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Abstract. A stabilized finite point method (FPM) for the
meshless analysis of incompressible fluid fow problems is
presented. The stabilization approach is based in the finite in-
crement caleulus (FIC) procedure developed by Ofate [14].
An enhanced fractional step procedure allowing the semi-
implicit numerical solution of incompressibie fluids using the
FPM is described. Examples of application of the stabilized
FPM to the solution of two incompressible flow problems are
presented.

1 Introduction

Mesk: free techriques have become guite popuiar in compu-
tational mechanics. A family of mesh free methods is based
on smooth particle hydrodynamic procedures [1,2]. These
techniques, also called free lagrangian methods, are typic-
ally used for problems mvolving large motions of solids
and moving free surfaces in fluids. A second class of mesh
free methods derive from generalized finite difference (GFD)
techniques [3, 47. Here the approximation around each point
Is typically defined in terms of Taylor series expansions
and the discrete equations are found by using point colloca-
ton. Among a third class of mesh free techniques we find
the so called diffuse element {DE} method [5], the element
free Galerking (EFG) method (6,7} and the reproducing ker-
nel particle (RKP) method [8,9]. These three methods use
local interpolations for defining the approximate field around
a point in terms of values in adjacent points, whereas the dis-
cretized system of equations is typically obtained by integrat-
ing the Galerkin variational form over a suitable background
grid.

The finite point method (FPM) proposed in [10~13] is
a truly meshless procedure. The approximation around each
point is obtained by using standard moving least square tech-
niques similarly as in DE and EFG methods. The discrete
system of equations is obtained by sampling the governing
differential equations at each point as in GFD methods.

The basis of the success of the FPM for solid and fluid me-
chanics applications is the stabilization of the discrete differ-
ential equations. The stable form found by the finire elemen:
calculus procedure presented in [14-17] corrects the errors
introduced by the point collocation procedure, mainiy next
to the boundary segments. In addition, it introduces the ne-
cessary stabilization for treating high convection effects and
it also allows equal order velocity-pressure interpolations in
fluid fiow problems [17].

The content of the paper is structured as follows. In the
next section the basis of the FPM approximation is described.
The stabilized govemning equations for incompressible Aows
derived using the finite increment calculus (FIC) approach are
presented next. A three step semi-implicit fractional solution
scheme using the FPM approximation is described in some
detail. Two examples of the efficiency and accuracy of the
stabilized FPM for numerical soiution of incompressible flow
problems are presented, namely the analysis of a driven cavity
fiow and the solution of a backwards facing step.

1.1 Interpolation in the FPM

Let £2; be the interpolation domain (cloud) of a function u(x)
and lets; with j=1,2, ... 5 be a collection of n points with
coordinates x; € (2;. The unknown function x may be approx-
tmated within £2; by ©
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where o = foy, g, -+ @, 17 and vector p(x) contains typic-
ally monomials, hereafter termed “base interpolating func-
tons”, in the space coordinates ensuring that the basis is
complete. For a 2D problem we can specify

p=I[1,x,y" for m=3 (2)
and
P=[Lxy 22,V fom=6 e (3
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Function #(x) can now be sampled at the » points belonging
to £2; giving
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where uj‘ = u(x;) are the unknown but sought for values of
function u at point j, #; = it(x;) arc the approximate values,
and p; = plx)).

Ir: the FE approximation the number of points is chosen so
that m = n. In this case C is a square matrix. The procedure
leads to the standard shape functions in the FEM [19].

Ifn > m, C is no longer a square matrix and the approx-
imation can not fit all the uf vaiues. This problem can be
simply overcome by determining the i values by minimiz-
ing the sum of the square distances of the error at each point
weighted with a function @{x} as

7= et (el — i)t =D et (] —ple)’ (5
=1 =t ,

with respect to the o parameters. Note that for ¢{x) = 1 the
standard Jeast square (L.SQ) method is reproduced.

_ Function @(x} is usually built in such a way that it takes
a umit value in the vecinity of the point! typically called “star
node” where the function (or its derivatives) are to be com-
paied and vanishes outside 2 region §2; surrounding the point.
The region §2; can be used to define the number of sampling
points # in the interpolation region. A typical choice for ¢(x)
is the normalized Gaussian function and this has been chosen
in the exampiles shown in the paper. Of course n = m is al-
ways required in the sampling region and if equality occurs
no effect of weighting is present and the interpolation is the
same as in the LSQ scheme.

Standard minimization of (5) with respect o @ gives

-1k

a=C"lu , Cl=A"'B (&)

A=Y wl)plp’ (1)

j=1

B = [0(n) p(x1), @(x2) p(x2), 9(xa) pGin)] N
The final approximation is obtained by substituting & from (6)
into (1) giving :

i) = pTC it =NTuh =) Niw (8)

f==1

where the “shape functions™ for the i-th star node are

m
N@=Y p; =g @ ©
f=1
It must be noted that accordingly to the least square character
of the approximation

w(x)) = i) # uf (10)
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Fig. 1. Fixed weighting least square procedure

ie the local values of the approximating function do not fit
the nodai unknown values. [ndeed & is the true approxuma-
tion for which we shall seek the satisfaction of the differential
equation and the boundary conditions and uj? are simply the
unknown parameters sought.

The weighted least square approximation described above
depends on a great extend on the shape and the way to apply
the weighting function. The simplest way is to define a fixed
function @(x) for each of the $2; interpolation domains [11,
121

Let @; (x) be a weighting functions satisfying (Fig. 1)

i{x) =1
gi(x)#0  x e
iy =10 x &8 (113

Then the minimization square distance becornes
n 2
fi= Z @i(x;) (uf - zi(xj)) minimutm (12
i=t

The expression of matrices A and B coincide with (7) with
p(x;) = gilx))

Note that according to (1), the approximate function &(x)
is defined in each interpotation domain £2;. In fact, different
interpolation domains can yield different shape functions N j
As a consequence a point belonging to two OF more overlap-
ping interpolation domains has different values of the shape
functions which means that N! s NF. The interpolation is
now multivalued within §2; ancf, theréfore for any useful ap-
proximation a decision must be taken limiting the choice to
a single value. Indeed, the approximate function i (x) wiil
be typically used to provide the vatue of the unknown func-
tion #(x) and its derivatives in only specific regions within
each interpolation domain. For instance by using point col-
location we may limit the validity of the interpolation to
2 single point x;. It is precisely in this context where we have
found this meshless method to be more useful for practical
purposes [10-13].

2 Stabilized governing equations for incompressibie
flows

The stabilized goveming equations for incompressible vis-
cous flows are obtained by applying the standard conserva-
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tion Jaws expressing balance of momentum and mass over
a control domain. Assuming that the control domain has fi-
nite dimensions and representing the variation of mass and
Inomentum over the domain using Taylor series expansions of
one order higher than those used in the standard infinitesimal
theory, the following expressions are found [14,17]:

Momentum.
lh O, )
Fm; 5 mj axj' =0 in £2 (13}
Mass balance.
1 rg
— by — = i 14
&) 5 dj 8).’_,- 0 in 2 ( )

where for the steady state case

S(Lt,'uj) ap 31’5_,‘
- 9P Gy, 15
e » Ebcj +8x; ij- ! ( )
re= 24 (16)
ax;

withi?, j =1, 2 for a two dimensional flow.

In (15) pis the fluid density (here assumed to be constant),
u; is the velocity component in the i-th direction, p the pres-
sure, b; the body forces and 7;; the viscous stress components
related to the velocity gradients through the fluid viscosity u
by

1du
=2 (ar 15 U) (172)
with
1 Bui Buj-
i fou By 17b
=3 (ij * 3x;) (70

Einstein summation convention for repeated indexes in prod-
. . . By By
ucts and derivatives is used, i.e. Ay; = Z haj B

Equations (13) and {i4) are the Srabii’fzed Jorms of the
governing differential equations for an incompressible flow.
The terms underiined in (13) and (14} introduce naturally
the necessary stabilization at the discretization level. The so
called characteristic length vectors h,, and h, are defined as
(for 2D problems) '

h,,,:{ﬁ:i } hdz{ﬁi} (18)
where 1., and h,,, are the dimensions of the finite control do-
main where balance of momentum is enforced. Similarly hg
and 4y, represent the dimensions of the domain where mass
conservation is expressed. The components of vectors A, and
kg introduce the necessary stabilization along the streamline
and transverse directions to the flow in the discrete problem.

The method to derive the modified differentiai equarions
{13y and (14) incorporating the stabilization terms was termed
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in [14] finite increment calculus as a reference to the stan-
dard infinitesimal calculus techniques where the size of the
domain where balance of mass and momentum is enforced is
assumed to be negligible. Note that for A, = hy ~+ 0 the stan-
dard infinitesimal form of the momentum and mass balance
equations is recovered [14—18].

Equations (13) and (14) are complemented by the follow-
ing boundary condidons [14, 17].

Balance of momentum at the boundary T.

1
njcr;j—ri—i-;hmjnjrm,. =10 on [ (19

where n; is the i-th component of the unit normal vector to the
boundary and z; are the prescribed tractions at the Neumann
boundary [ of the analysis domain £2.

Prescribed velocity at the boundaries.
on I, (20
.on Iy, 21

uy = ul

1
Uy — ‘,‘?‘hd,-”i‘"d =uf

In (20) u, and uf denote the tangential velocity to the bound-
ary and its prescribed value, respectively.

Equation (21) expresses the balance of mass on an ar-
bitrary domain next to the boundary. u, and «f denote the
velocity nommal to the boundary and its prescribed value,
respectively. The value of uf is zero on solid walls and sta-
tionary free surfaces.

Also in (20) and (21) I, and T, are the parts of the
boundary [ of £2 where the tangential and nommal veloci-
ties are prescribed, respectively. The Dirichlet boundary is
definedas [, =1, U, .

The underlined terms in (19) and (21) introduce the neces-
sary stabilization at the boundaries in 2 form consistent with
that of (13) and (14). These terms are obtained by invoking
balance of momentum and mass at a domain of finite size next
1o the boundary. Details of the derivation of (13)~(21) can be
found in [14,17].

2.1 Alrernative form of stabilized governing equations

Let us express the components of the characteristic vector iy
for the mass balance equation as

hdA = -—prdl. U; (22)

]

where the 7, parameters are termed “intrinsic times” per unit
mass. The negative sign in (22) is necessary to introduce
a positive stabilization in the mass balance equation at the
discrete level as it will be shown later.

From simple differentiation rules we can write

2
u;i du; _T_i u,-% _(Bue "~ (23)
Ox; ox; ox; ax; axy
Substituting (22) into (14} and making use of (23), (14) and
(16) we can rewrite the rnass balance equation (neglecting
higher order terms) as
OF .
. (242)
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where

au,- ap 81.3]-

s = o 24b
Tme = P T (240)

i

Following 2 similar process, equation (21} expressing balance
of mass at the boundary can be rewriten using (13) and (22)
as

Ly — ‘cd‘.njfmf = I«n!flJ on [ (25)
We summarize next for the sake of clarity the set of governing
eguations to be solved.

Momentum.

1 O e
e B =L =0]  in 2 26
?m‘ 2 1 j axj ( )
Mass balance.

O m;
re—to =0 i @ @7

0x;

Boundary conditions.

1
."IjG’,‘j—I;‘-i"‘;)‘hmj?ljrmi. = () on I} (28)
]u, —wf=0 on FH,J 29)
(Mn — tgnifm —ul =0 on Iy (303

where 7., and 7, are defined in (15) and (24b), respectively.

A similar form of the modified differential equations for
momentum and mass balance ((26) and (27)) has been re-
cently proposed by llinca et al. {20]. They express the exact
solution as sum of the numerical approximation and a per-
turbation. The modified equations are derived by expanding
the original differential equations for momentum and mass
balance in Taylor series and eliiminating the perturbation
terms. However, the boundary conditions remain unchanged
and thus the stabilizing terms in (28) and (30} are omitted
in [20]. This ieads to the appearance of additional boundary
integrals in the Galerkin formulation. These terms vanish nat-
urally if the full stabilized expressions (26)-(30) emanating
from the FIC method are used as shown in [171

3 Fractional step solution

The stabilization formulation above presented is naturally
extended to the transient case. The stabilized form of the
momentum and mass balance equations are writen now
as [14,18]

E. Ofiate et. al

Momentum.
hm' e 6 a hm' a m;
(rm____fal”l —_-_ (rm{____.f__r:_)ﬂo (31)
! 2 ij- 20t 2 axj

r _h_df.é':‘i _d38 r _EE)’-_" =0 (32)
T Ey) T 2a 0T 2

In above & is a time stabilization parameter. Transient effects

_ are also included in the term rp,, given by

i au,' B(uguj-) ap a‘ffj
T = P( ot * axj )+ Bx(' ij bI (33)
Equation (31} and {32) are obrained by expressing the balance
of momenturn and mass in space-time domains of finite di-
mensions [, x §] and [khy x §], respectively. Details of the
derivation can be found in [14,18].

Equations (31) and (32) can be used to derive a number of
stabilized numerical schemes for the transient solution of the
Navier-Stokes equations.

3.1 Three steps splitiing scheme

1t is interesting to derive a splitting algorithm starting with the
new stabilized equations. For the sake of clarity the tune sta-
bilization terms involving § will be neglected in (31} and (32).
Also the stabilized mass balance equation will be written 1n
the more convenient form given by (27).

A time marching solution scheme for (31) can be written
as (ford =0)

a4+l __ .0
i =H;

Ar[ Bluupyt  apTt
" pii p

ox; ox;
— i - (h_”l%)n] (34)
ij- 2 ij-

The analogy of (34) with that found using the so cailed char-
acteristic integration schemes [21,22] is clear if vector Ay, 18
chosen aligned with the velocity field, i.e. hn = T1 where T 1§
an intrinsic time parameter. Indeed the arbitrary form of vec-
tor ki, in (34) provides a more general procedure where the
components of vector b, can be freely chosen.

A semi-implicit time splitting or “fractional step” [21,22]

algorithm can now be obtained as follows. Equaticn (34) is
split as

AT duuy) BTy B 8, |
F ol — e | p L by 35
MERT [p ax; ax; 2 B (35)
At B n-+1
it =y - = (36
o dx;
Note that the sum of (35) and (36) gives the original form of
(34).
Substituting {33) into (27) gives
Ar g2prt! 3m, 11
y—— — g | =0 37
T e, { ax; ] @7
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where
. ouf
= | (38)
a?:ml. n+1_~ d [ Buj . Suf 8'!.','!' A " E)zp”“
b P\ Y T e Y T aman
(39)

The solution steps are the following:

Step 1

Solve explicitely for the so called “fractional” velocities
u; [21,22] using (33).

Step 2
Compute the pressure field p! by solving the equation

for the Laplacian of pressure derived from {37). Note that this
equation has the following form

azpn-H 82. a+1 .

ax;ax,' - rﬂ] 3):; BJCI' e e a—x,
8u,- aug a"t'jj g
% — Flje— | - — b
{p( ar ujBxJ-) ax; '] '
Clearly for 74, = 7 above equation simplifies to
ar |
(—» +r) Ap™H =77
o)
where A is the Laplacian operator and
P . 0 ou; . ou; 3‘1.',",'
=r,— 71— — U —_——
d g 315 £ or / axj

axJ,‘
Step 3

At

(40)
(41)

(42)

Compute the velocities u!™ by using (36).

Equation (41) differs slighty from the form typically used
in fractional step schemes where the term involving r does
not appear [21,22]. This term, however, is essential to pre-
serve the stability of the mixed FPM formulation.

Obviously, other forms of above three steps transient so-
lution scheme involving the implicit computation of &1 are
also possible. '

Extension of this transient solution method to the simpler
Stokes problem are straightforward. The same scheme can be
applied to derive enhanced algorithms for transient non linear
structaral dynamic problems allowing equal order interpola-
tion for velocities and pressure as described in [23].

3.2 Numerical solution using the FPM

The implementation of the three step scheme described in
previous section in the context of the FPM is strai ght forward.
Eqguation (8) is used to define the approximation of velocities
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and pressures within each cloud (2; as

fm=) Njub: m=123 for3D (43)
je=1

b= Nipt (44)
j=1

where () denote approximate values and the shape functions
Nj were defined in (9).

Direct substitution of {43) and {(44) into the stabilized
governing equations described in previous section gives the
following numerical scheme for computation of the parame-
ters uy, and pf.

Step |

Compute explicitely the fractional velocities at each point
k in the domain as

(B0 = (f;

in which N is the total number of points in the domain and

k=1,...,N; =123 (45)

2n ” At 8(L”¢,~f¢j) 6%,;,- hmj O, 1"
! = L — —_— _bf —_— !
(f; )k {ui o !:p axj axf' 2 axJ; £

where (%) denotes approximate values.

Once the values of 4 have been obtained, the parame-
ters u” can be computed by solving the following system of
equations

n
- % - k h —
(um)k_Z]\Gumj, k=1,...,N (47)
j=1
Equation (47) is a system of N equations with N unknowns

from where the parameters ufnj, J=1,..., N can be found.
These parameters are needed to compute the derivatives of

“the velocity field in steps 2 and 3. Indeed the solution of 47

must be repeated for every component of the velocity vector
(le.m=1,2 3 for 3D problems).

Step 2

Compute the pressure field at time 1 + 1 by solving (40).
Substituting (43) and {44) into (40) ané sampling this equa-
tion at each point in the domain gives (for 74, = 1)

K(Ph)n+1 = }'\,; {48)
where (for 2D} probiems)
At NE Nk '
K=~ / S/ 49
kj ( P +‘E) ( Bxf + 3xg (49)
o% - g Bf{, ~ 81}1 8"5\[_’; i ~
= —r— —_— T~ ——— bi DO
Tar =, TBx,- [p ( dr +ij ij) ox; ‘ 0

As usual ()] denotes values within brackets evaluated at
point & and the #-th time step.
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Equation (48) provides a system of equations from which
the pressure parameters ( pﬂ)”“ can be found at each point &,
Step 3

The final step is the explicit computation of the velocities
in each point at time 7+ L. Substituting (43) and (44) into
(36) and sampling this equation at each point gives

} k=1, N
&

Note that the derivatives of the approximate functions fi; and

$ in (50) and (51) are computed by direct differentiation of

the expressions (43) and (44), L.¢.

L
Ly

X
= oy

) . Al 8;5""‘“1
(u?-t-l} — [“;’ —_—
g 0x

(51)

Bl

Bx;

h

mj

L i
BJC[ =1 ax; /

The steps 1-3 described above are repeated for every new
time increment.

A local time step size for each point in the domain can be
used to speed up the search of the steady state solution. The
iocal time step is defined as Ay = Tliﬁ’ where d; is the mn-
imum distance from a star point to any of its neighbourghs
in the cioud. Note however that the full transient solution re-
quires invariably the use of a global time siep At, equal for all
nodes and defined as At = min(Ag), i=1,..., N

(52)

4 Boundary conditions

Prescribed iractions on the Neumann boundary I3, (19) or
prescribed velocities at the Dirichlet boundaries 1, or Iy,,
({20) and (21)) may be imposed.

During the fractional step solution, the first explicit step
is solved without imposing any boundary conditions. During
the second step, two kinds of boundary conditions may be im-
posed: on boundaries where the normal velocity 1s imposed,
(21) reads using {36)

At n+l 1
uf =uini— —‘a—p*”“nf — —hagmira (53
o ax; 2
Taking into account (27), (37) and {41) leads to
At gpt! 1 -
WP = ulng - — -%mni — Shym{(ArE AP =TH (59
% Z

Equation (54) represents a stabilized Neumann boundary con-
dition for the pressure equation (48). This equation is im-
posed in the FPM during ihe pressure computation step as
a new equation for all points k belonging to the I, boundary.

On outfiow boundaries with n;o;; = 0 the pressure is im-
posed to a constant value, l.e. p= 0. In the FPM, essential
boundary conditions such as p =0 are imposed using the
definition of the function itself via (44) as

pi=> Nipi=0 (55)
j=1
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Equation {55) is sampled at the points located at a boundary
where p= (.

During the third step the velocities 1"} are computed
using (36) for all points within the analvsis domain. In points
where a velocity is imposed as an essential boundary con-
dition the imposed value is asigned directly. After that, the
nodal parameters uf can be computed by solving the same
system of equations ‘described by (47). On points over Neu-
mann boundaries, in particular on boundaries where the trac-
tions are prescribed to zero, equation (19)

(56)

1
10+ —I,’lmjnjl'mi. =0

2

is used for computing the velocities at the boundary points.

using the direct differentiation of the velocity and pressure
approximations as described by (52). -

5 Computation of the stabilization parameters

Accurate evaluation of the stabilization parameters is one

of the crucial issues in stabilized methods. Most of existing
methods use expressions which are direct extensions of the
values obtained for the simplest 1D case. It is also usual to
accept the so called SUPG assumption, L.g, {0 admit that vec-
tor k,, has the direction of the velocity fleld. This restriction
leads to instabilities when sharp layvers transversal to the vel-
ocity direction are present. This additional defficiency is then
corrected by adding a “shock capturing” (SC) stabilization
termn [24-271.

In our work we will assume for simplicity that the sta-
bilization parameters for the mass balance equations are the
sarmne than those for the mementum equations. This impiies

hm, = hdf (57)

The problem remains now finding the value of the charac-
teristic length vectors Ay, . Indeed, the components of A, can
introduce the necessary stabilization along the streamline and
transversal directions to the flow [14-18].

In this work the SUPG assumption has been chosen for

defining h,, as

I
hy, = h;,—

ul
The streamline parameter 4, has been chosen for each cloud
as the minimum distance &; from a star point to any of its
neighbourghs. Recall that this distance 1s also used to define
the local time step for each point.
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6 Numerical examples
5.1 Driven cavity flow at Re = 1000

This is 2 classical test problem to evaluate the behaviour of
any fluid dynamic algorithm. A viscous flow 1s confined in
a square cavity while one of its edges shides tangentiaily. The
boundary coaditions are 4 =v =0 in 3 edges and ¥ =1,
v = 0 on the upper edge. The problem is solved with the FPM
using the distribution of 3329 points shown in Fig. 2. Around

B
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A B

c’ D
Fig. 2. Driven cavity fiow. Distribution of 3329 points. Boundary conditions

u=0at edges AC, CD and BD and points A and B. 1 =1 and v =0 over
the interior of line AB

each point, equal order quadratic based polynomial are used
for the velocities and the pressure (m = 6). A minimum of
six pomnts is selected in each ¢loud using a combination of
minimum distance and quadrant search procedures {11-13].
Typically n = 9 is chosen, i.e. two points per each quadrant
plus the star node. Initially, except at the edge, the velocity is
set 1o zero everywhere including at the nodes located at the
left and right top corners (ramp condition). -

Numerical results are shown in Figs. 3,4 and 5 for Re =
1000. Figures 3 and 4 show the velocity and pressure con-
tours, respectively. The FPM results are compared with ex-
perimental results obtained by Ghia et al. [29] showing the
velocity x computed along a vertical central cut (Fig. 5}. The
comparison is satisfactory,

6.2 Backwards facing step ar Re = 389

In this example, the flow is contrained to move in a 2D do-
main which presents a backwards step. The domain dimen-
sions are presented in Fig. 6. The step is one half the width of
the inflow.

At the inflow a constant velocity profile is prescribed
while at the outflow the pressure is prescribed, being the vel-
ocity free. The non-slip condition is used at the walls, except

Fig. 3. Driven cavity flow. Velocity contours for Re = 1000

o) D

1 T
0.8 esent Work
Ghizetal »
= .
5
= 06
o
[=N
E]
= 04
Li2)
=
0.2
YT cz 04 6 08 1

Center line x-velocity component

Fig. 5. Driven cavity flow. Horizontal velocity distibution over the center
line

&8 408

Y=l —> SI

V=0 —=

A
mines SRS SRS
Ued V=0 SI :

|

Fig. 6. Backwards facing step. Geomerry and boundary conditions

for the two inflow points, where the constant inflow velocity
is imposed. No volume forces are present.

The distribution of 8462 points used near the step is repre-
sented on Fig. 7. In the rest of the domain a regular distribu-
tion of point is used. As on the previous example, equal order

Fig. 7. Backwards facing step. Distribution of 8462 peints
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: Present Work
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0.2 o
=4
=2
3 0 1
a
-

Velaocity

Fig. 8. Backwards facing step. Horizontal velocity distribution along a ver-
tical line at x =2.558

T 1
Present Work
: Experiment e
) S S VAR RSN SR
&=
h=
% ok a
=8
>
_02 N =
-0.4 - .
j i

0 0.5 1 1.5 2
Velocity

Fig. 9. Backwards facing step. Horizonial velocity along a vertical line at
x=6.115

quadratic based poiynomials are chosen to approximate both
velocities and pressure.

Once the stationary state is reached, the solution shows
horizontai velocities represented on Figs. 8 and 9 for two
planes located at x = 2.358 and x = 6.11 S from the step.
The FPM results are compared with experimentat results pre-
sented on [30} showing an excellent agreement.
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7 Conclusions

The paper shows that excellent solutions can be reached on
incompressible flow problems using the stabilized meshless
finite point method.

The foliowing statements must be taken into account in
order to achieve correct answers.

1. The adequale stabilization must be used both for the con-
vective terms in the momentum equation and for the
incompressibility terms. The necessary stabilization for
both terms is naturally introduced by the FiC procedure.

2. Essential boundary conditions may be imposed in the
FPM directly by using the equation that approximates the
velocity and pressure unknowns.

3, Natural boundary conditions must be introduced ex-
plicitely and must be stabilized. The FIC procedure has
shown to be alse adequate for this purpoese,

4. The use of a fractional step algorithm allows the use of
equal order approximation for velocities and pressure pro-
vided a correct stabilization of the incompressibility terms
is introduced. The stabilization provided by the FIC ap-
proach has found to be essential to enhance the properties
of the standard three step splitting scheme.
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