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SUMMARY

We discuss in this paper some implementation aspects of a finite element formulation for the incompress-
ible Navier–Stokes equations which allows the use of equal order velocity–pressure interpolations. The
method consists in introducing the projection of the pressure gradient and adding the difference between
the pressure Laplacian and the divergence of this new field to the incompressibility equation, both
multiplied by suitable algorithmic parameters. The main purpose of this paper is to discuss how to deal
with the new variable in the implementation of the algorithm. Obviously, it could be treated as one extra
unknown, either explicitly or as a condensed variable. However, we take for granted that the only way
for the algorithm to be efficient is to uncouple it from the velocity–pressure calculation in one way or
another. Here we discuss some iterative schemes to perform this uncoupling of the pressure gradient
projection (PGP) from the calculation of the velocity and the pressure, both for the stationary and the
transient Navier–Stokes equations. In the first case, the strategies analyzed refer to the interaction of the
linearization loop and the iterative segregation of the PGP, whereas in the second the main dilemma
concerns the explicit or implicit treatment of the PGP. Copyright © 2001 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Finite element formulations for incompressible flows allowing to circumvent the inf-sup
stability condition for the velocity and pressure interpolations are the subject of active
research. These may fall basically into two categories, namely, methods that allow the use of
equal interpolations (and therefore continuous pressures) and techniques to stabilize simple
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elements, such as the Q1/P0 pair (multilinear velocity, piecewise constant pressure). Examples
of the first group are the methods in [1,2], the Galerkin/least-squares (GLS) technique [3–5]
and least-squares methods for first-order systems as those in [6], whereas examples of the
second are those in [7,8], among others.

The practical numerical implementation of such stabilized formulations is sometimes not
addressed completely. For instance, methods involving pressure jumps, integrals over
boundaries, the introduction of many auxiliary variables or macroelement filtering strategies
may have attractive convergence results any may be theoretically appealing. However, they
may involve a high computational complexity that makes these methods hardly applicable in
real-life problems, where the weight of efficiency in the accuracy–efficiency balance is higher
the larger the problem is. Maybe one of the reasons for the success of the Galerkin/least-
squares technique is that its implementation is straightforward, at least for linear and
multilinear elements for which elementwise second derivatives of finite element functions are
either zero or can be neglected.

In this paper we discuss the implementation of a pressure stabilized finite element method
for the incompressible Navier–Stokes equations whose motivation, development and theoreti-
cal foundations have been presented in [9–11]. This method can be considered of the same type
as the GLS method, in the sense that it intends to allow the use of equal velocity–pressure
interpolations. This is possible due to a stabilization technique based on the introduction as
unknown of the discrete problem of the pressure gradient projection (PGP) onto the finite
element space of continuous vector fields. The divergence of the difference between these two
vectors (pressure gradient and its projection) is introduced in the continuity equation multi-
plied by suitable algorithmic parameters. This method turns out to be formally the same as
that proposed independently in [12]. We shall refer to the resulting formulation as the stabilized
by pressure gradient projection (SPGP) method.

The presence of the PGP as a new unknown in the problem makes the applicability of the
method questionable, since the number of nodal unknowns is increased. The main purpose of
this paper is to show that it is not necessary to solve in a fully coupled manner for the velocity,
the pressure and the PGP. For stationary problems, this can be done by using iterative
techniques, but for transient problems the natural way to uncouple the resolution is by treating
explicitly the PGP. We show that this is not only feasible, but also very convenient in general
situations. Nevertheless, in some cases the iterative coupling is also efficient.

Note also that the only purpose of the stabilization technique presented here is to stabilize
the pressure. The instabilities due to the convective term when the viscosity is very small are
not considered in our formulation and thus they have to be treated by other stabilization
mechanisms. This point is also addressed later on.

We have organized the paper in two main sections. In the next one, the pressure stabilized
method is fully described and their stability and convergence properties summarized. Its
performance will be compared against the algebraic subgrid scale (ASGS) method, which is
also presented at the end of Section 2. This method is based on the ideas of [13], whereas its
extension to the Navier–Stokes equations and its analysis is presented in (Codina R. A
stabilized finite element method for generalized stationary incompressible flows. Computer
Methods in Applied Mechanics and Engineering, submitted). In Section 3 the implementation
aspects of the SPGP formulation are treated, starting with the matrix formulation of the
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method, a brief discussion on the possibility of dealing with the full system, and the basic
description of iterative schemes for the non-linear problem and the PGP treatment in
transient problems. Numerical results are presented in Section 4. As is shown there, even
though the computational cost relative to the ASGS method is problem dependent, the
accuracy is usually higher, in particular in what concerns the pressure approximation near
boundaries. The summary of the most salient conclusions is finally presented in Section 5.

2. DESCRIPTION OF THE METHOD

2.1. Problem statement

Let us consider the transient Navier–Stokes equations for an incompressible fluid. Let � be
an open, bounded and polyhedral domain of R

nsd, where nsd=2 or 3 is the number of
space dimensions, �=�� its boundary and [0, T ] the time interval of analysis. The
Navier–Stokes problem consists in finding a velocity u and a pressure p such that

�tu+u ·�u−��u+�p= f in �, t� (0, T) (1)

� ·u=0 in �, t� (0, T) (2)

u=0 on �, t� (0, T) (3)

u=u0 in �, t=0 (4)

where � is the kinematic viscosity, f is the force vector and u0 is the velocity initial
condition. We have considered the homogeneous Dirichlet boundary condition (3) for sim-
plicity.

To write the weak form of problems (1)– (4) we need to introduce some notation. We
denote by H1(�) the Sobolev space of functions whose first derivatives belong to L2(�),
and by H0

1(�) the subspace of H1(�) of functions with zero trace on �. A bold character is
used for the vector counterpart of these spaces. The L2 scalar product in a set � is denoted
by ( · , ·)�, and the L2 norm by � ·��. The subscript � is omitted when it coincides with �.
To pose the problem, we also need the functional spaces Vst=H0

1(�)nsd, and Qst=
{q�L2(�)��� q=0} as well as V=L2(0, T ; Vst) and Q=L2(0, T ; Qst) for the transient prob-
lem.

Assuming for simplicity the force vector to be square integrable, the weak form of
problems (1)– (4) consists in finding (u, p)�V×Q such that

(�tu, �)+ (u ·�u, �)+�(�u, ��)− (p, � ·�)= (f, �) (5)

(q, � ·u)=0 (6)

for all (�, q)�Vst×Qst, and satisfying the initial condition in a weak sense.
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2.2. Time discretization

Any time integration of (5)– (6) is in principle possible. However, we shall concentrate on the
monolithic trapezoidal rule (solving for the velocity and the pressure at the same time). The
time discretized version of (5)– (6) in this case consists in solving the following problem: from
known un, find un+1�Vst and pn+1Qst such that

(� t
nu, �)+ (un+� ·�un+�, �)+�(�un+�, ��)− (pn+1, � ·�)= (f� n+�, �) (7)

(q, � ·un+1)=0 (8)

for all (�, q)�Vst×Qst, where �t is the time step size, superscript m refers to the time step level
tm=m�t, �� [0, 1] and we use the notation

un+���un+1+ (1−�)un, �un�un+1−un and � t
nu�

�un

�t

The force term f� n+� in (7) and below has to be understood as the time average of the force
in the interval [tn, tn+1], even though we use a superscript n+� to characterize it. The pressure
value computed here has been identified as the pressure evaluated at tn+1, although this is
irrelevant for the velocity approximation. The values of interest of � are �=1/2, corresponding
to the second-order Crank–Nicolson scheme, and �=1, which corresponds to the backward
Euler method. In this case, the convective term in (7) can be replaced by (un ·�un+1, �), since
it also leads to a first-order unconditionally stable scheme, well suited for the long-term time
integration.

2.3. Pressure stabilized finite element discretization

Let Th denote a finite element partition of the domain � of diameter h, from which we
construct the finite element spaces Qh, Vh and Vh,0, approximations to Qst, H1(�)nsd and Vst

respectively. The former is made up with continuous functions of degree kq and the other two
with continuous vector functions of degree kv, the latter verifying the homogeneous Dirichlet
boundary conditions.

The Galerkin finite element approximation of problem (7)– (8) is standard. It is well known
that the finite element spaces used to interpolate the velocity and pressure need to satisfy the
discrete inf-sup condition (see [14] for a complete discussion and analysis of this problem when
�=1/2). In order to avoid this, a pressure stabilized finite element formulation was proposed
in [9] for the stationary Stokes problem, extended to the stationary Navier–Stokes equations
in [11] and to the transient case in [10]. The method consists in adding to the incompressibility
equation the divergence of the difference between the pressure gradient and its projection onto
Vh, both multiplied by algorithmic parameters defined elementwise. Similarly to the ASGS
method (see Section 2.5), we take these parameters as

�K�
�

c1

�

hK
2 +c2

�uh ��, K

hK

n−1

(9)
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for K�Th, where hK is the diameter of K, �uh ��,K the supremum of the norm of uh in K and
c1 and c2 are algorithmic constants, that we take as c1=4 and c2=2 for linear elements and
c1=16 and c2=4 for quadratics.

Having introduced these parameters, the discrete version of problem (7)– (8) can be defined
as: find finite the element approximations (uh

n+�, ph
n+1) to (un+�, pn+1) and also �h

n+1 such
that

(� t
nuh, �h)+ (uh

n+� ·�uh
n+�, �h)+�(�uh

n+�, ��h)− (ph
n+1, � ·�h)= (f� n+�, �h) (10)

�
K

�K(�qh, �ph
n+1−�h

n+�)K+ (qh, � ·uh
n+1)=0 (11)

(�ph
n+1, �h)− (�h

n+1, �h)=0 (12)

for all (�h, qh, �h)�Vh,0×Qh×Vh.
In these equations we have introduced the parameter �, whose values of interest are �=0

and �=1. In the first case, the pressure gradient projection is treated explicitly, whereas in the
second it is treated implicitly.

2.4. Stability and con�ergence

In this section we summarize the main results proved in [9–11] concerning the stability and
convergence properties of both (10)– (12) and its stationary version. All these results were
obtained taking c2=0 in (9), which leads to stability and convergence estimates whose
‘constants’ depend on the inverse of �. Therefore, from the numerical point of view they are
only meaningful for large values of �. When this parameter is small, convection needs to be
stabilized (see Section 2.5). For the sake of simplicity, we consider here the case of quasi-
uniform meshes, with equal algorithmic parameters for all the elements (although the numer-
ical examples presented in Section 4 have been solved using expression (9) for each element).

Let us consider first the stationary problem (obtained by setting �t=� in (10)). It can be
shown that the solution (uh, ph) is stable when continuous pressure interpolations are used.
More precisely, the following stability estimate holds

���uh�2+���ph�2�C�f�2 (13)

Here and below, C, possibly with subscripts, denotes a constant independent of h and �t, but
possibly depending on �.

Convergence can also be proven if the solution (u, p) of the continuous problem is smooth
enough. The convergence estimate associated to the previous stability result is

���u−�uh�2+���p−�ph�2�Ch2k, k=min{kv, kq+1} (14)

Let us move now to the transient case. The stability estimate for the velocity is
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�uh
N+1�2+ �

N

n=0

�t���uh
n+1�2�C1 �

N

n=0

�t�fn+1�2+C2 (15)

whereas for the pressure it is

�
N

n=0

�t(���ph
n+1�2)s�C1 �

N

n=0

�t�fn+1�2+C2 (16)

where s=1/2 for the three-dimensional Navier–Stokes equations and s=1 if either the
convective term is dropped (Stokes problem) or nsd=2 (recall that C1 and C2 can depend on
� in these estimates).

Concerning convergence for the transient problem, when �=1 and the solution of the
continuous problem is smooth enough it can be shown that the error in the norms defined by
the left-hand-sides of (15) and (16) is of order O(�t+hk), where k is the same as in (14). We
have not performed yet the analysis of the scheme with �=1/2, but we presume that results
similar to those obtained for the Galerkin method in [14] will also hold in our case.

2.5. Algebraic subgrid scale stabilized method

Perhaps the simplest finite element formulation that allows equal velocity–pressure interpola-
tions is the GLS method (see [15] for its application to the Navier–Stokes equations). In the
numerical examples, we shall compare the performance of the SPGP and the ASGS method,
which is very similar to the GLS method (identical for linear elements) but easier to extend to
more general settings.

The basic idea of the ASGS method can be found in [13] and its application to the
Navier–Stokes equations in Ref. [26]. We shall use here a slightly simplified version of the
method presented in this reference. Calling

mh,K
n+��� t

nuh+uh
n+� ·�uh

n+�−��uh
n+�+�ph

n+1 in K�Th

the momentum rate within each element, the method consists in finding (uh
n+�, ph

n+1)�Vh,0×
Qh such that

(� t
nuh, �h)+ (uh

n+� ·�uh
n+�, �h)+�(�uh

n+�, ��h)− (ph
n+1, � ·�h)− (fn+1, �h)

+�
K

�K(uh
n+� ·�uh+���h, mh,K

n+�− fn+1)K=0 (17)

�
K

�K(�qh, mh,K
n+�− fn+1)K+ (qh, � ·uh

n+1)=0 (18)

for all (�h, qh)�Vh,0×Qh. There is also the possibility of adding a term involving a least-squares
form of the velocity divergence, that we have omitted for simplicity. As shown in Ref. [26], if
the parameter �K is taken as indicated in (9), optimal convergence can be proved for the
linearized problem. Observe also that this scheme is identical to the GLS method except for the
+ sign of the viscous operator applied to the velocity test function �h.
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At this point it is important to highlight the differences in the implementation of the ASGS
and the SPGP methods:

1. The presence of the term uh
n+� ·��h multiplying the element residual in (17) introduces a

streamline diffusion that stabilizes convection. For the SPGP method, this term, or a
similar one, must be introduced also when convection dominates. This would imply that
the SPGP method is combined with the SUPG method.

2. The whole element residual needs to be computed within each element when the ASGS is
employed. In particular, second-order derivatives of the shape functions have to be
computed and stored for higher-order elements, a cumbersome and time consuming
process.

3. No variables other than the velocity and the pressure need to be dealt with when the ASGS
is used. In particular, no projections need to be performed.

Clearly, from a computational point of view item 2 is favorable to the SPGP method and
item 3 to the ASGS method. The issue is to decide whether they make one method preferable
to the other, once combined with accuracy considerations. Our purpose in this paper is to give
hints in this direction, although we anticipate that no definite conclusion is to be expected.

The stabilization of convection is a point that we shall omit in our discussion. Obviously, if
a SUPG strategy needs to be employed combined with the SPGP, the whole element residual
needs to be computed also in this case. Nevertheless, it is shown in [16] that the SPGP method
can be consistently extended to stabilize also convection.

3. IMPLEMENTATION ASPECTS

3.1. Matrix form

For our discussion concerning the implementation of the SPGP method given by (10)– (12), it
is convenient to introduce the matrix version of this problem.

Let Na be the standard (Lagrangian) shape function associated to node a of the finite
element mesh. If equal interpolation is used for all the variables (velocity, pressure and PGP)
the matrix form of the problem is

M0�tU
n+Kconv(Un+�)Un+�+KviscU

n+�+G0P
n+1=Fn+1 (19)

−L�Pn+1+D��
n+�+DUn+1=0 (20)

GPn+1−M�n+1=0 (21)

If we denote the node indexes with superscripts a, b and the space indexes with subscripts i, j,
the components of the arrays involved in these equations are:

Mij
ab= (Na, Nb)�ij

Copyright © 2001 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2001; 37: 419–444
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Kconv(U)ij
ab= (Na, uh ·�Nb)�ij

Kvisc ij
ab=�(�Na, �Nb)�ij

Gi
ab= (Na, �iN

b)

Fi
a= (Na, fi)

L�
ab= −�

K

�K(�Na, �Nb)K

D� j
ab= −�

K

�K(�jNa, Nb)K

Dj
ab= (Na, �jN

b)

Matrices M0 and G0 have the same components as M and G respectively, with index a running
only over the set of interior nodes. Also, it is understood that all the arrays are matrices
(except F, which is a vector) whose components are obtained by grouping together the left
indexes in the previous expressions (a and possibly i ) and the right indexes (b and possibly j ).
Finally, note that Dj

ab=Gj
ab.

3.2. Two-step Laplacian matrix

If the nodal unknowns of the PGP are eliminated from (21) it is found that

�n+1=M−1GPn+1

Inserting the expression of �n+� in (20) yields

D�M−1GPn+�−L�Pn+1+DUn+1=0

If �=0 the first term can be moved to the right-hand-side of the resulting algebraic system.
Let us concentrate on the case �=1. Introducing the notation

L� ��D�M−1G

the matrix of the system to be solved is of the form

A=
�K G0

D L� �−L�

n
(22)
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where K is the matrix multiplying the vector of nodal velocities, which takes into account
the temporal, convective and viscous contributions.

Except for the dependence of L� � on �, this can be understood as the matrix resulting
from the discrete divergence applied to the projection of the discrete gradient. Therefore, it
is a Laplacian computed in two steps. It is shown in [17] that the difference L� �−L� is
positive semi-definite, thus explaining from an algebraic point of view why the terms
depending on � in (19)– (21) enhance the stability with respect to the standard Galerkin
approach.

If an algebraic system with matrix (22) is to be solved exactly, there are basically two
possibilities to deal with L� �, depending on the method of solution:

3.2.1. Direct solution. In this case, L� � needs to be stored. The only feasible way to do this is
by approximating the mass matrix M by the (lumped) diagonal mass matrix Ml since
otherwise M−1 is a full matrix. This approach has been used in fractional step methods
which do not use the continuous pressure Laplacian equation (see e.g. [18,19]), since matrix
L� �DM−1G appears in the projection step. However, this is computationally expensive
because the non-zero entries of this matrix are not only those of the mesh graph, but of its
square (using a finite difference expression, it has a twice larger stencil).

3.2.2. Iterati�e solution. In this case, the problem is to compute matrix–vector products of
the form (L� �−L�)P. This can be efficiently done in three steps as follows:

1. Compute Y=GP.
2. Solve MZ=Y. This is trivial if M is approximated by Ml. Otherwise, the simple Jacobi

iteration

Z0=0; Zk+1=Zk+Ml
−1(Y−MZk) k=0, 1, 2, . . . (23)

is extremely efficient. We shall use it later on.
3. Compute D�Z−L�P.

This algorithm is similar to what is commonly used for the dual problem for the Lagrange
multiplier in conjugate gradient methods for optimization problems with restrictions. The
matrix of the system in this case is BA−1Bt, A being the matrix for the primal problem and B

the matrix of the restrictions.
In order to avoid the numerical difficulties present in both direct and iterative solution

methods, we advocate for the iterative elimination of the PGP. This is the subject of the
following sections and the strategy employed in the numerical results.

3.3. Non-linear iterati�e schemes

In this section we consider three different possibilities of uncoupling the PGP from the
velocity–pressure calculation. We assume that ��1/2 in (19) and therefore the convective
term of the Navier–Stokes equations needs to be linearized, either with the simple Picard
iteration or with the Newton–Raphson scheme. For the sake of simplicity, only the first

Copyright © 2001 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2001; 37: 419–444
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method is considered here, although our results apply to the Newton–Raphson linearization as
well.

Using the same notation as in (22), the non-linear algebraic system to be solved within each
time step is of the form

K(U)U+G0P=F (24)

−L�P+D��+DU=0 (25)

GP−M�=0 (26)

This system may arise either from the transient problems (19)– (21) or from the direct
discretization of the stationary equations.

3.3.1. Coupled PGP update-non-linearity scheme. The first scheme that we considered consists
of a single loop in which the non-linearity of the problem is accounted for together with the
updating of the PGP. This coupling is solved by a block Gauss–Seidel type scheme, in which
a new value of the velocity and the pressure is obtained from a known value of the PGP, which
is then updated from the new pressure. The scheme reads as indicated in Box 1, where
subscripts refer to iteration counters.

There are several remarks to be made about this algorithm:

1. If the external forces (or part of them) are potential, the PGP could be initialized to its
projection onto the finite element space. Observe also that setting U0=0 implies that the
first effective velocity will be the solution of a Stokes problem. These comments are also
valid for the following algorithms.

2. The updating of the PGP implies the solution of an algebraic system with a mass matrix.
As discussed before, it can be approximated by the diagonal matrix Ml, which turns out to
be the most efficient choice and does not upset accuracy, as will be shown in a numerical
test. However, if the ‘consistent’ mass matrix is to be used, the Jacobi iteration (23)
provides an inexpensive way to update the PGP.

3. Most of the computational effort of each iteration is concentrated in the solution of the
velocity–pressure problem, whose matrix must be rebuilt at each iteration. Thus, if the
presence of the PGP increases the number of iterations to converge, it can be anticipated
that the CPU time will be substantially increased.

4. In all our numerical examples, we have checked convergence in the relative discrete
Euclidian norm of the arrays of unknowns. For this particular scheme there is no way to
discern between the lack of convergence due to the non-linearity and that due to the PGP
update.

5. In this and the following algorithms, convergence can be checked for all the variables
(unless otherwise specified) or for those that may be considered relevant in a certain
problem.

Copyright © 2001 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2001; 37: 419–444
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Box 1: Coupled PGP update-non-linearity

� Set i=0, U0=0, �0=0

WHILE (not converged) DO:
� Build up matrices K(Ui), G0, D, L�

� Solve for the velocity and the pressure:
K(Ui)Ui+1+G0Pi+1=F

DUi+1−L�Pi+1= −D��i

� Solve for the PGP:
M�i+1=GPi+1

� Set i� i+1 and check convergence
END

3.3.2. Nested PGP update-non-linearity scheme. This second scheme consists of a pair of nested
loops: an outer loop for the PGP update and an inner loop for the non-linearity. The
algorithm is presented in Box 2, where subscript i refers to the iteration counter for the
non-linearity and j for the PGP update. Unknowns converged in the innermost loop have been
identified by a subscript c.

This method has the disadvantage that at each of the inner iterations, a number of linear
systems has to be solved with different system matrices, which have to be computed every time.
Nevertheless, we hoped that as the outer iteration scheme proceeds, the number of inner
iterations needed to solve the non-linearity would decrease, since the initial values for the
non-linear solver progressively approach the solution. This fact could, in principle, make this
method competitive with the previous one, but that was not the case.

Box 2: Nested PGP update-non-linearity

� Set j=0, Uc,0=0, �0=0

WHILE (not converged in j ) DO:
� Set i=0, U0,j+1=Uc, j

WHILE (not converged in i ) DO:
� Build up matrices K(Ui, j+1), G0, D, L�

� Solve for the velocity and the pressure:
K(Ui, j+1)Ui+1, j+1+G0Pi+1, j+1=F

DUi+1, j+1−L�Pi+1, j+1= −D��j

� Set i� i+1 and check convergence for U, P in i
END

� Set Uc,j+1=Ui,j+1, Pc,j+1=Pi, j+1

� Solve for the PGP:
M�j+1=GPc, j+1

� Set j� j+1 and check convergence in j
END

Copyright © 2001 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2001; 37: 419–444
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3.3.3. Nested non-linearity-PGP update scheme. Finally, we considered a method in which the
inner and outer iteration loops of the previous scheme are performed in reversed order. That
is, an outer iterative method is considered to solve the non-linearity of the full problem, within
which an inner iteration scheme is used for the PGP update. The resulting algorithm is shown
in Box 3, where the subscript notation is the same as in Box 2.

The remarks to be made about this algorithm are the following:

1. As will be demonstrated in the numerical examples, this method turns out to be superior
to any of the schemes previously considered. At each of the outer iterations, a single system
matrix needs to be computed, which is the same for all the inner iterations (since it does not
depend on j ). Moreover, the number of inner iterations required to solve the formulation
decreases as the outer iteration scheme advances, becoming very small in the last stages, as
the initial approximation approaches the solution.

2. The computational cost due to the PGP update in this case is given by the cost of solving
linear systems of equations with a given matrix. When direct solution techniques are
employed, this is very low (of order the number of unknowns), since the matrix of the
system needs to be factored only once and only forward and backward substitutions need
to be performed for each j iteration. When iterative methods are used, the initial guess for
this iterative method becomes closer to the converged solution as the inner loop advances,
and thus less iterations of the linear system solver are required. Moreover, in this case the
cost of solving the algebraic system relative to that of the whole calculation is smaller.

3. Since the innermost iteration can be viewed as a block Gauss–Seidel scheme for a linear
problem, we have tested the performance of overrelaxation strategies, consisting in redefin-
ing the unknowns as

Ui+1, j+1��1Ui+1, j+1+ (1−�1)Ui+1, j

Pi+1, j+1��2Pi+1, j+1+ (1−�2)Pi+1, j

�i+1, j+1��3�i+1, j+1+ (1−�3)�i+1, j

right after solving for the PGP. In these expressions, �i, i=1, 2, 3, are numerically
determined overrelaxation parameters. Even though for the linear (Stokes) problem we
found a certain improvement in the number of iterations required to converge (with values
of �i close to 1.3), this turned out to be insignificant for the non-linear problem (meaning
that �i=1 was found to be the best choice), and we did not pursue the investigation of this
possibility any further.

3.4. Transient scheme: explicit pressure gradient projection

In the previous section we have tacitly assumed that if a transient problem is being analyzed,
� in (20) is taken as 1, and therefore at each time step a non-linear algebraic problem of the
form (24)– (25) needs to be solved. However, it is also possible to take �=0, the case in which
the update of the PGP can be performed at the end of each time step. It is important to note
that the scheme thus obtained is unconditionally stable. The stability estimates (15)– (16) hold
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both for �=0 and �=1 (in the former case, there is a technical condition on �t to obtain (16);
see [10]).

Box 3: Nested non-linearity-PGP update

� Set i=0, U0,c=0, �0,c=0

WHILE (not converged in i ) DO:
� Build up matrices K(Ui,c), G0, D, L�

� Set j=0, Ui+1,0=Ui,c, �i+1,0=�i,c

WHILE (not converged in j ) DO:
� Solve for the velocity and the pressure:

K(Ui,c)Ui+1, j+1+G0Pi+1, j+1=F

DUi+1, j+1−L�Pi+1, j+1= −D��i+1, j

� Solve for the PGP:
M�i+1, j+1=GPi+1, j+1

� Set j� j+1 and check convergence in j
END

� Set Ui+1,c=Ui+1, j, Pi+1,c=Pi+1, j, �i+1,c=�i+1, j

� Set i� i+1 and check convergence in i
END

For the sake of completeness, we have presented in Box 4 the transient algorithm treating
explicitly the PGP. The time step counter has been denoted by n and the total number of time
steps by N.

Box 4: Transient scheme with explicit PGP

� Read U0 and set �0=0

FOR n=0, 1, 2, . . . , N−1 DO:
� Solve the non-linear problem:

M0�tU
n+Kconv(Un+�)Un+�+KviscU

n+�+G0P
n+1=Fn+1

DUn+1−L�Pn+1= −D��
n

� Project the pressure gradient:
M�n+1=UPn+1

END

It is important to remark that this scheme has proved to be very efficient and accurate in
general transient problems, but there are two small misbehaviors that need to be reported.
First, its low numerical damping, even when �=1, causes that steady state solutions are
reached after a larger number of time steps than with other schemes, such as mixed div-stable
velocity–pressure interpolations or the ASGS formulation. For long-term time integrations, its
performance turns out to be similar to that of classical projections schemes. This point is
demonstrated in a numerical example.
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The second problem encountered is that the explicit treatment of the PGP produces a
spurious initial pressure wave that is damped out after the first few time steps. This in
particular implies that the steady state, whenever it exists, is reached faster by treating
implicitly the PGP, as it will be shown in one of the numerical examples. This phenomenon
was identified and analyzed in Ref. [27].

4. NUMERICAL EXAMPLES

In this section we present a study of the computational performance of all the different
schemes discussed before. Our reference to decide whether the SPGP method is computation-
ally feasible or not is the ASGS method, which is also formulated in terms of primitive
variables and allows the use of equal order interpolations.

An overview of the numerical examples presented below and what they intend to demon-
strate is the following:

1. A general performance test. This example serves to illustrate several facts: (1) the
most efficient non-linear solver among those presented in Section 3.3 is the nested
non-linearity-PGP update; (2) the use of the lumped mass matrix is preferable to
the consistent one in the projection of the pressure gradient; (3) for stationary pro-
blems, the SPGP is only marginally more expensive than the ASGS method and more
accurate.

2. Flow in a cavity. We obtain the steady state solution of this classical example by stepping
in time to show that: (1) sometimes it is faster to treat implicitly the PGP, since the steady
state is reached in fewer time steps; (2) pressure peaks using the SPGP are better captured
than using the ASGS method.

3. Kovasznay flow. This is a general convergence test that shows that optimal orders of
convergence are achieved for the four element types analyzed there, namely, P1, P2, Q1 and
Q2 elements.

4. Newtonian flow through sinusoidally constricted tubes. This example shows the behavior
of the SPGP in a more realistic problem, for which experimental and numerical reference
results exist. It demonstrates that the SPGP is more accurate in such situations than the
ASGS formulation.

4.1. Performance test

Let us consider a three-dimensional steady state test with analytical solution to check the
behavior of the SPGP method. We take � as the unit cube and the force term so that the exact
solution is p=0 and u(x, y, z)= (h(z)f(x)g �(y), −h(z)f �(x)g(y), 0), with f(x)=x2(1−x)2,
g(y)=y2(1−y)2 and h(z)=z(1−z). This velocity field vanishes on ��. The viscosity has
been set to �=0.1.

We have used a uniform finite element mesh of 213 nodal points, connected in different
manners so as to obtain meshes of P1, P2, Q1 and Q2 elements. The resulting value of the
element Reynolds number is not very high and for this particular example and therefore no
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stabilization is needed for the convective term. The convergence tolerance has been taken as
0.01 per cent in the Euclidian norm of the arrays of nodal velocities.

The first point that is investigated is which is the best iterative scheme among those
discussed in Section 3.3. For that we have considered the mesh of P1 elements and approxi-
mated the mass matrix by Ml. The number of iterations required to converge and the CPU
needed are displayed in Table I. Since the relative importance of the CPU time needed to
construct the matrices and to solve the algebraic system depends on the algorithms used in
both cases, we have split these two contributions to the total CPU. In this example, the
algorithm employed to construct the matrices is that proposed in [20], whereas the linear
system has been solved with a standard direct solver.

From Table I it is seen that when the non-linearity (NL in Table I) and the PGP update
(simply identified by PGP in Table I) are coupled, the latter clearly drives the iterative
process, making the scheme inefficient due to the need for solving different systems at each
iteration. The same is true for the nested PGP-NL, although the situation is now aggra-
vated by the inner iterations. The best method is the nested NL-PGP. The cost of the inner
iterations is extremely low, since the matrix of the system needs not to be recomputed and
it needs to be factored only once. The CPU time increase with respect to the ASGS method
is only 7 per cent for the linear solver and 3 per cent for the construction of the matrices.

The second point tested is whether it is preferable to use M or Ml. As before, we have
used the mesh of P1 elements and now the nested NL-PGP scheme. Table II shows that the
convergence of the inner iterations is better using Ml and the CPU time is smaller. More-
over, the accuracy is not deteriorated and, in this case, it is even slightly higher using the
lumped mass matrix. The error has been measured in the discrete l2 norm, which is defined
as

Table I. Test to determine the best iterative scheme.

SolverMatricesInner iterationsOuterMethod Total
CPUCPUiterations CPU

— 100ASGS 100 1003
— 181coupled SPGP 182 1826

402404389(3, 3, 2, 2, 2, 2)6Nested SPGP, PGP-NL
Nested SPGP, NL-PGP 3 (6, 3, 2) 103 107 106

Lumped mass matrix Ml, P1 element.

Table II. Test to compare M and Ml.

l2 errorTotalSolverMatricesInnerOuterMethod
CPUiterations CPUCPUiterations

ASGS 3 — 100 100 100 6.32×10−2

3 4.32×10−2108107111SPGP, M (6, 6, 4)
SPGP, Ml 3 (6, 3, 2) 103 107 106 4.01×10−2

For the SPGP, the nested NL-PGP scheme is used, P1 element.
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E=
� �

npts

n=1

�
2

i=1

(Ui
a−ui(xa))2n1/2� �

npts

a=1

�
2

i=1

(ui(xa))2n−1/2

where npts is the total number of nodal points, Ui
a is the i-th component of the nodal velocity

at node a and xa are the co-ordinates of this node.
For all the interpolations we have tested the behavior of M and Ml is similar, except for the

P2 element. The reason may be due to the fact that for this particular case the diagonal mass
matrix obtained from nodal quadrature has zero diagonal entries (those corresponding to the
vertex nodes). To obtain a non-singular diagonal matrix, we split the quadratic tetrahedra into
linear tetrahedra and build up the lumped mass matrix from this splitting. The behavior of the
inner iterations depending on M and Ml is highly problem dependent.

A comparison of the CPU time and accuracy between the ASGS and the SPGP, using in this
case the nested NL-PGP scheme and Ml, is shown in Table III. It is seen there that the SPGP
is slightly more expensive in all the cases and also slightly more accurate for first-order elements.
The behavior of the P2 element may be due to the construction of Ml, and for the Q2 it is seen
that accuracy is much higher using the SPGP formulation.

4.2. Flow in a ca�ity

In this example we solve the classical cavity flow problem in the unit square. The velocity is
prescribed to (1, 0) at the lid, including the corners (leaky case) and to (0, 0) on the rest of the
boundary. The domain is discretized using a mesh of 2888 P1 elements and 1521 nodal points,
uniformly refined near the boundaries.

Let us take �=0.001 first. The resulting Reynolds number is Re=1000, which is small enough
to ensure that a steady state solution exists and can be well captured without stabilizing
convection. In this example the steady state is reached through a transient evolution from rest,
both for the ASGS and the SPGP methods. The parameter � is set to 1 in (10), although, as
mentioned before, it is often interesting to replace the convective term in this equation by
(uh

n ·�uh
n+1, �h). Thus, we take it as (uh

n+� ·�uh
n+1, �h) and consider the cases �=0 and �=1.

Table III. Test to compare the element behavior.

Solver Total l2 errorMatricesInnerElement and Outer
iterations iterationsmethod CPU CPU CPU

ASGS, P1 3 — 100 100 100 6.32×10−2

4.01×10−2106107103(6, 3, 2)3SPGP, P1

ASGS, Q1 9.38×10−32333 246183—
7.02×10−3250263190(6, 4, 2)3SPGP, Q1

6ASGS, P2 — 159 237 227 3.53×10−1

SPGP, P2 6 (7, 5, 5, 4, 4, 2) 167 258 247 4.60×10−1

5 5.01×10−2798829412ASGS, Q2 —
SPGP, Q2 5 (6, 4, 3, 2, 2) 433 904 872 5.56×10−3

Lumped mass matrix Ml.
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Table IV. Number of time steps to reach the steady state for the cavity flow problem (case
Re=1000).

Number of SolverMethod Matrices Total
CPUtime steps CPUCPU

ASGS, �=0 14 59.4 6.7 66.5
6 89.4ASGS, �=1 10.1 100.0

26 129.8 13.0SPGP, �=0, �=0 144.2
16 81.0SPGP, �=0, �=1 9.7 92.2
22 753.6 74.4 829.4SPGP, �=1, �=0
7 128.5 16.0SPGP, �=1, �=1 145.9

The number of time steps needed to reach the steady state with �t=100, as well as the
required CPU time, are reported in Table IV. The steady state tolerance has been set to 10−4,
normalized with �tU

1, and the convergence tolerance to 10−3. It can be observed that the case
�=0 requires more time steps due to the smaller numerical damping of the scheme, even
though it is less time consuming that the non-linear case �=1. For the SPGP method, it turns
out that the case �=1 needs less CPU time than �=0, especially when �=1. This is due to
the faster convergence to the steady state when the PGP is treated implicitly, case which does
not suffer from the spurious pressure wave of the explicit case mentioned earlier.

In this relatively small problem, the increase of CPU time of the SPGP with respect to the
ASGS is bigger than in the first example. Considering the cases with �=1, it is 38.6 per cent
higher for �=0 and 45.9 per cent for �=1. This is due to the bigger relative cost of the
forward and backward substitutions (needed at each PGP update) with respect to the matrix
factorization in the direct solver that we have used (see remark 2 to Box 3).

This example also serves to point out the difference in the pressure peaks obtained using the
ASGS and the SPGP methods. Table V shows the difference between the maximum and the
minimum pressure values obtained for �=0.001 and �=0.1. Results are more ‘diffusive’ using
the ASGS method, as it can be also seen from the curvature of the iso-pressure lines near the
boundary in Figures 1 and 2, which in the ASGS case tend to be slightly orthogonal to it.
Nevertheless, this does not affect the velocity solution, which is very similar in both cases.

4.3. Ko�asznay flow

In order to check numerically the optimal orders of accuracy given in (14), we considered a
problem introduced by Kovasznay (see [21]), modeling laminar flow behind a two-dimensional

Table V. Maximum pressure differences pmax−pmin for the cavity flow prob-
lem.

Re=1000Re=10Method

ASGS 0.63227.131
0.86644.093SPGP
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Figure 1. Pressure contours for the flow in a cavity (case Re=1000). SPGP method.

Figure 2. Pressure contours for the flow in a cavity (case Re=1000). ASGS method.

Copyright © 2001 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2001; 37: 419–444



PRESSURE STABILIZED FINITE ELEMENT METHOD 437

grid, in which an analytical solution of the steady incompressible Navier–Stokes equations with
no forcing term is available. The velocity solution u= (u, �) is given by

u(x, y)=1−e�x cos(2	y)

�(x, y)=
�

2	
e�x sin(2	y)

for (x, y)�R2, whereas the pressure is p(x, y)=p0−e�x/2, where p0 is an arbitrary constant and
the parameter � is given in terms of the Reynolds number Re by �=Re/2− (Re2/4+4	2)1/2

�0. This flow problem was solved numerically in [22,23] for a value of Re=40. We solved it
in the domain �= [−1/2, 1]× [−1/2, 1/2] for that value of the Reynolds number (that is, for
�=0.025), with the elements P1, Q1, P2 and Q2, and on four different uniform meshes, made
up with 19×13, 31×21, 43×29 and 61×41 nodes respectively. In all cases, the solution was
obtained by the nested non-linearity-PGP update scheme with a Newton–Raphson approxima-
tion of the convective term, starting from the fluid at rest, but for the prescribed boundary
conditions (which were given by the value of the analytical solution at the boundary). The
tolerance for convergence in the iteration for non-linearity was 10−4, and the same value was
taken for the tolerance of the inner iteration. It took five iterations of Newton–Raphson’s
method in all cases to find the solution. The only exception was the P2 element case with the
finer 61×41 mesh: Newton–Raphson’s method diverged in that case; we used Picard’s iteration
instead, which required nine iterations to find the solution for the same values of the tolerances.
The number of inner iterations decreased with the outer iteration scheme in all cases, from about
100 in the first iteration, in the worst cases, to one in the fifth iteration in all cases.

We then computed the exact errors �u−uh�, (velocity error in L2), ��u−�uh�, (velocity error
in H1) �p−ph� (velocity error in L2) and ��p−�ph� (pressure error in H1) for each mesh and
element. The results obtained can be seen in Figure 3 as a function of the mesh size, where we
have included the errors obtained for the ASGS method with a Q1 element interpolation for
comparison. As can be observed, optimal orders of accuracy were found in all cases. Those of
the velocity solution are specially sharp, whereas for the pressure there seems to be a gain of
one order of accuracy both in the pressure and its gradient. In particular, the convergence of
the pressure gradient was not ensured by the theory for linear and bilinear elements.

Moreover, it is clearly seen that the ASGS method, although optimal in all cases, produces
less accurate results than our method, specially for the pressure. The Q2 element provides the
most accurate results.

4.4. Newtonian flow through sinusoidally constricted tubes

This numerical example concerns a rather well-studied flow with recirculating regions but without
singularities. Precise measurements and simulations [24,25] exist so as to compare the SPGP and
ASGS methods with regard to accuracy, with emphasis on that of global quantities.

The problem consists of a periodic flow through a tube with radius dependent on x1 as

r(x1)=R0
�

1+
 cos
2	x1

�

�
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Figure 3. Kovasznay flow: (a) velocity error in L2, (b) pressure error in L2; (c) velocity error in H1; (d)
pressure error in H1. + , P1 element; �, Q1 element; �, P2 element; × , Q2 element; �, ASGS method,

Q1 element.

and thus the geometry involves two non-dimensional quantities: The constriction ratio 
, and
the non-dimensional period �=2	R0/�. In [24] detailed results are provided for the case

=0.3, �=1, that we will consider in the following. The quantity of interest is the friction
factor f, usually considered within the product

f Re=
2	R0

4�p
�Q
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where �p is the mean pressure gradient and Q the flow rate. In the steady case and for given

 and �, f Re is a function of the Reynods number alone, defined as

Re=
2Q

	�R0

Experiments indicate that the flow is steady and axisymmetric up to Re=200 or greater,
depending on the geometry. Our computations are thus axisymmetric, stepping in time until a
steady state is reached.

Figure 4. Flow through sinusoidal tubes: 30×40 mesh.

Figure 5. Flow through sinusoidal tubes: flow pattern for different Re.
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We consider two meshes: A coarse one consisting of 30×40 nodes that is shown in Figure
4, and a fine one consisting of 120×80 nodes used as reference. We investigate the range
0�Re�300 using the SPGP method and the ASGS method. For the former we consider two
treatments of the momentum equation, namely Galerkin and SUPG, denoted respectively by
SPGP+GAL and SPGP+SUPG. The flow structure, shown by means of the streamline
pattern, is shown in Figure 5 as computed on the 120×80 mesh using SPGP+GAL.
Detachment regions that grow with Re are evident.

In Figures 6 and 7 we compare the periodic part of the pressure fields obtained with the
different methods with that were obtained using the 120×80 mesh. In the case Re=0 the
SPGP method is more accurate (this is most noticeable from the extreme values of the
pressure, which suggests an overdiffusive behavior of ASGS). For Re�295 the differences
between the pressure fields obtained with SPGP+GAL, SPGP+SUPG and ASGS are less
significant. However, ASGS remains the one for which pmax−pmin is smallest.

Quantitative comparison between the computed friction factors is carried out in Figures 8
and 9 (which is a detail of the former for lower values of Re). Excellent agreement exists
between numerical results from the literature [24,25] and the results obtained on the 120×80
mesh. The plots prompt the definition of two regimes in what concerns numerical behavior of
the methods. In the low-Re regime (Re�25) momentum upwinding is negligible, SPGP+
GAL coincides with SPGP+SUPG, both being significantly more accurate than the ASGS
method. In the high-Re regime (Re	100) momentum upwinding is the dominant source of
error and the predictions of SPGP+SUPG and ASGS are very close. In the whole range, of
f Re predicted by SPGP+GAL agrees within 0.2 per cent with the reference computation.

Figure 6. Flow through sinusoidal tubes: periodic part of the pressure field as computed by the SPGP
and ASGS methods for Re=0. In this case SPGP+GAL and SPGP+SUPG are equivalent.
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Figure 7. Flow through sinusoidal tubes: periodic part of the pressure field as computed by the SPGP
and ASGS methods for Re�295.

5. CONCLUSIONS

In this paper we have fully described the SPGP method and its implementation aspects, which
have been tested through numerical experiments. The main conclusions that may be drawn
form these are the following:

� If a non-linear iterative solver needs to be used solving also for the PGP, the best option
turns out to be a pair of nested loops, the outermost of which accounts for the linearization
of the convective term and the innermost for the updating of the PGP. The inner iterations
are very inexpensive relative to the global cost of a non-linear transient analysis, since the
matrix of the algebraic system remains unchanged.

� In general, it is preferable to use the lumped mass matrix rather than the consistent one.
From numerical examples we have found that the accuracy of the scheme is similar in both
cases, whereas the computational cost is lower using the lumped mass matrix. This is due
not only to the fact that the projection step is trivial in this case, but also to the smaller
number of iterations required for convergence in the iterative schemes analyzed to segregate
the calculation of the PGP from the velocity and the pressure.
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Figure 8. Flow through sinusoidal tubes: product f Re versus Re for the different methods as compared
to other authors and to the reference computation.

� For transient problems, the explicit treatment of the PGP yields what to our knowledge is
the computationally simplest finite element formulation which allows equal velocity–
pressure interpolations. A pressure Laplacian-like term needs to be introduced in the
left-hand side of the equations and the divergence of the projected pressure gradient at the
previous time step needs to be added as a force term of the continuity equation. This
ensures consistency and does not deteriorate stability. However, when a steady state is
sought, more time steps than for example with the ASGS need to be performed. This
reluctance to reach the steady state is similar to that found in some fractional step methods
which solve, at the steady state, an equation similar to (20).

� The accuracy of the scheme is certainly one of its most important features. Even in
stationary calculations, when the cost of the PGP update is not negligible, it might be worth
using it. In particular, the pressure near the boundary is more accurate than with the ASGS
method or classical projection schemes.

As a general conclusion, we think that the SPGP method is an accurate finite element
formulation which originates from an innovative stabilization concept. This may stimulate the
development of new stabilization techniques in other areas of computational mechanics.
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Figure 9. Detail of the low-Re region of Figure 8.

On the other hand, its weak point is its robustness in certain situations, which deserves
further research.
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