þ
iþ1

8>><>>:
4. Back to step 1
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structure since the non-linear internal forces are influenced
not only by the damage but also by the plasticity.

7. Numerical implementation of the plastic–damage model

The implementation process of the proposed plastic–
damage model in a matrix structural analysis computer
program is explained in Tables 1 and 2. The implicit time
integration scheme of Newmark for dynamic non-linear

problems is described by [31]. The most important results
obtained by using the structural analysis computer pro-
gram which has been developed in the present work based
on the proposed model are: generalized strains Ub, stresses
Mb, plastic strains Up

b and/or concentrated damage vector
Db, member damage indices and the global damage index.
If necessary, the remaining internal variables and their
associated forces can be also obtained for each member
of the structure. These results are obtained by using the

Table 2
Procedure to determine the evolutions of the damage and plastic variables

For each b elements at nth iteration:
1. Generalized deformations at the step: Ubf gðnÞt ¼ ½Bb� : fUgðnÞt

2. Verification of the damage variable evolution:
i. Update the internal variables: fDbgðnÞt ¼ fDbgðn�1Þ

t ; frb
kg
ðnÞ
t ¼ frb

kg
ðn�1Þ
t

ii. Determination of the undamaged energy norm vector:

fsb
kg
ðnÞ
t ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ubf gðnÞt � Sb � fUbgðnÞt

q� �
k

8k 2 ði; j; dÞ

iii. Verification of the evolution of the damage:

If gkðsb
k ; r

b
kÞ
ðnÞ
t 6 0; 8k 2 ði; j; dÞ No damage evolution 3

iv. Update damage variable: fDbgðnÞt ¼ Gðsb
kÞ
ðnÞ
t

v. Update damage threshold: ðrb
kÞ
ðnÞ
t ¼ ðsb

kÞ
ðnÞ
t

3. Verification of the plastic variable evolution for s = s + 1 iterative step:
i. Determination of plastic evolution and update of internal variables:

fDUp
bg0 ¼ fU

p
bg
ðn�1Þ
t ; fDqpg0 ¼ fqpgðn�1Þ

t

ii. Determination of generalized effective ‘trial’ stress:

fMtrial
b gs ¼ Sb � ðfUbgðnÞt � fDUp

bgs�1Þ

iii. Verification of flow conditions and determination of plastic multiplier

ð _kp
i Þs ¼ 0 if f ½ðmtrial

i Þs�1 � ðDqpÞs�1�i < 0 or ðkp
i Þs½ _f i�s�1 < 0

ð _kp
j Þs ¼ 0 if f ½ðmtrial

j Þs�1 � ðDqpÞs�1�j < 0 or ðkp
j Þs½ _f j�s�1 < 0

No plasticity evolution ! 4:

ð _kp
i Þs 6¼ 0 if f ½ðmtrial

i Þs�1 � ðDqpÞs�1�i ¼ 0 or ðkp
i Þs½ _f i�s�1 ¼ 0

ð _kp
j Þs 6¼ 0 if f ½ðmtrial

i Þs�1 � ðDqpÞs�1�j ¼ 0 or ðkp
j Þs½ _f j�s�1 ¼ 0

Plastic evolution ! 3:

iv. Update of plastic variables and of the generalized effective ‘trial’ stress:

ð _/p
i Þs ¼ ð _k

p
i Þs

ofi

omi

	 

s�1

ð _/p
j Þs ¼ ð _k

p
j Þs

ofj

omj

	 

s�1

ð _dpÞs ¼ ð _k
p
i Þs

ofi

on

	 

s�1

þ _kp
j

ofj

on

	 

s�1

ðmtrial
i Þs ¼ ðmtrial

i Þs�1 � ð _k
p
i ÞsSb �

ofi

omtrial
i

 �
s�1

; ðmtrial
j Þs ¼ ðmtrial

j Þs�1 � ð _k
p
j ÞsSb �

ofj

omtrial
j

( )
s�1

ðntrialÞs ¼ ðntrialÞs�1 � ð _kp
i ÞsSb �

ofi

ontrial

 �
s�1

þ ð _kp
j ÞsSb �

ofj

ontrial

 �
s�1

	 


v. Back to 3.ii
4. End of the process of plastic correction

fUp
bg
ðnÞ
t ¼ fDUp

bgs; fqpgðnÞt ¼ fDqpgs

5. Achievement of the final generalized stress on the step n:

fMbgðnÞt ¼ ½SbðDbÞðnÞt � � ðfUbgðnÞt � fU
p
bg
ðnÞ
t Þ

6. End of integration process of the constitutive equation
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equilibrium equations (9) together with the constitutive law
(45) in accordance with the internal variables evolution
laws (15) and (16).

Let us now focus our attention on the calculation of
the member stresses and of the internal variables (Table
1). The plastic and damage parameters can be calculated
separately, as explained in Section 5. This assumption
comes from the observation that damage is linked to
the concrete, while plastification is related to the steel.
Therefore, the damage evolution can be determined by

Eqs. (29)–(31) and the plastic behaviour by means of
Eq. (13).

8. Numerical examples

8.1. Example 1: Pushover and dynamic analysis of a

reinforced concrete frame

This validation example compares the evolutions of the
global damage indices in the reinforced concrete plane
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frame of Fig. 5 when subjected to horizontal loads (push-
over analysis) and dynamic loads.

The frame is 5 m high and 5 m wide and has two levels.
The columns have a 0.40 m · 0.40 cm cross-section with a
steel ratio of 1.9%. The critical and ultimate moments are
mcr = 30 kN m and mu = 182 kN m, respectively. All the
horizontal beams are 0.40 m thick and 0.30 m wide, with
a steel ratio of 0.75% at bottom and 0.42% at top, as shown
in Fig. 5. For the beams, the adopted critical and ultimate
moments are mcr = 18 kN m and mu = 111 kN m, respec-
tively. The reinforced concrete is assume to have the fol-
lowing properties: compressive strength r = 21 MPa,
elastic modulus E = 3.1 · 104 MPa, density q0 = 2.5 kN/
m3 and a fracture energy Gf equal to 250 kN/m. The steel
has a hardening plastic modulus equal to 102 MPa. The
time history of the dynamic load is given in Fig. 6 while
the pushover loading pattern can be seen in Fig. 7.

The conventional pushover analysis searches the non-
linear incremental-iterative solution of the equilibrium
equation [K]{U} = {F}, where {U} is the displacement vec-
tor, ½K� ¼

P
Bt

b

� �
: Sd

bðDbÞ
� �

: ½Bb� is the non-linear stiffness
matrix and {F} is a predefined load vector applied laterally
along the height of the structure in relatively small load
increments (see Fig. 7). This lateral load can be a set of
forces or displacements with a fixed pattern which, in this
example, corresponds to the first mode of vibration of
the structure. The effect of the axial damage was neglected
in this analysis because the objective was to describe only
the evolution of the damage hinges produced by the flex-
ural behaviour during earthquake loads.

The pushover analysis allows computing the sequence
of yielding and failure at member and structural level, as
well as the progress of the overall strength capacity of
the structure, as shown in Fig. 8, The horizontal forces
(Vi) of the base nodes were plotted against the horizontal
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displacement of the top floor d in Fig. 7. When a dynamic
analysis is performed, the support displacement is sub-
tracted from the top displacement in order to determine
de global drift of the structure. The pushover curve envel-
oping the absolutes values of the dynamic response can be
seen in Fig. 8.

Analyzing the evolution of the global damage index of
Fig. 9, we can perceive that during the phase where the
plasticity is null or irrelevant, both global damage curves,
corresponding to the dynamic and pushover responses,
are similar. However, the final value of the global damage

obtained by means of the dynamic analysis is higher than
the value of the global damage obtained by pushover anal-
ysis. This occurs because in the dynamic case the plasticity
appears suddenly, while in the pushover analysis the influ-
ence of the plasticity is gradual. The static pushover analy-
sis neglects the dynamic effects, while the conventional
pushover analysis procedure does not account for the pro-
gressive changes in the modal properties during the non-
linear yielding and cracking process occurring in the struc-
ture. This is due to the fact that the constant lateral load
pattern used in the analysis ignores the potential redistribu-
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tion of inertia forces and the higher mode effects on the
cracking and yielding which governs the inelastic structural
behaviour. As a consequence, the energy dissipated by the
plasticity during a dynamic action is higher than during the
pushover response and affects directly the global damage
index.

8.2. Example 2: Reinforced concrete frame subjected to

seismic acceleration

This example studies the evolutions of the damage and
plasticity process in the five floors of the reinforced concrete
plane frame of Fig. 10 subjected to a seismic action. The
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frame is 12.5 m high and 10 m wide and has five levels. The
columns have a 0.40 m · 0.40 m cross-section with a 1.9%
steel ratio. The critical and ultimate bending moments are
mcr = 30 kN m and mu = 182 kN m, respectively. All the
horizontal beams are 0.40 m thick and 0.30 m wide, with a
steel ratio of 0.75% at the bottom and 0.42% at the top, as
shown in Fig. 10. The critical and ultimate moments of the
beams are mcr = 18 kN m and mu = 111 kN m, respectively.
We assume the following properties of reinforced concrete:
compressive strength r = 21 MPa, elastic modulus E =
3.1 · 104 MPa, density q0 = 2.5 kN/m3 and a fracture
energy Gf = 250 kN/m. The steel has a hardening plastic
modulus equal to 102 MPa. Fig. 11 shows the modal shapes
and natural periods of vibration for the first three modes of
the frame.

The equation of motion that governs the dynamic
behaviour of the structure has been solved using New-
mark’s algorithm of Table 1 with b = 0.25, c = 0.5 and a
time step Dt = 0.01 s. The structure was analysed for the
Kobe 1995 earthquake whose accelerogram is given in
Fig. 12 and has a maximum amplitude of 0.371 g.

Fig. 13 shows the comparison between the responses of
the structure considering an elastic and plastic–damage
behaviour of the material. The displacements correspond
to the fifth floor.

In Fig. 14, we analyze the response of the structure during
the period from seconds 10 to 15 and we include the damage
and plastic response of the material. It can be observed in
this figure that the damage and plastic–damage have initially
almost the same period and similar to that of the elastic and
plastic curves. We can also observe that when the plasticity
increases, the period of the plastic–damage curve is higher
than that of the damage and plastic responses.

The phase where only damage is shows the decrease
of the vibration period of the structure and in this
phase the response of the structure is similar to a damped
one. This occurs because the damage works as a damping
force. Afterwards, due to the combination of plasticity
and damage, the structure behaves like an undamped
system.

Fig. 15 shows the evolution of the concentrated damage
in the first, second and third columns of the first floor,
while Figs. 16 and 17 show the evolution of the global
and member damage indices in the first and fourth floor,
respectively. As expected, the frame fails mainly due to
the damage of the columns at its base and of the beams
of the first floor. This behaviour is confirmed by the evolu-
tion of the concentrated damage indices (Fig. 15).

By analyzing the evolution of the concentrated damage
of the first floor columns, shown in Fig. 15, we can observe
that the damages at the base of all the columns are less
than the global damage and constantly increase in time,
while the evolutions of the concentrated damage of the
beams at the first floor are higher than the global damage
index.

The same behaviour can be observed for the member
damage indices of the first floor (see Fig. 16), where the mem-

ber damage indices of the beams tend practically to the same
value as the global damage index of the entire structure.

Comparing the member damage indices of the first floor
(Fig. 16) and the fourth floor (Fig. 17), it can be observed
that all damage indices decreases. This occurs because
damage decreases with the height. It also can be observed
that in all cases the damage starts first in the beams and
later in the columns.

We can also notice that all damage indices of the beams
are greater than those of the columns. This is in agreement
with the desired behaviour of the structures under a seismic
load in which, in order to assure structural ductility and
safety, the beam should develop plastic hinges before the
columns.

Additionally, due to the hardening adopted in this case,
the global behaviour of the structure is not influenced by
the plasticity because, even if all the members are yielding,
member damage indices are not higher than the global
damage index. This occurs because the hardening of the
material can influence the member damage index and
might not allow maximum plastic dissipation.

9. Conclusions

A general model for the non-linear analysis of frames
based on the Continuum Damage Mechanics and Plastic-
ity Theory has been developed. The plastic–damage
model developed in this paper assumes that plasticity
and damage are uncoupled, have their own laws and that
both are concentrated at ends of the members of the
frames.

The proposed model proves to be effective for the
numerical simulation of the seismic collapse of frames. It
is a valuable alternative when other types of analyse, such
as those based on multi-layer models, appear to be too
expensive or impractical due to the size and complexity
of the structure. The proposed model for reinforced con-
crete frames exhibits a very good precision confirmed by
the examples included in the paper.

As shown by the numerical examples for static or
dynamic loads, the proposed model can represent accu-
rately the real seismic behaviour of reinforced concrete
structures. Another benefit of the proposed model is the
simple implementation into a matrix analysis computer
program, providing an efficient tool for the plastic–damage
analysis of reinforced concrete frames.

The proposed member and global damage indices have
proved to be a powerful and precise tool for identifying
the failure load and the structural mechanism leading to
failure of reinforced concrete framed structures. Theses
indices allow an accurate quantitative evaluation of the
state of any component of a damaged structure and of
the overall seismic structural behaviour. It is an excellent
tool for the seismic damage, reliability and safety assess-
ment of exiting structures, which can be also used in the
evaluation of the repair or retrofitting strategies.
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