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a b s t r a c t

A number of Game Strategies (GS) have been developed in past decades. They have been used in the fields
of economics, engineering, computer science and biology due to their efficiency in solving design optimi-
zation problems. In addition, research in multi-objective (MO) and multidisciplinary design optimization
(MDO) has focused on developing robust and efficient optimization methods to produce a set of high
quality solutions with low computational cost. In this paper, two optimization techniques are considered;
the first optimization method uses multi-fidelity hierarchical Pareto optimality. The second optimization
method uses the combination of two Game Strategies; Nash-equilibrium and Pareto optimality. The
paper shows how Game Strategies can be hybridised and coupled to Multi-Objective Evolutionary Algo-
rithms (MOEA) to accelerate convergence speed and to produce a set of high quality solutions. Numerical
results obtained from both optimization methods are compared in terms of computational expense and
model quality. The benefits of using Hybrid-Game Strategies are clearly demonstrated.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction

With an ever-increasing complexity in design engineering prob-
lems, research of multi-objective (MO) and multidisciplinary de-
sign optimization (MDO) focuses on developing robust and
efficient optimization methods to produce high quality designs
with low computational cost [1–4]. In such situations, Game Strat-
egies (GSs) has proposed as one of the key technologies to save CPU
usage and produce high model quality due to their efficiency in de-
sign optimization [4,5,7]. In this paper, two GSs are considered and
applied to two optimization methods; the first optimization meth-
od employs the concept of multi-fidelity hierarchical Pareto opti-
mality evolutionary algorithm (HAPMOEA) [6]. The second
method uses a combination of the concepts of Nash-equilibrium
[7] and Pareto optimality [8] (herein named Hybrid-Game) coupled
to Multi-Objective Evolutionary Algorithm (MOEA). HAPMOEA
ll rights reserved.
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uses three hierarchical layers with seven populations (Pareto-
games) which are divided by model fidelity conditions. Hybrid-
Game consists of one Pareto-Player and several Nash-Players and
can produce a Nash-equilibrium and Pareto non-dominated solu-
tions simultaneously [9]. The reason of using Nash-game is to
use it as pre-conditioner. It speeds up the search for a local solution
which will then be seeded to the Pareto-Player to produce global
solutions. The hybrid game is especially developed to solve com-
plex design problems such as robust MO/MDO which requires high
computational cost.

The evolutionary optimization methods HAPMOEA and Hybrid-
Game are coupled to a Multi-Objective Evolutionary Algorithms
(MOEA) in an asynchronous parallel computation and are imple-
mented to solve a single-disciplinary multi-objective design and
uncertainty based multidisciplinary design problems.

The rest of paper is organized as followed; Section 2 describes
the methodologies and presents algorithms for HAPMOEA and Hy-
brid-Game. Section 3 presents the aerodynamic analysis tools used
in this work. Real world MO design problem is conducted in Sec-
tion 4. Conclusions are presented in Section 5.
2. Methodology

Both methods HAPMOEA and Hybrid-Game have same feature
of Multi-Objective Evolutionary Algorithms (MOEAs). HAPMOEA
uses hierarchical multi-population Pareto optimality while the
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Fig. 1. Topology of HAPMOEA.
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concepts of Nash-equilibrium and Pareto optimality are imple-
mented for Hybrid-Game.

The evolutionary algorithm used in this paper is based on
Covariance Matrix Adaptation Evolutionary Strategies (CMA-ES)
[6,10,11]. The optimization methods; HAPMOEA and Hybrid-Game
use MOEA coupled to several analysis tools. The methods incorpo-
rate the concepts of Covariance Matrix Adaptation (CMA) [12,13],
Distance Dependent Mutation (DDM) [11], and implementation
of the asynchronous parallel computation [14,15]. The methods
couple an MOEA, analysis tools and a statistical design tool that
takes uncertainty into account.

2.1. Multi-fidelity (Population) hierarchical Pareto optimality

The first method multi-fidelity hierarchical Pareto optimality
[16] uses three layers of hierarchical Pareto optimal game and is
shown in Fig. 1. The optimiser has capabilities to handle multi-
fidelity/physics models for the solution. There are three layers
and seven different populations in HAPMOEA; the first layer
(Node0: fine-grid population) concentrates on the refinement of
solutions. The third layer (Node3–Node6: four coarse-grid popula-
tions) uses approximate model therefore these populations are en-
tirely devoted to exploration. The second layer (Node1 and Node2:
two intermediate-grid populations) is to compromise solutions be-
tween exploration (third layer) and exploitation (first layer). There
is also a migration operation after predefined number of function
evaluations; individuals migrate up and down from third to first
layer and from first to third layer during the optimization. As an
example, if the problem considers six design variables (DV1–
DV6); each Pareto-game population at each layer evaluates the
same and all fitness/objective function, and considers the whole
design variable span (DV1–DV6). The topology of HAPMOEA is nor-
mally fixed in the authors’ test cases for multi-objective and mul-
tidisciplinary designs. Details of HAPMOEA can be found in Ref. [6].

2.2. Hybrid-Game (Hybrid-Nash)

The Hybrid-Game uses the concepts of Nash-Game and Pareto
optimality and hence it can simultaneously produce Nash-equilib-
rium and a set of Pareto non-dominated solutions [9]. The reason
for hybridisation of the concepts of Nash-Game and Pareto opti-
mality is to cover each other’s major drawbacks; Nash-Game has
a fast search but only one global solution (Nash-equilibrium) while
standard EAs based on Pareto optimality generally require a large
number of function evaluations to find optimal non-dominated
solutions. Nash-Game herein speeds up to search one of the global
solutions which will be seeded to the Pareto-Game population at
every generation or after a predefined sequential function evalua-
tion. Each Nash-Player has its own design criteria and uses its own
optimization strategy. Therefore the Hybrid-Game can accelerate
MOEA to find Pareto optimal solutions based on the elite design
obtained by the Nash-Game.

Fig. 2a shows the hybridisation between HAPMOEA and Nash-
Game, and one example of the Hybrid-Game topology. The Hy-
brid-Game consists of four different populations; three Nash-Play-
ers (NP1, NP2 and NP3) and one Pareto-Player/Global-Player
(Node0: high fidelity/resolution – precise model from HAPMOEA).
The Hybrid-Game locates the Pareto-Player/Global-Player at the
core of Nash-Game and the elite designs obtained by Nash-Players
will be seeded to the Pareto-Player/Global-Player at every genera-
tion or after a predefined number of function evaluations. This
optimization mechanism allows the Pareto-Player/Global-Player
to accelerate to find Pareto non-dominated solutions or global
solutions. The topology of Hybrid-Game represents a top view of
a trigonal pyramid instead of a two dimensional hierarchical pyra-
mid shape. The topology of Hybrid-Game is flexible; if there are
four Nash-Players then the topology will be a quadrangular
pyramid.

Fig. 2b shows an example of design variables (DV1–DV6) distri-
bution in a Hybrid-Game. The distribution of design variables is as
follows; Nash-Player1 (black circle) only considers black square
design components (DV1, DV4), DV2 and DV5 are considered by
Nash-Player2 (hidden line circle). Nash-Player3 (dot line circle)
considers DV3 and DV6. The Pareto-Player (center line circle) con-
siders the complete design variable span (DV1–DV6). The elite de-
signs (DV1–DV6) obtained by Nash-Players (N-Player1, N-Player2
and N-Player3) will be seeded to the population of Pareto-Player
(P-Player) after each generation or after a predefined number of
function evaluations has been reached during the optimization.
The Hybrid-Game decomposes one design problem into three
simpler design problems for Nash-Game which consists of three
Nash-Players (N-Player1, N-Player2 and N-Player3). The Pareto-
Player (P-Player) will use elite designs (DV1–DV6) obtained by
Nash-Game to find Pareto non-dominated solutions. Therefore,



Fig. 2a. Hybridization of MOEA and Hybrid-Game topology.

Fig. 2b. Design variables for Hybrid-Game.
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Pareto-Player can accelerate its searching diversity to true Pareto
front or global solutions. The Hybrid-Game can be applied to
non-generational EAs such as HAPMOEA as well as to generation
based approaches.

Lee et al. [17] studied the concept of Hybrid-Game (Pareto and
Nash) coupled to a well-known MOEA; Non-dominating Sort Ge-
netic Algorithm II (NSGA-II) [18]. Their research shows that the Hy-
brid-Game improves the NSGA-II performance by 80% when
compared to the original NSGA-II. In addition, Lee et al. [19] hybri-
dised NSGA-II with Nash-Game strategy to study a role of Nash-
Players in Hybrid-Game by solving multi-objective mathematical
test cases; non-uniformly distributed non-convex, discontinuous
and mechanical design problem. Their research also shows that
HAPMOEA can be also hybridised with Nash-Game to solve a
real-world robust multidisciplinary design problem. Numerical re-
sults show that the Hybrid-Game improves 70% of HAPMOEA per-
formance while producing better Pareto optimal solutions.

It should be noted that the Nash-equilibrium solution can be
one of Pareto front members since the elite designs obtained by
Nash-Players are seeded to the Pareto-Player population however
the Nash-equilibrium will not be part of the Pareto-front if the
Nash-equilibrium is dominated by Pareto-Player solutions. The
validation of Hybrid-Game and HAPMOEA can be found in Refs.
[9,17,19–21].
2.3. Mathematical benchmarks

This section illustrates the use of Hybrid-Game for two multi-
objective mathematical design problems including non-uniformly
distributed non-convex design, and discontinuous multi-objective
designs. Both NSGA-II and Hybrid-Game applied to NSGA-II are
considered.

2.3.1. Non-uniformly distributed non-convex design
This problem defined in Ref. [22] considers a non-uniformly dis-

tributed non-convex problem. It is an extended version of a non-
linear problem where the objective is to minimise the following
equations:

f1ðx1Þ ¼ 1� expð�4x1Þ sin4ð5px1Þ ð1Þ

f2ðx1; x2Þ ¼ gðx2Þ � hðf1ðx1Þ; gðx2ÞÞ ð2Þ

where 0 6 x1, x2 6 1
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Random solutions are shown in Fig. 3a. Fig. 3b compares the
convergence obtained by NSGA-II and Hybrid-Game coupled to
NSGA-II (Hybridised NSGA-II). The optimization is stopped after
50 generations with a population size of 100. It can be seen that
the NSGA-II requires more function evaluations (marked with red
circle) while the Hybridised NSGA-II has already capture the true
Pareto front.

The initial populations obtained by NSGA-II and Hybridised
NSGA-II are shown in Figs. 4a and 4b respectively where the
NSGA-II has a better non-dominated solutions (nine members) dis-
tribution than the Hybridised NSGA-II with seven non-dominated
solutions. However, it can be seen that the Nash-Players of Hybri-
dised NSGA-II found the elite solution (mark with circle) which
dominates Pareto members 1–5 of Pareto-Game. This Nash elite
design will be seeded to the population of Pareto-Game and will
become a Pareto member 1 then the Pareto-Game will generate
the candidates based on the Nash elite design. This is the reason
why the Hybridised NSGA-II had faster convergence than NSGA-II.

2.3.2. Discontinuous MO (TNK) design
The problem TNK proposed in Ref. [23] considers minimisation

of the following equation:

f1ðx1Þ ¼ x1 and f 2ðx2Þ ¼ x2 ð3Þ



Fig. 3a. Random solutions (100,000 pints).

Fig. 3b. Comparison of Pareto fronts.
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Subject to

C1ðx1; x2Þ ¼ �x2
1 � x2

2 þ 1þ 0:1 cos 16 arctan
x1

x2

� �
6 0

C2ðx1; x2Þ ¼ ðx1 � 0:5Þ2 þ ðx2 � 0:5Þ2 6 0:5

where 0 6 x1, x2 6 p
Random solutions are shown in Fig. 5a. Fig. 5b compares the

convergence obtained by NSGA-II and the Hybridised NSGA-II.
The optimization is stopped after 100 generations with a popula-
tion size of 100. It can be seen that the NSGA-II need more function
evaluations to find Pareto members in the Section-A while the Hy-
brid-Game converged to the true Pareto front.
2.4. Algorithms for HAPMOEA and Hybrid-Game

Algorithms for HAPMOEA and Hybrid-Game are shown in
Figs. 6a and 6b to further illustrate the HAPMOEA and the Hy-
brid-Game concepts. It is assumed that the problem considers
the fitness function f = min(x1, x2, x3) as an example.



Fig. 4a. Non-dominated solutions (NSGA-II).

Fig. 4b. Non-dominated solutions (Hybridised NSGA-II).

D. Lee et al. / Computers & Fluids 47 (2011) 189–204 193
2.4.1. HAPMOEA-L3 (Fig. 6a)
The method has eight main steps as follows;

� Step 1: Define population size and number of generation for
hierarchical topology (Node0–Node6), number of design vari-
ables (x1, x2, x3) and their design bounds, model quality for each
layer (Layer1 (Node0): precise, Layer2 (Node1, Node2): inter-
mediate, Layer3 (Node3–Node6): least precise).
� Step 2: Initialize seven random populations for Node0–Node6.

while termination condition (generation or elapsed time or pre-
defined fitness value).

� Step 3: Generate offspring using mutation or recombination
operations.
� Step 4: Evaluate each offspring and compute fitness functions.
� Step 4.1: Evaluate offspring for each node in terms of precise,
compromise, least precise.
� Step 5: Sort each population for each node based on its

fitness.
� Step 6: Replace best individual into non-dominated population

of each node.

end

� Step 7: Designate results for the optimization; Pareto optimal
front obtained by Node0 at first layer (precise model) for
multi-objective design problem otherwise plot convergence of
optimization based on best-so-far individual.
� Step 8: Do post-optimization process; if problem considers

aerodynamic wing design Mach sweep will be plotted corre-
sponding to objective (CD, CL, L/D).



Fig. 5a. Random solutions (100,000 pints).

Fig. 5b. Comparison of Pareto fronts for TNK.
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2.4.2. Hybrid-Game (Fig. 6b)
The method has eight main steps as follows;

� Step 1: Define population size, number of generation or func-
tion evaluations for each Nash-Players (N-Player1, N-Player2,
N-Player3) and Pareto Player (P-Player), dimension of decision
variables (x1, x2, x3) and their design bounds. Split decision vari-
ables for each player (N-Player1: x1, N-Player2: x2, N-Player3:
x3, P-Player: x1, x2, x3).
� Step 2: Initialize random population for each player.
� while termination condition (generation or elapsed time or pre-
defined fitness value).
� Step 3: Generate offspring using mutation or recombination

operations.
� Step 4: Evaluate each offspring and compute its fitness

functions.
� Step 4.1: Evaluate offspring in Nash-Game.
� N-Player1: Use x1 with design variables x2, x3 fixed by N-

Player2 and N-Player3.



Fig. 6a. Algorithm of HAPMOEA.
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� N-Player2: Use x2 with design variables x1, x3 fixed by N-
Player1 and N-Player3.

� N-Player3: Use x3 with design variables x1, x2 fixed by N-
Player1 and N-Player2.

� Step 4.2: Evaluate offspring for P-Player.
� if (the first offspring at each generation is considered)
� P-Player: use elite design ðx�1; x�2; x�3Þ obtained by Nash-Game

at Step 4.1.
� else
� P-Player: use x1, x2, x3 obtained by mutation or recombina-

tion operation as default.
� Step 5: Sort each population for each player based on its fitness.
� Step 6: Replace the non-dominated individual into best popula-

tion for P-Player.
� end
� Step 7: Designate results.
P-Player: Plot Pareto optimal front for multi-objective design
problem otherwise plot convergence of optimization based on
best-so-far individual.

Nash-Game: plot Nash-equilibrium obtained by N-Player1, N-
Player2, N-Player3.

� Step 8: Do post-optimization process; if problem considers
aerodynamic wing design Mach sweep will be plotted corre-
sponding to objective (CD, CL, L/D).

3. Aerodynamic analysis tools

The first aerodynamic analysis tool used in this paper is a poten-
tial flow solver. The solver is used for analysing inviscid, isentropic,
transonic shocked flow past 3D swept wing configurations [24].



Fig. 6b. Algorithm of Hybrid-Game.
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The second analysis tool is for friction drag which is externally
computed by utilizing the program FRICTION code [25]. The code
provides an estimate of the laminar and turbulent the skin friction
suitable for use in aircraft preliminary design. Details on the vali-
dation of the potential flow solver can be found in Ref. [21] where
it is shown that the results obtained by the potential flow solver
are in good agreement with experimental data.
4. Real world design problem: MO design optimization of UCAS

In this section, the Hybrid-Game is used to show the benefit of
using Nash-game and Pareto-game simultaneously. To do so, the
results obtained by Hybrid-Game will be compared to the results
obtained by HAPMOEA. It is shown that the Hybrid-Game has
the potential to produce high quality solutions and to reduce com-
putational expense.
4.1. Formulation of design problem

Unmanned (Combat) Aerial Systems (UCASs) have broad appli-
cability for a number of civilian and military missions [26,27]. The
type of vehicle considered in this section is a Joint Unmanned Com-
bat Air Vehicle (J-UCAV) that is similar in shape to the Northrop
Grumman X-47B [28]. This test case considers the design optimiza-
tion of the UCAV wing aerofoil sections and planform geometry.
The objectives are to maximize both mean values of lift coefficient
(CL) and lift to drag ratio (L=D) to maximize a manoeuvrability and
range of UCAV. The baseline UCAV is shown in Figs. 7a and 7b.

The wing planform shape is assumed as an arrow shape with
jagged trailing edge. The aircraft maximum gross weight is approx-
imately 46,396 lb (21,045 kg) and the empty weight is 37,379 lb
(16,955 kg). The design parameters for the baseline wing configu-
ration are illustrated in Fig. 7b and Table 1. In this test case, the
fuselage is assumed from 0% to 25% of the half span. The crank



Fig. 7a. Baseline design (3D-view).

Table 1
Baseline UCAV wing configurations.

AR b KR�C1 KC1�C2 KC2�T kC1 kC2 kT COverall

4.377 18.9 m 55� 29� 29� 20 20 2 0�

Note: Taper ratio (k) is %CRoot.
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positions are at 46.4% and 75.5% of the half span. The inboard and
outboard sweep angles are 55� and 29�. Inboard and outboard ta-
per ratios are 20% and 2% of the root chord respectively.

It is assumed that the baseline wing design contains three types
of airfoils; the NACA 66-021 and NACA 67-1015 are located at in-
board (root and crank1) and the NACA 67-008 are located at the
outboard sections (crank2 and tip). These airfoils are shown in
Fig. 8. The maximum thickness at root section is 21% of the root
chord that is about 3% thicker than X-47B to increase avionics, fuel
capacity and missile payloads.

The mission profile of UCAV considered Reconnaissance,
Intelligence, Surveillance and Target Acquisition (RISTA) as illus-
trated in Fig. 9. The mission profile is divided into eight Sectors:
where
Sector1: Take-off
and Climb
Sector2:
Cruise
Sector3:
Transition
dash
Sector4:
Ingress
Sector5: Target
acquisition
and strike
Sector6:
Returning
cruise
Sector7: End
returning
cruise
Sector8:
Descent and
Landing
Fig. 7b. Baseline UCA
Fig. 10 shows the weight distribution along the mission profile
(Sector1–Sector8). The weight between Sector4 and Sector5 is
significantly reduced after 80% of ammunition weight is used for
target strike.

In this paper, flight conditions for Sector2–Sector4 are consid-
ered for optimization. The minimum lift coefficients (CLMinimum

) are
0.296 and 0.04 for Sector2 and Sector4 respectively as shown in
Fig. 11. The baseline design produces 30% higher lift coefficient at
Sector2 when compared to CLMinimum

while only 7% higher at Sector4.
The aim of this optimization is the improvement of aerodynamic
performance (L/D) at Sector4 while maintaining aerodynamic per-
formance at Sector2.

4.2. Representation of design variables

The problem considers design variables for wing and aerofoil
design parameters. The aerofoil geometry is represented using
Bézier curves with a combination of a mean line and thickness dis-
tribution control points. The upper and lower bounds for mean and
thickness control points at root, crank1, crank2 and tip sections are
as illustrated in Figs. 12a–12d.

The wing planform shape is parameterised by considering the
variables described in Fig. 13 and their design bounds are shown
in Table 2. Three wing section areas, three sweep angles and two
taper ratios are considered. These wing design parameters result
in different span length (b) and Aspect Ratio (AR) for each candi-
date. One constraint is that the taper ratio at crank2 should not
be higher than the taper ratio at crank1, i.e. (kC2 6 kC1).

4.3. Hybrid-Game (Pareto + Nash) setup

In this paper, Hybrid-Game employs five Nash-Players and one
Pareto-Player as shown in Table 3. The Pareto-Player of Hybrid-
Game uses all 76 design variables for the aerofoil sections and wing
planform. Aerofoil sections at root, crank1, crank2 and tip are opti-
V configuration.



Fig. 8. Baseline UCAV wing airfoil sections.

Fig. 9. Mission profile of baseline UCAV.

Fig. 10. Weight distribution along the mission.
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mized by Nash-Players 1–4 (4 � 17 design variables) while Nash-
Player5 optimizes wing planform only (eight design variables). In
contrast, each node (Node0–6) of HAPMOEA considers all 76 de-
sign variables for the aerofoil sections and wing planform.
4.4. Fitness functions

Table 4 shows the fitness functions considered by the Pareto-
Player and Nash-Players. The Pareto-Player considers two fitness



Fig. 11. CLMin
for Sector2–Sector4.

Fig. 12a. Control points at root section.
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functions to maximize mean CL and mean L/D. The five Nash-Play-
ers consider one fitness function to optimize aerofoil sections and
wing planform shape. In practice, the Nash-Players look for their
elite/best aerodynamic shape for aerofoil sections and wing plan-
form design parameters and these elite design parameters will be
seeded to the Pareto-Player to accelerate its convergence. Each
node (Node0–Node6) of HAPMOEA uses two fitness functions of
Pareto-Player.

The flight conditions are;

� Sector2: M1 ¼ 0:7, a ¼ 6:05� and altitude 40,000 ft. Sector4:
M1 ¼ 0:9, a ¼ 0:5� and altitude 250 ft.

4.5. Interpretation of numerical results

Both HAPMOEA and Hybrid-Game were run using two 2.4 GHz
processors. The HAPMOEA algorithm was allowed to run approxi-
mately for 6667 function evaluations and took 200 h. The Hybrid-
Game (Hybrid MOEA) algorithm was run approximately for 1300
function evaluations and took 50 h. The Pareto fronts obtained by
HAPMOEA and Hybrid-Game are compared to the baseline design
in Fig. 14. It can be seen that Hybrid-Game produces better non-
dominated solutions in terms of fitness function 1 and 2 when
compared to HAPMOEA.

Table 5 compares the Pareto optimal solutions obtained by
HAPMOEA and Hybrid-Game. It can be seen that Hybrid-Game pro-
duces twice the value of the lift coefficient (CL) while slightly better
results for inverse mean lift to drag ratio (L/D) when compared to
the Pareto members obtained by HAPMOEA.

Table 6 compares the quality of drag coefficient obtained by
HAPMOEA and Hybrid-Game using the uncertainty mean and var-
iance statistical formulas. It can be seen that Pareto members of
Hybrid-Game produces lower drag at [Sector2:Sector4] while Pare-
to members from HAPMOEA produce stable drag.

The Sector sweep is plotted with the lift coefficient and lift to
drag ratio as shown in Figs. 15a and 15b. The range of Sector sweep



Fig. 12b. Control points at crank1 section.

Fig. 12c. Control points at crank2 section.

Fig. 12d. Control points at tip section.
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Fig. 13. Wing planform design variables.

Table 2
Wing planform design bounds.

Variables bounds S1 S2 S3 KR�C1 (�) KC1�C2 (�) KC2�T (�) kC1 kC2

Lower 50.46 10.09 5.05 49.5 25 25 0.15 0.15
Upper 63.92 16.82 10.09 60.5 35 35 0.45 0.45

Note: Area (S) is in m2 and one geometrical constraint is applied kC2 6 kC1.

Table 3
Distribution of design variables for Hybrid-Game and HAPMOEA.

Design variables Hybrid-Game on HAPMOEA HAPMOEA

N-P1 N-P2 N-P3 N-P4 N-P5 P-Player

AerofoilRoot (17 DVs)
p p p

AerofoilCrank1 (17 DVs)
p p p

AerofoilCrank2 (17 DVs)
p p p

AerofoilTip (17 DVs)
p p p

Wing Planform (8 DVs)
p p p

Note: N-Pi represents ith Nash-Player and P-Player indicates the Pareto-Player.

Table 4
Fitness functions for players of Hybrid-Game.

Player Fitness function Optimization criteria

Pareto-Player fitnessðfParetoÞ ¼minð1=ðCLÞÞ
fitnessðfParetoÞ ¼minð1=ðL=DÞÞ

Optimize wing planform and aerofoil sections at root, crank1, crank2 and tip to maximize CL

andL=D
Nash-Player1 fitnessðfNP1Þ ¼minð1=ðCLÞÞ Maximize total wing CL using design variables for AerofoilRoot only, all other design variables are

fixed
Nash-Player2 fitnessðfNP2Þ ¼minð1=ðCLÞÞ Maximize total wing CL using design variables for AerofoilCrank1 only, all other design variables

are fixed
Nash-Player3 fitnessðfNP3Þ ¼minð1=ðCLÞÞ Maximize total wing CL using design variables for AerofoilCrank2 only, all other design variables

are fixed
Nash-Player4 fitnessðfNP4Þ ¼minð1=ðCLÞÞ Maximize CL using design variables for AerofoilTip only, other design variables are fixed
Nash-Player5 fitnessðfNP5Þ ¼minð1=ðL=DÞÞ Maximize total wing L=D using design variables for wing planform only, all other design

variables are fixed

Note: CL ¼ 1
2 ðCLSector2 þ CLSector4 Þ and L=D ¼ 1

2 ðL=DSector2 þ L=DSector4Þ.
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is M1 2 [0.7:0.9], a 2 [6.05�:0.5�] and altitude (ft) 2 [40,000:250].
Pareto fronts obtained by HAPMOEA and Hybrid-Game produce
higher CL and L/D when compared the baseline design. Pareto
members from both optimization techniques produce similar



Fig. 14. Comparison of Pareto optimal front obtained by Hybrid-Game and HAPMOEA.

Table 5
Comparison of fitness values obtained by HAPMOEA and Hybrid-Game.

Objective Baseline design HAPMOEA (200 h) Hybrid-Game (50 h)

PM1 (BO1) PM6 (CS) PM15 (BO2) PM1 (BO1) PM6 (CS) PM10 (BO2)

1=ðCLÞ 12.232 9.890 (�19%) 10.096 (�17%) 10.562 (�14%) 7.836 (�36%) 8.017 (�34%) 8.223 (�32%)

1=ðL=DÞ 0.410 0.095 (�77%) 0.078 (�81%) 0.068 (�83%) 0.054 (�87%) 0.050 (�88%) 0.046 (�89%)

Note: BO represents the best objective solution and CS stands for the compromised solution.

Table 6
Comparison of CDQuality

obtained by HAPMOEA and Hybrid-Game.

Objective Baseline design HAPMOEA (200 h) Hybrid-Game (50 h)

PM1 (BO1) PM6 (CS) PM15 (BO2) PM1 (BO1) PM6 (CS) PM10 (BO2)

CD 12.232 0.025 0.011 (�56%) 0.009 (�64%) 0.009 (�64%) 0.009 (�64%) 0.0089 (�64%)

dCD 0.410 5.49 � 0–5 1.49 � 10�5 1.56 � 10�5 2.11 � 10�5 2.29 � 10�5 2.24 � 10�5

Note: Quality is represented by mean (performance) and variance (sensitivity/stability).

Fig. 15a. CL vs. Sectors: Hybrid-Nash represents Hybrid-Game.
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Fig. 15b. L/D vs. Sectors: Hybrid-Nash represents Hybrid-Game.

Fig. 16a. Pareto member 5 obtained by (HAPMOEA).

Fig. 16b. Pareto member 6 obtained by (Hybrid-Game).
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results for CL and L/D at Sector2 however the Pareto non-
dominated solutions from Hybrid-Game produce better CL and
L/D at Sector4.

The top, side, front and 3D view of compromised model from
HAPMOEA (Pareto member 5) and Hybrid-Game (Pareto member
6) are shown in Figs. 16a and 16b. Even though the Hybrid-Game
spent less computational time when compared to HAPMOEA, both
compromised solutions are geometrically similar.
4.6. Summary

This paper explored the optimization methods: HAPMOEA and
Hybrid-Game (Hybridised MOEA) for solving multi-objective de-
sign optimization UCAV. HAPMOEA has been hybridised by using
Nash-Game without hierarchical multi-population/fidelity topol-
ogy: Hybrid-Game. Numerical results show that by introducing
Nash-Game as a companion optimizer to help or guide the multi-
objective evolutionary optimizer to capture a fast Pareto non-dom-
inated front. It is also shown that the Hybrid-Game (Hybridised
MOEA) reduces the computational cost while generating better
Pareto front when compared to HAPMOEA. The reason why Hy-
brid-Game has superiority in terms of optimization efficiency is
that the Nash-Game decomposes one complex multi-objective de-
sign problem into five simpler single-objective design problems
corresponds to five Nash-Players.
5. Conclusions

The optimization methods HAPMOEA and Hybrid-Game were
demonstrated and they were implemented to solve multi-objective
design problem. It is shown that both methods produce a set of
useful Pareto non-dominated solutions. It was also shown that
the coupling of Pareto optimality and Nash-Game; Hybrid-Game
has superiority on both computational efficiency and solution
quality when compared to HAPMOEA. Both methodologies couple
a robust MOEA, with aerodynamic analysis tools. A family of Pareto
optimal designs obtained by both HAPMOEA and Hybrid-Game
provides a selection to the design engineers to proceed into more
detail phases of the design process. Even though the numerical re-
sults of the methods show the simultaneous improvement in UCAV
aerodynamic performance on CL and L/D there is a fluctuation be-
tween Sector2–Sector3 and Sector3–Sector4 which can cause flight
control or structural failures. This fluctuation can be avoided by
using uncertainty design technique during optimization. Future
work will focus on coupling Hybrid-Game and high fidelity aerody-
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namics and electromagnetic analysis tools under uncertainty in
flight conditions and electromagnetic frequencies.
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