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Abstract

In the generation of quadrilateral unstructured meshes, special at-

tention is focused to the shape of the elements. This is because it is

well known that the distortion of the elements and the accuracy of the

analysis are closely related. However, in adaptive schemes it is also

essential that the new generated mesh meets the prescribed element

sizes in order to obtain a solution with the desired precision. In 1982

Giuliani developed a robust rezoning algorithm based on geometrical

criteria.1 It gives proven results in a smooth element size distribution,

but elements do not verify the prescribed element size when sharp dis-

tributions appear. This paper presents a modi�cation of the Giuliani

method that generates non{distorted elements while preserving the

element size. Similar to the original method, this modi�cation can be

extended to three{dimensional cases.
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1 Introduction

The eÆciency of a h{adaptive strategies relies in two ingredients. First,

computing an accurate bound of the error, from which the desired element

sizes are deduced. Second, generating a new grid with well shaped elements of

the prescribed size. It is important to note that the veri�cation of the element

size plays a basic role in this kind of processes, because it is assumed that

the error of the �nite element solution is proportional to hf(p), where h is the

characteristic element size, p is the degree of the interpolation polynomial and

f is a some positive function of p, see2 for a detailed discussion on remeshing

techniques.

Triangular elements are extensively used in h{adaptive techniques. How-

ever, in several plasticity applications as well as in some incompressible uid

formulations quadrangular elements are preferred.

Quadrilateral mesh generation algorithms3{7,9,10 initially yield meshes

with very distorted elements. Therefore, mesh quality enhancement pro-

cedures are needed in order to improve the overall mesh quality. There are

two basic ways to meet this goal. The �rst one, often called make-up tech-

niques, is focused in the improvement of the mesh topology. The second one,

called mesh smoothing, improves the shape of the elements by modifying the

position of the inner nodes once the topology is �xed. Concerning the �nal

element size of the mesh, the former plays a minor role because, in general,

the smoothing algorithm is able to distribute elements inside the domain.

Therefore, special attention has to be focused on the smoothing algorithm.

Nowadays, there exists a wide range of smoothing algorithms. For in-

stance,8 extend the scope of the variatonal methods, widely used for struc-

tured grids, to nonstructured triangular meshes. Other commonly used

smoothing technique for unstructured meshes is the so-called Laplacian me-

thod,11,12 which computes the new nodal position solving the Laplace equa-

tion. This technique has an important drawback: in non-convex domains,

nodes may run outside of it. Techniques to preclude such a pitfall either

increase the computational cost enormously or introduce new terms in the

formulation that are particular for each geometry. Giuliani1 developed a

new rezoning algorithm based on geometrical criteria. This method mod-

i�es the position of every node in order to minimize a geometric-oriented

average distortion of elements meeting on it. These modi�cations are done

with an explicit iterative procedure. In this case, nodes cannot depart from

the domain because this is an unstable position in terms of distortion and
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squeeze.

h{adaptive techniques13,14 �rst compute a solution on a given coarse

mesh. Then, a new element size distribution is computed from a local mea-

sure of the estimated error. Therefore, it is crucial that the mesh generator

preserves the prescribed element size. In this sense, it is essential that the

smoothing algorithm also maintains the size. Giuliani method gives proven

results for smooth element size distributions, but it yields unsatisfactory

meshes when sharp distributions appear. This is due to the fact that zones

with high density tend to loose elements after several remeshing iterations

at advanced stages of the analysis. The cause of this problem may be found

at the heart of the rezoning principle (see1 for details).

Therefore, it is important to develop a smoothing algorithm that obtains

well shaped elements while the prescribed element size is maintained. This

is the goal of the present paper.

2 Distortion metric

A basic point for mesh smoothing techniques is how to quantify the mesh

quality. The distortion metric developed by Oddy et al.
15 is used in this

work. It accounts for both shearing and stretching e�ects. Moreover, it is

not a�ected by rigid body motions and is independent of the element size.

It is computed from the Jacobian of the iso{parametric mapping, J , as

D =
2X

i=1

2X
j=1

C2
ij �

1

2

 
2X

k=1

Ckk

!
; (1)

where

Cij =
1

jJ j

2X
k=1

JkiJkj: (2)

Notice that four{noded linear isoparametric elements are assumed. Accord-

ing to previous analysis,15,16 the distortion metric is evaluated at the nodes

in an element and the highest value is chosen to represent the quality of the

element. If jJ j becomes null or negative in an element, then D is set to an

arbitrarily large positive value.

In order to visualize the distortion measure de�ned in equation (1), Figure

1.a and 1.b show the distortion values corresponding to the e�ect of shearing

and stretching an square element respectively. Note that D is zero for a

square element.
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3 Improved algorithm

In the original Giuliani method, an inuence domain is de�ned for every node

Pi of the unstructured quadrilateral mesh. This domain is de�ned by the set

of triangles obtained by joining all nodes connected to node Pi via the element

sides (dashed area in �gure 2.a). The distortion of each triangle is de�ned

in terms of its height, h, the average height in the inuence domain, �h, the

distance between vertex Pi and the midperpendicular of its opposite side,

d, and the average length of the opposite edges to point Pi in the inuence

domain, �b (Figure 2.b shows a graphical interpretation of the basic elements

of a generic triangle). This distortion reads

D =

 
h� �h
�h

!2

+

 
2d
�b

!2

: (3)

The new position of Pi is found by minimizing the sum of distortions in

the inuence domain. This is iteratively repeated for all the nodes in a

Gauss-Seidel like procedure, until convergence is achieved (see1 for details on

the implementation of the algorithm). The redistribution of nodal density

mentioned above is due to the presence of the mean height �h in the expression

of the distortion, which tends to equalize the size of all the triangles to the

mean size in each inuence domain.

In order to overcome this problem an improved algorithm is developed.

The basic idea is to replace �h by the theoretical height of a triangle rectangle

and isosceles on Pi. This height is b=2 when the length of the opposite side

to Pi is b (Figure 2.b). Note that if each triangle in the inuence domain

were rectangle and isosceles on Pi, then the mesh would be structured. A

straightforward implementation of this modi�cation is to substitute �h by b=2

in the original algorithm.

In order to stop the iterative procedure the following criterion is used: the

maximum relative displacement must be less than a given tolerance. That

is, for each iteration and node Pi the following values are computed: the

displacement, Æi, of Pi during this iteration and the shortest element edge,

`i, in contact with Pi. The smoothing algorithm is stopped when:

Q � max
i=1;:::;np

f
Æi

`i
g � Tol (4)

where np is the total number of nodes and Tol is the prescribed tolerance.

Usually, Tol is prescribed as 0:5 10�n where n is the number of signi�cant
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digits desired for the position of a node. Note that in practical computations

1 or 2 signi�cant digits are enough for a reasonable description of the mesh.

Numerical experiments show that the modi�ed algorithm has a higher rate

of convergence than the original algorithm. For instance, �gure 3 plots the

logarithm of Q versus the number of iterations for both algorithms and the

mesh presented in the third example of next section. The prescribed tolerance

in this case is Tol = 0:5 10�3. Note that the modi�ed algorithm generates a

signi�cant reduction of Q during the initial iterations. For instance, if one

signi�cant digit is desired for the new position of a node (Tol = 0:5 10�1),

which is a reasonable value for practical purposes, only 16 iterations are

needed with the modi�ed algorithm, whereas the original algorithm needs 92

iterations. Moreover, the ratio of convergence of the modi�ed algorithm is

1.34 faster than the original one. Similar behavior has been detected when

both algorithms were applied to other meshes.

This modi�cation can be extended to three{dimensional meshes. In these

cases, the inuence domain is composed by the set of tetrahedrons obtained

by joining all nodes connected to node Pi via the elements sides. The ex-

pression of the distortion metric (3) is still valid, being h the height of the

tetrahedron and �h the mean height in the inuence domain (see1 for details).

The idea is now to use the height each tetrahedron would have if it were

rectangle and `isosceles' on Pi (see �gure 4). It is straightforward to see that

this height can be expressed in terms of the area of the opposite side, A, as

h =
q
(2A)=(3

p
3).

4 Numerical examples

In order to show the performance of the improved algorithm, four examples

are presented in this section. The objective of the �rst one is to show that

the robustness of the method is still preserved. Figure 5.a presents a very

distorted initial mesh. It is smoothed using the improved algorithm, and the

optimal mesh for this case is obtained in few iterations (see �gure 5.b ). A

L{shape domain with a inner node placed outside of the domain is presented

in �gure 5.c. The smoothed mesh is presented in �gure 5.d. Notice that,

even in non{convex domain cases, the modi�ed algorithm still places nodes

inside the domain.

The second one is a simple comparison between the original and modi�ed

algorithm. The original domain is a unit square meshed into four quadrilat-
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erals: two squares of sizes 0.25 and 0.75 and two rectangles (see �gure 6.a).

Although the two square elements have no distortion (D = 0), the mesh can

be improved because the two rectangle elements are stretched (D = 3:55),

see �gure 6.b. The smoothed mesh obtained using the original algorithm is

shown in �gure 6.c and the associated distortion is presented in �gures 6.d.

The distortion range is [0:84; 3:55] and the mean value of the distortion is
�D = 2:46. Figures 6.e and 6.f show the smoothed mesh and the distortion

of its elements when the modi�ed algorithm is used. The distortion range

is now [0:88 � 10�2; 3:55]. It can be appreciated how the original algorithm

tends to equalize the element size, while the modi�ed one keeps the density

of the original mesh as far as possible. Note that, although the same maxi-

mum value is obtained for the distortion measure (1), smaller values are also

obtained and the mean value of the distortion is now �D = 1:91.

The goal of the third example is to show that the modi�ed algorithm

preserves the element size in the regions where small values are prescribed.

In this case the domain is a square of length 5. It is discretized using the a

mesh generator algorithm previously developed.9,10 A constant element side

h = 0:01 is prescribed on the bottom while h = 1 on the upper side. The

prescribed element size value over the domain is computed as linear interpo-

lation of the prescribed values on the lower and upper sides. Figure 7.a shows

the mesh before any smoothing technique is applied. It can be observed that

highly distorted elements appear. The smoothed meshes using the original

and the modi�ed algorithm are presented in �gures 7.b and 7.c respectively.

The tolerance used to stop the smoothing algorithms is Tol = 0:5 10�2. Note

that the modi�ed algorithm maintains the prescribed small values of the ele-

ment size on the base. This feature is highlighted in �gures 7.d and 7.e, where

a detail near the bottom{right corner of the obtained meshes using the origi-

nal and modi�ed algorithm are presented. In order to compare the quality of

the �nal meshes, the distributions of the element distortion metric, equation

(1), for both algorithms are presented in �gure 8.a. Note that less distorted

elements are generated with the modi�ed algorithm (there is a di�erence of

two orders of magnitude in the number of elements with small values of the

distortion measure between both algorithms). Moreover, the mean value of

the element distortion using the modi�ed algorithm is �D = 1:13 whereas

using the original algorithm it is �D = 2:87. This is because no stretched

elements are generated near the bottom side. In order to measure if the pre-

scribed element size is veri�ed, the characteristic element size is computed as

the square root of the element area. Then, it is compared with the character-
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istic element size obtained from the prescribed values. Figure 7.b shows the

distribution of the relative error of the characteristic element size obtained

using both algorithms. This relative error is de�ned as the absolute value of

(obtained size = prescribed size) � 1. Note that the modi�ed algorithm tends

to generate more elements that meet the prescribed values (there is a di�er-

ence of one order of magnitude in the number of elements with small relative

error). Moreover, if the original algorithm is used, the mean value of the

obtained relative error is �r = 0:44 and its maximum (rmax = 1:78) is located

at the bottom of the square (precisely the region of computational interest).

On the other hand, if the modi�ed algorithm is used, the mean value of the

relative error is reduced to �r = 0:14 and its maximum (rmax = 0:82) is located

outside the region of computational interest. Note that a smooth variation

in the element size is obtained notwithstanding the remarkable element size

gradient in both cases.

In the fourth example an application of the modi�ed algorithm to adap-

tive computations is presented. A plane strain adaptive analysis of a dam is

conducted using the new remeshing strategy developed by D��ez and Huerta.2

Starting from a initial mesh (see �gure 9.a) two meshes are obtained for two

di�erent values of the acceptability criterion: �L = 5% and �L = 3% (�g-

ures 9.b and 9.c respectively) Note that regular and well shaped elements are

generated even in a small region where a high gradient of the element size is

prescribed.

5 Conclusions

A modi�cation of the smoothing algorithm developed by Giuliani1 is pre-

sented in this paper. It is proved that the new algorithm generates well

shaped elements. Moreover, when sharp distributions of the element size

are prescribed, in contrast with the original algorithm, it is able to maintain

the prescribed element size, specially in the regions where small values are

speci�ed. This property is its basic characteristic and makes it reliable when

dealing with adaptive techniques.
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 S c a l e   0 . 1 9 9 E + 0 0

 0 . 0 0 0 E + 0 0  0 . 2 7 9 E + 0 1

 0 . 9 9 6 E - 0 1

 0 . 2 9 9 E + 0 0

 0 . 4 9 8 E + 0 0

 0 . 6 9 7 E + 0 0

 0 . 8 9 6 E + 0 0

 0 . 1 1 0 E + 0 1

 0 . 1 2 9 E + 0 1

 0 . 1 4 9 E + 0 1

 0 . 1 6 9 E + 0 1

 0 . 1 8 9 E + 0 1

 0 . 2 0 9 E + 0 1

 0 . 2 2 9 E + 0 1

 0 . 2 4 9 E + 0 1

 0 . 2 6 9 E + 0 1

S c a l e 0 . 2 5 4 E + 0 0

 0 . 0 0 0 E + 0 0  0 . 3 5 6 E + 0 1

 0 . 1 2 7 E + 0 0

 0 . 3 8 1 E + 0 0

 0 . 6 3 5 E + 0 0

 0 . 8 8 9 E + 0 0

 0 . 1 1 4 E + 0 1

 0 . 1 4 0 E + 0 1

 0 . 1 6 5 E + 0 1

 0 . 1 9 0 E + 0 1

 0 . 2 1 6 E + 0 1

 0 . 2 4 1 E + 0 1

 0 . 2 6 7 E + 0 1

 0 . 2 9 2 E + 0 1

 0 . 3 1 7 E + 0 1

 0 . 3 4 3 E + 0 1

(a) (b)

Figure 1: Values of the distortion metric D due to: (a) the shearing of a square element,

(b) the stretching of a square element.
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(a) (b)

Figure 2: (a), Representation of the inuence domain (shadowed) of node Pi (b), Basic
elements of a generic triangle
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Figure 3: Comparison of the rate of convergence of the smoothing algorithms: original

algorithm (dot line) and modi�ed algorithm (solid line).
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Figure 4: Basic elements of a tetrahedron in the inuence domain of node Pi

(a) (b)

(c) (d)

Figure 5: Robustness of the rezoning algorithm: (a) initial mesh for a square domain,

(b) �nal mesh for a square domain, (c) initial mesh for a L-shape domain, (d) �nal mesh

for a L-shape domain.
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(f)

Figure 6: Comparison of the obtained results with the original and the modi�ed smooth-

ing algorithm: (a) initial mesh, (b) distortion distribution over the initial mesh, (c)
smoothed mesh using the original algorithm, (d) distortion distribution obtained using

the original algorithm, (e) smoothed mesh using the modi�ed algorithm, (f) distortion

distribution obtained using the modi�ed algorithm.
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(a)

(b) (c)

(d) (e)

Figure 7: Comparison of the obtained results with the original and the modi�ed smooth-

ing algorithm: (a) initial mesh, (b) smoothed mesh using the original algorithm, (c)
smoothed mesh using the modi�ed algorithm, (d) detail of the obtained mesh using the

original algorithm, (e) detail of the obtained mesh using the modi�ed algorithm.
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Figure 8: Comparison of the obtained results with the original and the modi�ed smooth-

ing algorithm: (a) distribution of the element distortion using the original algorithm (dot-

ted line) and the modi�ed algorithm (solid line), (b) distribution of the relative error of

the characteristic element size using the original algorithm (dotted line) and the modi�ed

algorithm (solid line).
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(a)

(b)

(c)

Figure 9: Application of the modi�ed algorithm to adaptive computations: (a) initial

mesh, (b) obtained mesh with �L = 3%, (c) obtained mesh with �L = 5%.
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