NACRA17 real time dynamic simulation

Hugo Roche*, Paul Kerdraon†

* VPLP

18 Allée Loïc Caradec, 56000 Vannes, France e-mail: h.roche@vplp.fr, web page: https://vplp.fr/

† VPLP

18 Allée Loïc Caradec, 56000 Vannes, France e-mail: p.kerdraon@vplp.fr, web page: https://vplp.fr/

ABSTRACT

This study presents the development and validation of physical models to simulate the behavior of the NACRA17 Olympic catamaran in a real-time dynamic environment. Simulations are carried out within an in-house system-based dynamic velocity prediction program (DVPP) [1]. Key components include the hydrodynamic and structural response of the appendages for fluid-structure interaction (FSI), the hydrodynamic modeling of the hulls and the aerodynamic modeling of the rig. A significant aspect of the study involved designing control laws to replicate crew movements, enabling active control for flight stability during simulation. Validation was performed through two complementary approaches: measuring the static structural response of the appendages on a jig and assessing the overall performance of the catamaran during sailing trials. These validated models, combined with active control strategies, provide a robust framework for analyzing the catamaran's performance and behavior under realistic conditions, offering valuable insights for athletes training and performance enhancement, with optimization of boat trims and control strategies.

REFERENCES

- [1] Kerdraon, P. et al. Development of a 6-DOF Dynamic Velocity Prediction Program for offshore racing yachts. *Ocean Engineering 212* (2020).
- [2] Graf, K., et al. VPP-Driven Sail and Foil Trim Optimization for the Olympic NACRA 17 Foiling Catamaran. *Journal of Sailing Technology* 5 (2021)
- [3] Knudsen, S. et al. Towards Dynamic Velocity Prediction of NACRA 17. *Journal of Sailing Technology* 8 (2023)