
Distributed Dynamic Capacity Contracting:

A Congestion Pricing Framework for Diff-Serv�

Murat Yuksel1 and Shivkumar Kalyanaraman2

1 CS Department, Rensselaer Polytechnic Institute,
110 8th Street, Troy, NY 12180, USA

yuksem@cs.rpi.edu
2 ECSE Department, Rensselaer Polytechnic Institute,

110 8th Street, Troy, NY 12180, USA
shivkuma@ecse.rpi.edu

Abstract. In order to provide better Quality-of-Service (QoS) in large
networks, several congestion pricing proposals have been made in the last
decade. Usually, however, those proposals studied optimal strategies and
did not focus on implementation issues. Our main contribution in this
paper is to address implementation issues for congestion-sensitive pricing
over a single domain of the differentiated-services (diff-serv) architecture
of the Internet. We propose a new congestion-sensitive pricing framework
Distributed Dynamic Capacity Contracting (Distributed-DCC), which is
able to provide a range of fairness (e.g. max-min, proportional) in rate
allocation by using pricing as a tool. Within the Distributed-DCC frame-
work, we develop an Edge-to-Edge Pricing Scheme (EEP) and present
simulation experiments of it.

1 Introduction

As multimedia applications with extensive traffic loads are becoming more com-
mon, better ways of managing network resources are necessary in order to pro-
vide sufficient QoS for those multimedia applications. Among several methods
to improve QoS in multimedia networks and services, one particular method is
to employ congestion pricing. The main idea is to increase service price when
network congestion is more, and to decrease the price when congestion is less.

Implementation of congestion pricing still remains a challenge, although sev-
eral proposals have been made, e.g. [1,2]. Among many others, two major imple-
mentation obstacles can be defined: need for timely feedback to users about price,
determination of congestion information in an efficient, low-overhead manner.

The first problem, timely feedback, is relatively very hard to achieve in a
large network such as the Internet. In [3], the authors showed that users do
need feedback about charging of the network service (such as current price and
prediction of service quality in near future). However, in our recent work [4], we
illustrated that congestion control through pricing cannot be achieved if price
changes are performed at a time-scale larger than roughly 40 round-trip-times
(RTTs), which is not possible to implement for many cases. We believe that the

� This work is sponsored by NSF under contract number ANI9819112, and co-
sponsored by Intel Corporation.

K.C. Almeroth and M. Hasan (Eds.): MMNS 2002, LNCS 2496, pp. 198–210, 2002.
c IFIP International Federation for Information Processing 2002

The original version of this chapter was revised: The copyright line was incorrect.This has been
corrected. The Erratum to this chapter is available at DOI: 10.1007/978-3-540-45812-8_28

http://dx.doi.org/10.1007/978-3-540-45812-8_28

Distributed Dynamic Capacity Contracting 199

problem of timely feedback can be solved by placing intelligent intermediaries
(i.e. software or hardware agents) between users and service providers. In this
paper, we do not focus on this particular issue and leave development of such
intelligent agents for future research.

The second problem, congestion information, is also very hard to do in a way
that does not need a major upgrade at network routers. However, in diff-serv
[5], it is possible to determine congestion information via a good ingress-egress
coordination. So, this flexible environment of diff-serv motivated us to develop
a pricing scheme on it.

In our previous work [6], we presented a simple congestion-sensitive pricing
“framework”, Dynamic Capacity Contracting (DCC), for a single diff-serv do-
main. DCC treats each edge router as a station of a service provider or a station
of coordinating set of service providers. Users (i.e. individuals or other service
providers) make short-term contracts with the stations for network service. Dur-
ing the contracts, the station receives congestion information about the network
core at a time-scale smaller than contracts. The station, then, uses that conges-
tion information to update the service price at the beginning of each contract.
Several pricing “schemes” can be implemented in that framework.

Fig. 1. DCC framework on diff-serv architecture.

DCC models a short-term contract for a given traffic class as a function of
price per unit traffic volume Pv, maximum volume Vmax (maximum number of
bytes that can be sent during the contract) and the contract length T :

Contract = f(Pv, Vmax, T) (1)

Figure 1 illustrates the big picture of DCC framework. Customers can only
access network core by making contracts with the provider stations placed at
the edge routers. The stations offer contracts (i.e. Vmax and T) to fellow users.
Access to these available contracts can be done in different ways, what we call
edge strategy. Two basic edge strategies are “bidding” (many users bids for an
available contract) or “contracting” (users negotiate Pv with the provider for
an available contract). So, edge strategy is the decision-making mechanism to
identify which customer gets an available contract at the provider station.

However, in DCC, we assumed that all the provider stations advertise the
same price value for the contracts, which is very costly to implement over a wide

200 M. Yuksel and S. Kalyanaraman

area network. This is simply because the price value cannot be communicated
to all stations at the beginning of each contract. In this paper, we relax this
assumption by letting the stations to calculate the prices locally and advertise
different prices than the other stations. We call this new version of DCC as
Distributed-DCC. We introduce ways of managing the overall coordination of
the stations for the common purposes of fairness and stability. We then develop
a pricing scheme Edge-to-Edge Pricing (EEP). We illustrate stability of EEP
by simulation experiments. We address fairness problems related to pricing, and
show that the framework can achieve max-min and proportional fairness by
tuning a parameter, called as fairness coefficient.

The paper is organized as follows: In the next section, we position our work
and briefly survey relevant work in the area. In Section 3 we describe Distributed-
DCC framework, and investigate various issues, such as price calculation, fair-
ness, scalability. Next in Section 4, we develop the pricing scheme EEP. In Sec-
tion 5, we make experimental comparative evaluation of EEP. We finalize with
summary and discussions.

2 Related Work

There has been several pricing proposals, which can be classified in many ways
such as static vs. dynamic, per-packet charging vs. per-contract charging.

Although there are opponents to dynamic pricing in the area (e.g. [7,8]), most
of the proposals have been for dynamic pricing (specifically congestion pricing)
of networks. Examples of dynamic pricing proposals are MacKie-Mason and
Varian’s Smart Market [1], Gupta et al.’s Priority Pricing [9], Kelly et al.’s Pro-
portional Fair Pricing (PFP) [10], Semret et al.’s Market Pricing [11], and Wang
and Schulzrinne’s Resource Negotiation and Pricing (RNAP) [12,2]. Odlyzko’s
Paris Metro Pricing (PMP) [13] is an example of static pricing proposal. Clark’s
Expected Capacity [14] and Cocchi et al.’s Edge Pricing [15] allow both static
and dynamic pricing. In terms of charging granularity, Smart Market, Priority
Pricing, PFP and Edge Pricing employ per-packet charging, whilst RNAP and
Expected Capacity do not employ per-packet charging.

Smart Market is based primarily on imposing per-packet congestion prices.
Since Smart Market performs pricing on per-packet basis, it operates on the
finest possible pricing granularity. This makes Smart Market capable of mak-
ing ideal congestion pricing. However, Smart Market is not deployable because
of its per-packet granularity and its many requirements from routers. In [16],
we studied Smart Market and difficulties of its implementation in more detail.
While Smart Market holds one extreme in terms of granularity, Expected Ca-
pacity holds the other extreme. Expected Capacity proposes to use long-term
contracts, which can give more clear performance expectation, for statistical
capacity allocation and pricing. Prices are updated at the beginning of each
long-term contract, which incorporates little dynamism to prices. Our work,
Distributed-DCC, is a middle-ground between Smart Market and Expected Ca-
pacity in terms of granularity. Distributed-DCC performs congestion pricing at

Distributed Dynamic Capacity Contracting 201

short-term contracts, which allows more dynamism in prices while keeping pric-
ing overhead small.

Another close work to ours is RNAP, which also mainly focused on imple-
mentation issues of congestion pricing on diff-serv. Although RNAP provides a
complete picture for incorporation of admission control and congestion pricing,
it has excessive implementation overhead since it requires all network routers to
participate in determination of congestion prices. This requires upgrades to all
routers similar to the case of Smart Market. Our work solves this problem by
requiring upgrades only at edge routers rather than at all routers.

3 Distributed-DCC: The Framework

Distributed-DCC is specifically designed for diff-serv architecture, because the
edge routers can perform complex operations which is essential to several require-
ments for implementation of congestion pricing. Each edge router is treated as a
station of the provider. Each station advertises locally computed prices with in-
formation received from other stations. The main framework basically describes
how to preserve coordination among the stations such that stability and fairness
of the overall network is preserved. A Logical Pricing Server (LPS) (which can be
implemented in a centralized or distributed manner, see Section 3.6) plays a cru-
cial role. Figure 2 illustrates basic functions (which will be better understood in
the following sub-sections) of LPS. The following sub-sections investigate several
issues regarding the framework.

3.1 How to Calculate pij ?

Each ingress station i keeps a ”current” price vector pi, where pij is the price
for flow from ingress i to egress j. So, how do we calculate the price-per-flow,
pij? The ingresses make estimation of budget for each edge-to-edge flow passing
through themselves. Let b̂ij be the currently estimated budget for flow fij (i.e
the flow from ingress i to egress j). The ingresses send estimated budgets to the
corresponding egresses (i.e. b̂ij is sent from ingress i to egress j) at a deterministic
time-scale. At the other side, the egresses receive budget estimations from all
the ingresses, and also they make estimation of capacity ĉij for each particular
flow. In other words, egress j calculates ĉij and is informed about b̂ij by ingress
i. Egress j, then, penalizes or favors fij by updating its estimated budget value,
i.e. bij = f(b̂ij , [parameters]) where [parameters] are optional parameters used
for deciding whether to penalize or favor the flow. For example, if fij is passing
through more congested areas than the other flows, egress j can penalize fij by
reducing its budget estimation b̂ij .

At another time-scale3, egresses keep sending information to LPS. More
specifically, for a diff-serv domain with n edge routers, egress j sends the follow-
ing information to LPS:
3 Can be larger than ingress-egress time-scale, but should be less than contract length.

202 M. Yuksel and S. Kalyanaraman

1. the updated budget estimations of all flows passing through itself, i.e. bij for
i = 1..n and i �= j

2. the estimated capacities of all flows passing through itself, i.e. ĉij for i = 1..n
and i �= j

Fig. 2. Major functions of LPS.

LPS receives information from egresses and, for each fij , calculates allowed
capacity cij . Calculation of cijs is a complicated task which depends on bijs. In
general, the flows should share capacity of the same bottleneck in proportion to
their budgets. We will later define a generic algorithm to do capacity allocation
task. LPS, then, sends the following information to ingress i:

1. the total estimated network capacity C (i.e. C =
∑

i

∑
j ĉij)

2. the allowed capacities to each edge-to-edge flow starting from ingress i, i.e.
cij for j = 1..n and j �= i

Now, the pricing scheme at ingress i can calculate price for each flow by using
cij and b̂ij . An example pricing scheme will be described in Section 4.

3.2 Budget Estimation at Ingresses

In order to determine user’s real budget The ingress stations perform very trivial
operation to estimate budgets of each flow, b̂ij . The ingress i basically knows
its current price for each flow, pij . When it receives a packet it just needs to
determine which egress station the packet is going to. Given that the ingress
station has the addresses of all egress stations of the same diff-serv domain, it
can find out which egress the packet is going to. So, by monitoring the packets
transmitted for each flow, the ingress can estimate the budget of each flow. Let
xij be the total number of packets transmitted for fij in unit time, then the
budget estimate for fij is b̂ij = xijpij . Notice that this operation must be done
at the ingress rather than egress, because some of the packets might be dropped
before arriving at the egress. This causes xij to be measured less, and hence
causes b̂ij to be less than it is supposed to be.

Distributed Dynamic Capacity Contracting 203

3.3 Congestion-Based Capacity Estimation at Egresses

The essence of capacity estimation in Distributed-DCC is to decrease the ca-
pacity estimation when there is congestion indication(s) and to increase it when
there is no congestion indication. This will make the prices congestion-sensitive,
since the pricing scheme is going to adjust the price according to available ca-
pacity. In this sense, several capacity estimation algorithms can be used, e.g.
Additive Increase Additive Decrease (AIAD), Additive Increase Multiplicative
Decrease (AIMD). We now provide a full description of such an algorithm.

With a simple congestion detection mechanism (such as marking of packets
at interior routers when congested), egress stations make a congestion-based esti-
mation of the capacity for the flows passing through themselves. Egress stations
divide time into deterministic observation intervals and identify each observa-
tion interval as congested or non-congested. Basically, an observation interval is
congested if a congestion indication was received during that observation inter-
val. At the end of each observation interval, the egresses update the estimated
capacity. Then, egress j calculates the estimated capacity for fij at the end of
observation interval t as follows:

ĉij(t) =
{

β ∗ µij(t), congested
ĉij(t− 1) + �ĉ, non-congested

where β is in (0,1), µij(t) is the measured output rate of fij during observation
interval t, and �ĉ is a pre-defined increase parameter. This algorithm is a variant
of well-known AIMD.

3.4 Capacity Allocation to Edge-to-Edge Flows

LPS is supposed to allocate the total estimated network capacity C to edge-to-
edge flows in such a way that the flows passing through the same bottleneck
should share the bottleneck capacity in proportion to their budgets, and also
the flows that are not competing with other flows should get all the available
capacity on their route. The complicated issue is to do this without knowledge of
the topology for network core. We now propose a simple and generic algorithm
to perform this centralized rate allocation within Distributed-DCC framework.

First, at LPS, we introduce a new information about each edge-to-edge flow
fij . A flow fij is congested, if egress j has been receiving congestion indications
from that flow recently (we will later define what “recent” is).

At LPS, let Kij determine whether fij is congested or not. If Kij > 0, LPS
determines fij as congested. If not, it determines fij as non-congested. Let’s call
the time-scale at which LPS and egresses communicate as LPS interval. At every
LPS interval t, LPS calculates Kij as follows:

Kij(t) =
{

k̂, fij was congested at t− 1
max(0,Kij(t− 1) − 1), fij was non-congested at t− 1 (2)

where k̂ is a positive integer. Notice that k̂ parameter defines how long a flow
will stay in “congested” state after the last congestion indication. So, k̂ defines

204 M. Yuksel and S. Kalyanaraman

the time-line to determine if a congestion indication is “recent” or not. Note
that instead of setting Kij to k̂ at every congestion indication, several different
methods can be used for this purpose, but we proceed with the method in (2).

Given the above method to determine whether a flow is congested or not, we
now describe the algorithm to allocate capacity to the flows. Let F be the set
of all edge-to-edge flows in the diff-serv domain, and Fc be the set of congested
edge-to-edge flows. Let Cc be the accumulation of ĉijs where fij ∈ Fc. Further,
let Bc be the accumulation of bijs where fij ∈ Fc. Then, LPS calculates the
allowed capacity for fij as follows:

cij =
{ bij

Bc
Cc, Kij > 0
ĉij , otherwise

The intuition is that if a flow is congested, then it must be competing with other
congested flows. So, a congested flow is allowed a capacity in proportion to its
budget relative to budgets of all congested flows. Since we assume no knowledge
about the interior topology, we approximate the situation by considering these
congested flows as if they are traversing a single bottleneck. If knowledge about
the interior topology is provided, one can easily develop better algorithms by
sub-grouping the congested flows that are passing through the same bottleneck.
If a flow is not congested, then it is allowed to use its own estimated capacity,
which will give enough freedom to utilize capacity available to that flow.

3.5 Fairness

We examine the issues regarding fairness in two main cases:

– Single-bottleneck case: The pricing protocol should charge same price to users
of same bottleneck. In this way, among users of same bottleneck, the ones with
more budget will be given more capacity. The intuition behind this reasoning
is that the cost of providing capacity to each customer is the same.

– Multi-bottleneck case: The pricing protocol should charge more to users
whose traffic traverses more bottlenecks and causes more costs. So, other
than proportionality to user budgets, we also want to allocate less capacity
to users whose flows are traversing more bottlenecks than the others. For
multi-bottleneck networks, two main types of fairness have been defined:
max-min, proportional [10]. In max-min fairness, flows get equal share of
bottlenecks, while in proportional fairness flows get penalized according to
number of bottlenecks they traverse. Depending on cost structure and user
utilities, provider may want to choose max-min or proportional fairness. So,
we would like to have ability of tuning pricing protocol such that fairness of
its rate allocation is in the way provider wants.

To achieve the above fairness objectives in Distributed-DCC, we introduce
new parameters for tuning rate allocation to flows. In order to penalize fij , egress
j can reduce b̂ij , which causes decrease in cij . It uses following function:

bij = f(b̂ij , r(t), α, rmin) =
b̂ij

rmin + (rij(t) − rmin) ∗ α

Distributed Dynamic Capacity Contracting 205

where rij(t) is the estimated congestion cost caused by fij , rmin is the minimum
possible congestion cost, and α is fairness coefficient. Instead of b̂ij , the egress
j now sends bij to LPS. When α is 0, Distributed-DCC is employing max-min
fairness. As it gets larger, the flow gets penalized more and rate allocation gets
closer to proportional fairness. However, if it is too large, then the rate allocation
will get away from proportional fairness. Let α∗ be the α value where the rate
allocation is proportionally fair. If the estimation rij(t) is accurate, then α∗ = 1.

Assuming that severity of each bottleneck is the same, we can directly use
the number of bottlenecks fij is traversing in order to calculate rij(t) and rmin.
In such a case, rmin will be 1 and rij(t) should be number of bottlenecks the flow
is passing through. If the interior nodes increment a header field of the packets
at the time of congestion, then the egress station can estimate the number of
bottlenecks the flow is traversing. We skip description of such an estimation
algorithm to keep reader’s focus on major issues.

3.6 Scalability

There are mainly two issues regarding scalability: LPS, the number of flows.
First of all, the flows are not per-connection basis, i.e. all the traffic going from
edge router i to j is counted as only one flow. This actually relieves the scaling
of operations happening on per-flow basis. The number of flows in the system
will be n(n− 1) where n is the number of edge routers in the diff-serv domain.
So, indeed, scalability of the flows is not a problem for the current Internet since
number of edge routers for a single diff-serv domain is very small.

LPS can be scaled in two ways. First idea is to implement LPS in a fully
distributed manner. Edge stations exchange information with each other (like
link-state routing). Basically, each station sends total of n− 1 messages to other
stations. So, this will increase overhead on network because of the extra messages,
i.e. complexity will increase from O(n) to O(n2) in terms of number of messages.

Alternatively, LPS can be divided into multiple local LPSs which synchronize
among themselves to maintain consistency. This way the complexity of number
of messages will reduce. However, this will be at a cost of some optimality again.

4 Edge-to-Edge Pricing Scheme (EEP)

For flow fij , Distributed-DCC framework provides an allowed capacity cij and
an estimation of total user budget b̂ij at ingress i. So, the provider station at
ingress i can use these two information to calculate price. We propose a simple
price formula to balance supply cij and demand b̂ij :

pij =
b̂ij
cij

(3)

Also, the ingress i uses the total estimated network capacity C in calculating
the Vmax contract parameter defined in (1). A simple method for calculating

206 M. Yuksel and S. Kalyanaraman

Vmax is Vmax = C∗T where T is the contract length. This allows all the available
capacity to be contracted by a single flow, which is a loose admission control.
More conservative admission control should be used to calculate Vmax.

We now prove optimality of (3) for a single-bottleneck network. We skip the
proof for a multi-bottleneck network for space considerations. We model user
i’s utility with the well-known 4 [10] function ui(x) = wilog(x), where x is
bandwidth given to the user and wi is user i’s budget (i.e. willingness-to-pay).
Suppose pi is the price advertised to user i. Then, user i will maximize his surplus
Si by contracting for xi = wi/pi.

So, the provider can now figure out what price to advertise to each user by
maximizing the social welfare W = S + R, where R is the provider revenue.
Let K(x) = kx be a linear function and be the cost of providing x amount of
capacity to a user, where k is a positive constant. Then social welfare will be:

W =
n∑

i=1

[ui(xi) − kxi]

We maximize W subject to
∑

i xi ≤ C, where C is the total available capacity.
To maximize W , all the available capacity must be given to users since they have
strictly increasing utility. Lagrangian and its solution for that system will be:

W =
n∑

i=1

ui(xi) − kxi + λ(
n∑

i=1

xi − C)

xj =
wj∑n
i=1 wi

C, j = 1..n (4)

This result shows that welfare maximization of the described system can be
done by allocating capacity to the users proportional to their budget, wi, relative
to total user budget. Since the user will contract for xi = wi/pi when advertised
a price of pi, then the optimum price for provider to advertise (i.e. p∗) can be
calculated as follows:

p∗ = pi =
∑n

i=1 wi

C

i.e. ratio of total budget to available capacity. So, provider should charge same
price to users of same bottleneck route. EEP does that for an edge-to-edge route.

5 Simulation Experiments and Results

We present ns [17] simulation experiments of EEP on single-bottleneck and
multi-bottleneck topology. Our goals are to illustrate fairness and stability prop-
erties of the framework. The single-bottleneck topology is shown in Figure 3-a
and the multi-bottleneck topology is shown in Figure 3-b. The white nodes
are edge nodes and the gray nodes are interior nodes. To ease understanding

4 Wang and Schulzrinne introduced a more complex version in [12].

Distributed Dynamic Capacity Contracting 207

the experiments, each user sends its traffic to a separate egress. For the multi-
bottleneck topology, one user sends through all the bottlenecks (i.e. long flow),
crossed by the others. Bottleneck links have a capacity of 10Mb/s and all other
links have 15Mb/s. Propagation delay on each link is 5ms, and users send UDP
traffic with an average packet size of 1000B. Interior nodes mark the packets
when local queue exceeds 30 packets. In the multi-bottleneck topology they in-
crement a header field instead of just marking. Buffer size is assumed infinite.

(a) Single-bottleneck network (b) Multi-bottleneck network

Fig. 3. Topologies for Distributed-DCC experiments.

Each user flow maximizes its surplus by contracting for b/p amount of capac-
ity, where b is its budget and p is price. b is randomized according to truncated-
Normal distribution with mean b. We will refer to this mean b as flow’s budget.

Ingresses send budget estimations to egresses at every observation interval.
LPS sends information to ingresses at every LPS interval. Contracting takes
place at every 4s, observation interval is 0.8s, and LPS interval is 0.16s. The
parameter k̂ is set to 25 (see Section 3.4). �ĉ is set to 1 packet (i.e. 1000B), the
initial value of ĉij for each flow fij is set to 0.1Mb/s, and β is set to 0.95.

5.1 Experiment on Single-bottleneck Topology

We run a simulation experiment for EEP on the single-bottleneck topology,
which is represented in Figure 3-a. There are 3 users with budgets of 10, 20, 30
respectively for users 1, 2, 3. Total simulation time is 15000s. Initially, only user
1 is active and after every 5000s one of the other users gets active.

Figure 4-a shows the flow rates averaged over 200 contract periods. We see the
flows are sharing the bottleneck capacity almost in proportion to their budgets.
The distortion in rate allocation is caused because of the assumptions that the
generic edge-to-edge capacity allocation algorithm makes (see Section 3.4). Also,
Figure 4-b shows the average prices charged to flows over 200 contract periods.
As new users join in, EEP increases the price for balancing supply and demand.

Figure 4-c shows the bottleneck queue size. Notice that queue sizes make
peaks transiently at the times when new users gets active. Otherwise, the queue
size is controlled reasonably and the system is stable. The reason behind the
transient peaks is that the parameter Vmax is not restricted which causes the
newly joining flow to contract for a lot more than the available capacity.

Also, average utilization of the bottleneck link was more than 90%.

208 M. Yuksel and S. Kalyanaraman

5.2 Experiments on Multi-bottleneck Topology

On a multi-bottleneck network, we would like illustrate two properties:

– Property 1: provision of various fairness in rate allocation by changing the
fairness coefficient α (see Section 3.5)

– Property 2: adaptiveness of capacity allocation algorithm (see Section 3.4)

In order to illustrate Property 1, we run a series of experiments for EEP with
different α values. We use a larger version of the topology represented in Figure
3-b. In the multi-bottleneck topology there are 10 users and 9 bottleneck links.
Total simulation time is 10,000s. Initially, the long flow is active. After each
1000s, one of the other cross flows gets active. So, as the time passes the number
of bottlenecks in the system increases. We are interested in the long flow’s rate,
since it is the one that cause more congestion costs than the other flows.

Figure 4-d shows average rate of the long flow versus number of bottlenecks
in the system. As expected, the long flow gets lesser capacity as α increases.
When α = 0, rate allocation to flows is max-min fair. Observe that when α = 1,
rate allocation follows the proportionally fair rate allocation. This variation in
fairness is basically achieved by advertisement of different prices to the flows.
Figure 4-e shows the average price that is advertised to the long flow as number
of bottlenecks in the system increases. We can see that the price advertised to the
long flow increases as number of bottlenecks increases. As α increases, framework
becomes more responsive to the long flow by increasing its price more sharply.

Finally, to illustrate Property 2, we ran an experiment on the topology in
Figure 3-b with small changes. We increased capacity of the bottleneck at node
D from 10 Mb/s to 15Mb/s. Initially, all the flows have equal budget of 10 units.
Total simulation time is 30000s. Between times 10000 and 20000, budget of flow
1 is temporarily increased to 20 units. α is set to 0. All the other parameters are
exactly the same as in the single-bottleneck experiments of the previous section.

Figure 4-f shows the given volumes averaged over 200 contracting periods.
Until time 10000s, flows 0, 1, and 2 share the bottleneck capacities equally pre-
senting a max-min fair allocation because α is 0. However, flow 3’s rate is larger,
because bottleneck node D has extra capacity. This is achieved by the freedom
given to individual flows by the capacity allocation algorithm (see Section 3.4).

Between times 10000 and 20000, flow 2 gets a step increase in its rate because
of the step increase in its budget. In result of this, flow 0 gets a step decrease in
its volume. Also, flows 2 and 3 adapt themselves to the new situation, trying to
utilize the extra capacity leftover from the reduction in flow 0’s rate. So, flows 2
and 3 get a step decrease in their rates. After time 20000, flows restore to their
original rates, illustrating adaptiveness of the framework.

6 Summary

In this paper, we presented a new framework, Distributed-DCC, for congestion
pricing in a single diff-serv domain. Distributed-DCC can provide a contracting

Distributed Dynamic Capacity Contracting 209

framework based on short-term contracts between multimedia (or any other
elastic, adaptive) application and the service provider. Contracting improves
QoS if appropriate admission control and provisioning techniques are used. In
this paper, we focused on pricing issues.

0

1

2

3

4

5

6

7

8

9

10

0 2000 4000 6000 8000 10000 12000 14000

A
ve

ra
ge

d
R

at
es

 o
f

F
lo

w
s

(M
b/

s)

Time (seconds)

Flow 0
Flow 1
Flow 2

0

1

2

3

4

5

0 2000 4000 6000 8000 10000 12000 14000
A

ve
ra

ge
d

P
ri

ce
 o

f
F

lo
w

s
($

/M
b)

Time (seconds)

Flow 0
Flow 1
Flow 2

(a) Averaged flow rates (b) Prices to flows

0

200

400

600

800

1000

1200

1400

0 2000 4000 6000 8000 10000 12000 14000

B
ot

tl
en

ec
k

Q
ue

ue
 S

iz
e

(p
ac

ke
ts

)

Time (seconds)

0

1

2

3

4

5

6

7

8

9

0 1 2 3 4 5 6 7 8

L
on

g
F

lo
w

 R
at

e(
M

b/
s)

Number of Bottlenecks

alpha = 0.0
alpha = 0.25
alpha = 0.50
alpha = 0.75
alpha = 1.00
alpha = 1.25
alpha = 1.50
alpha = 1.75
alpha = 2.00
alpha = 2.25
alpha = 2.50

Proportional fair rate

(c) Bottleneck queue length (d) Rate of long flow

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0 1 2 3 4 5 6 7 8

P
ri

ce
 A

dv
er

ti
se

d
to

 t
he

 L
on

g
F

lo
w

 (
$/

M
bi

ts
)

Number of Bottlenecks

alpha = 0.0
alpha = 0.25
alpha = 0.50
alpha = 0.75
alpha = 1.00
alpha = 1.25
alpha = 1.50
alpha = 1.75
alpha = 2.00
alpha = 2.25
alpha = 2.50

0

2

4

6

8

10

12

0 5000 10000 15000 20000 25000 30000

A
ve

ra
ge

d
R

at
es

 o
f

F
lo

w
s

(M
b/

s)

Time (seconds)

Flow 0
Flow 1
Flow 2
Flow 3

(e) Price to the long flow (f) Averaged flow rates

Fig. 4. (a)-(c): Results of single-bottleneck experiment for EEP. (d)-(f): Results of
EEP experiments on multi-bottleneck topology.

Main contribution of the paper is to develop an easy-to-implement congestion
pricing architecture which provides flexibility in rate allocation. We investigated
fairness issues within Distributed-DCC and illustrated ways of achieving a range
of fairness types (i.e. from max-min to proportional) through congestion pricing

210 M. Yuksel and S. Kalyanaraman

under certain conditions. The fact that it is possible to achieve various fairness
types within a single framework is very encouraging. We also developed a pric-
ing scheme, EEP, within the Distributed-DCC framework, and presented several
simulation experiments. Future work should include investigation of issues re-
lated to Distributed-DCC on multiple diff-serv domains. Also, the framework
should be supported by admission control techniques which will tune the con-
tract parameter Vmax and address minimum QoS settings in SLAs.

References

1. J. K. MacKie-Mason and H. R. Varian, Pricing the Internet, Kahin, Brian and
Keller, James, 1993. 198, 200

2. X. Wang and H. Schulzrinne, “An integrated resource negotiation, pricing, and
QoS adaptation framework for multimedia applications,” IEEE Journal of Selected
Areas in Communications, vol. 18, 2000. 198, 200

3. A. Bouch and M. A. Sasse, “Why value is everything?: A user-centered approach
to Internet quality of service and pricing,” in Proceedings of IWQoS, 2001. 198

4. M. Yuksel, S. Kalyanaraman, and B. Sikdar, “Effect of pricing intervals on
congestion-sensitivity of network service prices,” Tech. Rep. ECSE-NET-2002-1,
Rensselaer Polytechnic Institute, ECSE Networks Lab, 2002. 198

5. S. Blake et. al, “An architecture for Differentiated Services,” RFC 2475, 1998. 199
6. R. Singh, M. Yuksel, S. Kalyanaraman, and T. Ravichandran, “A comparative

evaluation of Internet pricing models: Smart market and dynamic capacity con-
tracting,” in Proceedings of Workshop on Information Technologies and Systems
(WITS), 2000. 199

7. A. M. Odlyzko, “Internet pricing and history of communications,” Tech. Rep., AT
& T Labs, 2000. 200

8. I. Ch. Paschalidis and J. N. Tsitsiklis, “Congestion-dependent pricing of network
services,” IEEE/ACM Transactions on Networking, vol. 8, no. 2, 2000. 200

9. A. Gupta, D. O. Stahl, and A. B. Whinston, Priority pricing of Integrated Services
networks, Eds McKnight and Bailey, MIT Press, 1997. 200

10. F. P. Kelly, A. K. Maulloo, and D. K. H. Tan, “Rate control in communication net-
works: Shadow prices, proportional fairness and stability,” Journal of Operations
Research Society, vol. 49, pp. 237–252, 1998. 200, 204, 206

11. N. Semret, R. R.-F. Liao, A. T. Campbell, and A. A. Lazar, “Market pricing of
differentiated Internet services,” in Proceedings of IWQoS, 1999, pp. 184–193. 200

12. X. Wang and H. Schulzrinne, “Pricing network resources for adaptive applications
in a Differentiated Services network,” in Proceedings of INFOCOM, 2001. 200, 206

13. A. M. Odlyzko, “A modest proposal for preventing Internet congestion,” Tech.
Rep., AT & T Labs, 1997. 200

14. D. Clark, Internet cost allocation and pricing, Eds McKnight and Bailey, MIT
Press, 1997. 200

15. R. Cocchi, S. Shenker, D. Estrin, and L. Zhang, “Pricing in computer networks:
Motivation, formulation and example,” IEEE/ACM Transactions on Networking,
vol. 1, December 1993. 200

16. M. Yuksel and S. Kalyanaraman, “Simulating the Smart Market pricing scheme on
Differentiated Services architecture,” in Proceedings of CNDS part of SCS Western
Multi-Conference, 2001. 200

17. “UCB/LBLN/VINT network simulator - ns (version 2),”
http://www-mash.cs.berkeley.edu/ns, 1997. 206

	Distributed Dynamic Capacity Contracting: A Congestion Pricing Framework for Diff-Serv
	1Introduction
	2Related Work
	3Distributed-DCC: The Framework
	3.1How to Calculate p_ij ?
	3.2Budget Estimation at Ingresses
	3.3Congestion-Based Capacity Estimation at Egresses
	3.4Capacity Allocation to Edge-to-Edge Flows
	3.5Fairness
	3.6Scalability

	4Edge-to-Edge Pricing Scheme (EEP)
	5Simulation Experiments and Results
	5.1Experiment on Single-bottleneck Topology
	5.2Experiments on Multi-bottleneck Topology

	6Summary
	References

