

Marie Skłodowska-Curie Actions Innovative Training Networks

European Training Network number 675919
AdMoRe project
Model Order Reduction for Non Linear Mechanics.

PhD student:

Rubén Ibáñez Pinillo
Supervisors:
F. Chinesta, E. Abisset-Chavane,
A. Huerta

Industrial Correspondants:
E. Abenius, J.L. Duval

November 22-23, 2017. CM3, Brussels

Motivation of the project

AdMoRe

Context:

Automotive industry is moving towards a new generation of cars.

Main idea:

Cars are furnished with radars, cameras, sensors, etc... providing useful information about the environment surrounding the car.

Goals:

Provide an efficient model for the radar input/output.
Reducing computational costs by means of big data techniques.

Introduction

AdMoRe

Ways to reduce the computational cost:

1.Reduce the complexity of the model.

Maxwell equations need a very fine mesh due to high frequency constraints.

Far-Field approaches tend to be less accurate in near field.

Models	Maxwell Equations	Far-Field Approaches	Geometrical Optics
Real Time			
Accuracy			$? ?$

2.Use manifold learning techniques to unveil relevant information.

The Concept of Manifold

Manifold: A subspace of dimension N belonging to a space of dimension D , where physics is organized.

AdMoRe

$$
\mathcal{M}=\left\{\mathbf{x} \in \mathcal{R}^{D} \mid \mathbf{f}(\mathbf{x})=\mathbf{0}\right\}
$$

The Concept of Manifold

How can a manifold help in model order reduction?

AdMoRe

AIRBUS

VOLKSWAGEN

SIEMENS

Motivation of the project

Context:

AdMoRe

Nonlinear dimensionality reduction becomes a powerful tool for extracting the manifolds that can be then used for making safely interpolations, for extracting the uncorrelated parameters that models involve and for defining general parametric solutions.

Gather the information in the manifold as an off-line stage, then making simulations faster in the on-line stage.

Goals:

Extract relevant information is extracted when the data is organized in some specific pattern.

Reduce the computational cost associated to the electromagnetic simulation of the autonomous car.

-Geometrical Optics

-Fundaments
-Scenario
-Convergence

-Black-Boxing the Scenario
-Scenario Manifold

AIRBUS

VOLKSWAGEN

-Future Work

AdMoRe

GEOMETRICAL OPTICS

Geometrical Optics: Fundaments

AdMoRe

Optical reflections are produced inside the domain.

Each time a reflection is produced, some amount of energy is retained in the surface controlled by a parameter called absorption coefficient.

$$
E_{\text {ext }}\left(\mathrm{x}_{0}\right)=E_{\text {int }}(\mathrm{x}), \mathrm{x} \in \partial \Omega
$$

In our case the external energy will be the energy sent out by the radar and we will capture only the energy coming back to the receptor.

Geometrical Optics: Fundaments

Marie Skłodowska-Curie ITN-ETN

AdMoRe

Single Ray Equation emisor and receptor located at xO

$$
E_{e x t}^{\alpha_{4}}=r E_{x 0}^{\alpha_{2}}
$$

Repeating the procedure for any possible angle of departure:

$$
\boldsymbol{e}_{\text {absorbed }}=\boldsymbol{M} \boldsymbol{e}_{\text {external }}
$$

The (i, j) component of the matrix is the energy coming back to the source with a discretized arrival angle $\alpha_{a}=i \Delta \alpha$ which has been thrown from an angle of departure $\alpha_{d}=j \Delta \alpha$

Geometrical Optics: Fundaments

 ITN-ETNAdMoRe

GROUP
VOLKSWAGEN

Possible Quantities of Interest

Dep./ Arr. Energy
Departure Energy

Arrival Energy

Total Energy

$$
E_{D A}=E\left(\alpha_{d}, \alpha_{a}\right)
$$

\square

$$
E_{D}=\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} E\left(\alpha_{d}, \alpha_{a}\right) d \alpha_{a}
$$

$$
E_{A}=\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} E\left(\alpha_{d}, \alpha_{a}\right) d \alpha_{d}
$$

$$
E_{T}=\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} E\left(\alpha_{d}, \alpha_{a}\right) d \alpha_{d} d \alpha_{a}
$$

Geometrical Optics: Simple Case

Marie Skłodowska-Curie ITN-ETN

AdMoRe

AIRBUS

 GROUP VOIKSWAGEN SIEMENS eתBoth source and receptor are located at the middle point of the south wall. (Red point)

Geometrical Optics: Simple Case

Geometrical Optics: Convergence

Marie Skłodowska-Curie ITN-ETN

AdMoRe

Convergence analysis of total energy coming back to the radar.

$$
\mathcal{E}=\frac{\left\|E_{T}^{H}-E_{T}^{L}\right\|}{E_{T}^{H}}
$$

AdMoRe

©
 \section*{BLACK-BOXING
 \section*{BLACK-BOXING the scenario} the scenario}

AIRBUS

VOLKSWAGEN

SIEMENS

Black Boxing the Scenario

Replace objects inside the scenario by a "black-box" and a transfer function.

AdMoRe

Advantages:

-Faster on-line simulations since only a box has to be meshed.
-Parameterization of the scenario becomes easier.

Black Boxing the Scenario

The transfer function can be seen as a manifold establishing geometrical and energetic relationships between input/output ray.

AdMoRe

Indeed, input and output position and orientation of the ray just like the ratio of energy between incoming and outcoming ray will appear in the transfer function.

Black Boxing the Scenario

AdMoRe

Example: Circle
X axis: Arc length of the square (starting from south-west corner, counterclockwise)
Y axis: Input ray orientation. Absortion coefficient: 0.5

Black Boxing the Scenario

Example: Circle

AdMoRe

Black Boxing the Scenario

Example: Circle

AdMoRe

Black Boxing the Scenario

Example: Circle

AdMoRe

Black Boxing the Scenario

Example: Star
 X axis: Arc length of the square (starting from south-west corner, counterclockwise)

Y axis: Input ray orientation. Absortion coefficient: 0.5

AdMoRe

Black Boxing the Scenario

Example: Star

AdMoRe

Angular Deviation

Black Boxing the Scenario

Example: Star

AdMoRe

Output Length

Black Boxing the Scenario

Example: Star

AdMoRe

AdMoRe

©

SCENARIO MANIFOLD

AIRBUS

Scenario Manifold

Goals: Scenario identification knowing the electromagnetic response.

Determine where and how many receptors are needed to determine unequivocally a scenario.

??

Scenario Manifold

Let's assume that M scenarios are precomputed off-line.

The electromagnetic reponse of a single scenario is written as:

$$
f(\alpha ; \mathbf{p})
$$

Where the blue terms are angular coordinates and the red ones are the parameterization of the manifold.

$$
\left.\min \left(\left\|f\left(\alpha ; \mathbf{p}_{n}\right)-f\left(\alpha ; \mathbf{p}_{i}\right)\right\|_{L_{2}}\right)\right) \forall \mathbf{p}_{i} \in \mathcal{M}_{S}
$$

Those scenarios minimizing the functional will potential candidates for \mathbf{p}_{n}.

Scenario Manifold

AdMoRe

Step 1: Find among all the data set, those scenarios with "similar" electromagnetic response.

Result: Many scenarios satisfied the same electromagnetic response, but they were geometrically different.

Scenario Manifold

AdMoRe

Step 2: A small subset of scenarios sharing the electromagnetic reponse is obtained.
Therefore, there will be some obstacles causing an impact in the electromagnetic response and some other which does not.

That is what we will call, active and non active scenario, respectively.

Making a covariance analysis:

Colour				
Covar. (\%)	63	92	60	61

Identified 3

Scenario Manifold

Using three sensors..

Marie Skłodowska-Curie ITN-ETN

AdMoRe

Scenario Manifold

Marie Skłodowska-Curie ITN-ETN

AdMoRe

AIRBUS GROUP

 VOLKSWAGEN SIEMENS eri

Scenario Manifold

AdMoRe

How to distinguish redundant data in the parameterizarion of the manifold?
Computing the difference of the electromagnetic reponse between two scenarios (red line) can be seen as a directional derivative in the manifold.

$$
\nabla_{\mathbf{p}} f \cdot \frac{\mathbf{d}}{\|\mathbf{d}\|} \simeq \frac{f_{S 2}-f_{S 1}}{\|\mathbf{d}\|}
$$

Making all pairwise combinations in the local neighbourhood allows to estimate the gradient in a point.

All \mathbf{p} parameters whose derivative is negligible can be inferred as redundant data.

Future prospects

Geometrical Optics

Marie Skłodowska-Curie ITN-ETN

AdMoRe
-Comparison with Maxwell Equations.
Black-Boxing the Scenario
-Reduce the cost of computing a transfer function. Smart selection of query points to do interpolation in the rest of the input domain. Scenario Manifold
-Add more sensors to better distinguish different scenarios.
-Differenciate active obstacles from redundant obstacles based on the directional derivative or covariogram based.
Domain Decomposition
-Having a physical domain partitioned in such a way that in some areas geometrical optics is solved and in another areas Maxwell equations.

AdMoRe

THANK YOU FOR THE ATTENTION.

AIRBUS

VOLKSWAGEN
SIEMENS

QUESTIONS?

