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Abstract. Membrane structures are vulnerable to ponding due to their large deformation characteristic.
The ponding on membrane structures is usually caused by rainfall on an already deformed structure due
to a seeding event such as snow accumulation. This paper discusses two monolithic methods and a par-
titioned method for determining the static deformation of the membrane structure due to a given volume
of ponding water. The monolithic methods involve simultaneously solving the structural equations and
the fluid equations under static conditions, to obtain the structural deformation. The partitioned method
on the other hand involves external coupling iterations involving a structural solver and volume conserv-
ing solver, where the volume conserving solver is responsible for updating the free surface to maintain
a given volume of water. The discussed methods are compared in terms of robustness and computing
time. It was found that the monolithic methods were computationally efficient. However, the parti-
tioned method-apart from being modular-was found to be more robust with quasi-Newton convergence
accelerators.

1 INTRODUCTION

Ponding on membrane structures is a phenomenon of water accumulation on a localized region where
the structure deforms under the load of certain volume of water. This is in most cases initiated by a
seeding event such as snow accumulation. Following the seeding event, if there is rainfall, water is
gradually filled in the local depression leading to further deformation. In the extreme event, due to the
absence of sufficient stiffness, it may lead to a vicious cycle of further deformation and accumulation
of water resulting in a structural collapse. Moreover, if the rain is accompanied by strong wind, the
wind flow around the structure can cause large vertical oscillations, as happened in 2011 during the
Pukkelpop festival held in Kiewit (Belgium). This phenomenon is one of the reasons for the extensive
damage of the festival tents. The investigation of such events requires fluid-structure interaction (FSI)
simulation involving membrane structure, water and wind flow. Imposing an initial condition on the
FSI simulation with a pond on a membrane structure requires computation of static deformation of the
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membane structure under the load of fixed volume of ponding water, which is the main motivation of the
current work.

In the literature, there are some studies related to the problem discussed in this work. One such study is
by Szyszkowski and Glockner [1] which deals with ponding stability and deformation on spherical inflat-
ables by solving axi-symmetric membrane equations with hydrostatic loads. The use of axi-symmetric
membrane equations can be also found in [2], where the author has focussed on deformations of ini-
tially flat, simply supported circular membrane structures under load of gradually accumulating fluid. A
more general approach in the finite element framework is discussed in [3] where they linearize the static
behaviour of an incompressible fluid under gravity to obtain the symmetric load stiffness matrix used
in the Newton-Raphson (N-R) iterations. A more recent paper by Hoareau and Deü [4, 5] uses a level
set approach for the numerical integration on the loaded surface to compute volume, nodal forces and
load stiffness matrix, where the element faces were part of a quadratic hexahedral mesh. They computed
the deformed shape of tanks partially filled with liquid by performing volume conservation in every
structural N-R iteration with the added load stiffness matrix discussed in [3].

The first monolithic method discussed in this paper involves free surface update using volumes-conserving
algorithm after every structural N-R iteration and is similar to the method discussed in [4, 5]. The dif-
ference lies in the use of a more efficient and robust method for volume-conservation, because our ap-
plications comprises of much more flexible structures, sometimes almost flat geometry at the beginning
of the solution procedure. The second monolithic method introduced in the paper solves the structural
equations under hydrostatic loads with an additional constraint equation that the fluid volume should be
equal to the target volume. The combined system of equations is solved using the N-R method by lin-
earizing the equations with this constraint. The proposed method is therefore called monolithic method
with volume conservation as constraint (MVCC), while the first monolithic method is called monolithic
method with volume conservation inside structural iterations (MVCIS). The MVCC method was devel-
oped because it was found that the MVCIS method which imposes strict volume conservation at every
N-R iteration failed to converge in some numerical experiments.

The monolithic methods discussed above can only be implemented if the structural solver can be accessed
for modification. In some cases, where the solver is a commercial software, this is not possible and
therefore the ponding analysis can be only performed using the partitioned approach. One example of
this approach is presented in the work of Bown et al. [6], where an in-house structural code inTENS is
coupled with a shallow water solver in a partitioned method to analyze ponding on tensioned membrane
structures. The partitioned approach discussed in this paper involves external coupling iterations between
a structural solver and the volume-conserving solver. In every coupling iteration, the output of one solver
is used as an input to the other solver. The coupling iterations are continued till there is no change in
the structural displacements. To stabilize and accelerate the convergence of the coupling iterations,
convergence accelerators such as Aitken relaxation [7, 8] and IQN-ILS [9] are used.

2 MATHEMATICAL FORMULATION

Let us consider a membrane structure whose surface is denoted by ∂Ωs. We seek the equilibrium shape
of the membrane structure under the load of a fixed target volume Vt of an incompressible fluid with
specific gravity γ f . This requires that the equilibrium equations of the structure under the hydrostatic
load from the fluid are satisfied along with the constraint that the fluid volume should be equal to the
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target fluid volume.

Figure 1: Ponding on a membrane structure.

The equilibrium equations of the structure in the current configuration can be stated using the principle
of virtual work ∫

∂Ωs

t σσσ : δεεε dS︸ ︷︷ ︸
δWint

−
∫

∂Ωs

ttt ·δuuu dS︸ ︷︷ ︸
δWext

= 0, ∀δuuu ∈ Cu (1)

where σσσ is the Cauchy stress tensor and εεε = 1
2

(
∇xxxδuuu+∇T

xxx δuuu
)

is the virtual Eulerian strain tensor, with
∇xxx•= ∂•

∂xxx , δuuu as virtual displacement field and Cu is the kinematically admissible space of smooth enough
functions. The thickness of the membrane is denoted by t, which need not be constant. The equation
has two terms: the internal virtual work (δWint), and the external virtual work (δWext) from traction ttt. In
order to solve Eq. 1, we express the stresses in terms of strains and subsequently the displacements as
unknown. The relation between the stresses and strains is modeled by the constitutive relation. Different
constitutive relations are used based the application. In this paper we use the simplest linear material
law: plane-stress Saint-Venant Kirchhoff [10]. The relation between the stress and strain tensor can be
expressed in Voigt notation as,

 σ11
σ22
σ12

=
E

1−ν2

 1 ν 0
ν 1 0
0 0 1−ν

2

 ε11
ε22
2ε12

 , (2)

where E and ν are the Young’s Modulus and Poisson’s ratio, respectively.

The traction ttt in the expression of δWext is obtained from the hydrostatic loading of the ponding fluid. If
we denote the membrane surface below the free surface as ∂Ω f s, then we can write,
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ttt =−γ f (z− z f )n̄nn ∀xxx ∈ ∂Ω f s, (3)

ttt = 000 ∀xxx ∈ ∂Ωs \∂Ω f s,

(4)

Additionally, we have the volume constraint,

Vf =Vt , (5)

that needs to be satisfied, where the fluid volume Vf can be expressed in terms of a surface integral of
infinitesimal vertical volume elements dV = (z− z f )eeez · n̄nn dS as,

Vf =
∫

∂Ω f s

(z− z f ) eeez · n̄nn dS, (6)

where z and z f are the z-coordinate of a point on ∂Ω f s and z-coordinate of the horizontal free surface ∂Ω f ,
respectively and n̄nn is the outward-pointing unit normal vector of a point on ∂Ω f s.

3 SOLVER COMPONENTS

3.1 Structural solver

As explained in the previous section, in order to obtain equilibrium shapes of the membrane structure
under the hydrostatic load from the ponding fluid we express the virtual work equation, Eq. (1) with only
displacements as unknown. For large displacement cases, the internal virtual work δWint(uuu) is a non-
linear function of uuu. Moreover, if the traction depends on the deformed shape of the structure, the external
virtual work also depends non-linearly on the displacement field. Few examples of such load cases can be
found in [3, 11]. The hydrostatic load from the ponding fluid also falls in this category as the pressure and
nodal force vector depends on the membrane deformation below the free surface [3]. The resulting non-
linear equation in the continuous displacement field cannot be generally solved analytically. Therefore,
techniques such as finite element method are used to transform the non-linear virtual work equation into
a set of a finite number of non-linear equations which depend on a discrete nodal displacement vector ûuu,
which can be written as,

f̂ff ext(ûuu)− f̂ff int(ûuu) = 0, (7)

where f̂ff int is the internal nodal forces and f̂ff ext is the external nodal forces with the accent •̂ representing
the associated nodal quantities. Eq. (7) is typically solved using the N-R method, where the linearized
equation at iteration n+1 can be written as,

(
∂ f̂ff int

∂ûuu
− ∂ f̂ff ext

∂ûuu

)
∆ûuun+1 = f̂ff ext(ûuu

n)− f̂ff int(ûuu
n)

(KKKmem(ûuun)−KKKl(ûuun))∆ûuun+1 = f̂ff ext(ûuu
n)− f̂ff int(ûuu

n) (8)

The matrix KKKmem is the familiar global tangent stiffness matrix from membrane elements; interested
readers can refer to [12] for more details. The second matrix in Eq. (8) is called the load stiffness matrix,
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which depends on the type of follower load [3, 11]. In this paper, following the work of [3], we can split
the load stiffness matrix into three parts,

KKKl = KKK∆nnn
l +KKK∆z

l +KKK∆z f
l , (9)

where KKK∆nnn
l represents the change in nodal force from the change in surface normal due to the membrane

deformation, KKK∆z
l captures the effect of change in hydrostatic pressure from membrane displacement

alone and the effect of change in hydrostatic pressure due to free surface movement owing to the incom-
pressible behaviour of the fluid is taken into account by KKK∆z f

l . The notation used here is different from
that in [3] for clearly showing the role of each component. Nevertheless, the expression of each compo-
nent can be easily inferred from the paper. Depending on the method, if it is monolithic or partitioned,
we use either full or partial load stiffness matrices, as explained in Sections 4 and 5.

The procedure for building and solving the system of equations in Eq. (8) is implemented in an open-
source finite element framework called KRATOS [13]. The required load stiffness matrices are added or
removed based on the type of the method being used for the calculation.

3.2 Volume-conserving solver

The incompressible behaviour of the ponding fluid combined with the requirement of a horizontal flat free
surface under static conditions means that when the membrane surface below the free surface deforms,
the free surface has to move vertically to conserve the fluid volume. This behavior of the fluid is simulated
by a solver called volume-conserving solver. The solver takes the target fluid volume as an input and
moves the free surface vertically to achieve the target fluid volume. It consists of two parts: volume
calculation and an iterative algorithm to update the free surface. The equation to calculate the volume
enclosed by ∂Ω f ∪∂Ω f s is already given in Eq. (6) and its derivative with respect to z f can be written as,

∂Vf

∂z f
=

∫
∂Ω f s

−eeez · n̄nn dS = A f , (10)

In the current work, the leap-frogging Newton’s method is used for conserving a given volume. This
method is discussed in detail in [14]. The equations used for the iterations to conserve the volume are
given in Eqs. (11) and (12), with the function f (zm

f ) being the volume residual (V m
f −Vt), and f ′(zm

f ) its
derivative with respect to z f , where the superscript •m denotes the iteration number and the accent •̌ is
used to specify quantities at the intermediate position.

žm
f = zm

f −
f (zm

f )

f ′(zm
f )

(11)

zm+1
f = zm

f −
f (zm

f )
2

f ′(zm
f )
(

f (zm
f )− f (žm

f )
) (12)
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4 MONOLITHIC METHODS

4.1 Monolithic method with volume conservation inside structural solver (MVCIS)

The first method which is classified as a monolithic method involves volume conservation inside the
structural N-R iterations. In this method we solve the structural equations by incorporating the full
linearized equations of the fluid loading inside the N-R iterations of the structural solver, which means
the load stiffness matrices KKK∆nnn

l , KKK∆z
l , KKK∆z f

l are included in the N-R iterations. Along with this, the volume
conserving-algorithm discussed in Section 3.2 is used to update the free surface after every N-R iteration.
The complete algorithm is written in Algorithm. 1

Algorithm 1 Monolithic method with volume conservation inside structural iterations (MVCIS)
1: n = 0
2: Find z0

f using volume-conserving solver with Vt as input argument

3: while
∥∥∥ f̂ff ext − f̂ff int

∥∥∥> ε and n < nmax do

4: Update: KKKmem, KKK∆nnn
l , KKK∆z

l , KKK∆z f
l , f̂ff ext and f̂ff int using ûuun and zn

f

5: Solve:
(

KKKmem−KKK∆nnn
l −KKK∆z

l −KKK∆z f
l

)
∆ûuun+1 = f̂ff ext − f̂ff int

6: Update displacement: ûuun+1 = ûuun +∆ûuun+1

7: Update structure: x̂xxn+1 = X̂XX + ûuun+1

8: Update free surface using volume-conserving solver with Vt as input argument
9: n = n+1

10: end while

4.2 Monolithic method with volume conservation as constraint (MVCC)

In the monolithic method discussed in Section 4.1 (MVCIS), we update the free surface after every N-R
iteration to achieve the target volume. This will mostly work if the initial shape of the structure is close
to the solution but if the initial shape is far away from the solution then the N-R iterations may diverge.
It was noticed during the numerical experiments that during the initial N-R iterations sometimes the
structure moved above the free surface and the volume conserving solver failed as the fluid volume and
free surface area required for the algorithm becomes zero. The reason is believed to be the enforcement
of the volume constraint exactly in every N-R iteration and the lack of linearized behavior of the other
solver in both solvers, which will be explained later in this section.

The main idea behind this monolithic method is that there is no need to satisfy the volume constraint in
every N-R iteration. Instead, the volume constraint is only required to be satisfied when the convergence
is achieved. The formulation of this method is as follows: we seek a solution to the discrete equilbrium
equation given in Eq. (7) with the volume constraint g(ûuu,z f ),

f̂ff int(ûuu)− f̂ff ext(ûuu,z f ) = 0, (13)

g(ûuu,z f ) =Vf (ûuu,z f )−Vt = 0. (14)
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Here, we consider z f as an additional independent variable, which allows the volume conservation con-
straint to be incorporated in the system of equations. The system of equations given in Eqs. (13) and
(14) can be solved using the N-R algorithm, where the linearized form at iteration n+ 1 can be written
as:

∂ f̂ff int (ûuu
n)

∂ûuu
−

∂ f̂ff ext

(
ûuun,zn

f

)
∂ûuu

∆ûuun+1−
∂ f̂ff ext

(
ûuun,zn

f

)
∂z f

∆zn+1
f = f̂ff ext

(
ûuun,zn

f
)
− f̂ff int (ûuu

n) (15)

∂g
(

ûuun,zn
f

)
∂ûuu

∆ûuun+1 +
∂g
(

ûuun,zn
f

)
∂z f

∆zn+1
f =Vt −Vf

(
ûuun,zn

f
)
. (16)

with,

∂ f̂ff int

∂ûuu
= KKKmem;

∂ f̂ff ext

∂ûuu
= KKK∆nnn

l +KKK∆z
l ;

∂ f̂ff ext

∂z f
= γ f

∫
η

∫
ξ

NNNT nnn dξdη

∂g
∂ûuu

=

(∫
η

∫
ξ

NNNT nnndξdη

)T

;
∂g
∂z f

= A f ,

where NNN is the shape function matrix used in finite elements. Substituting all the terms and eliminating
∆zn+1

f from Eqs. (15) and (16) we get,

(
KKKmem−KKK∆nnn

l −KKK∆z
l −KKK∆z f

l

)
∆ûuun+1 = f̂ff ext − f̂ff int +

γ f

(
Vt −V n

f

)
A f

∫
η

∫
ξ

NNNT nnnh dξdη︸ ︷︷ ︸
fff ∆V

(17)

∆zn+1
f =

(
Vt −V n

f

)
A f︸ ︷︷ ︸

∆zn+1
f , ∆V

−

(∫
η

∫
ξ

NNNT nnnh dξdη

)T
∆ûuun+1

A f︸ ︷︷ ︸
∆zn+1

f , ∆uuu

. (18)

where KKK∆z f
l = γ f

(∫
η

∫
ξ

NNNT nnn dξdη

)(∫
η

∫
ξ

NNNT nnndξdη

)T
. The method is finally written in Algorithm 2.

Note that the main difference between this monolithic method and MVCIS is that instead of a nested
volume conservation, there is an explicit equation for the free surface update which can be split into
two parts. The first part ∆z f , ∆V compensates for the difference between the current fluid and the target
fluid volume, while the second part, ∆z f , ∆uuu moves the free surface to mitigate the change in volume due
the deformation of the wetted surface. The volume residual also appears as an extra pressure, p∆V =
γ f (Vt −Vf )/A f in the structural equations, which should converge to zero when the solver converges.
If the volume difference is positive then it applies a positive extra pressure on the structure resulting in
increase in fluid volume and vice versa. Clearly, the linearized behavior of the free surface update is
incorporated in the structural solver and the linearized behavior of the structural solver in the free surface
update, making it more robust. By contrast, in MVCIS this is only the case with the structural solver.
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Algorithm 2 Monolithic method with volume conservation as a constraint (MVCC)
1: n = 0
2: Find z0

f using volume-conserving solver with Vt as input argument

3: while
∥∥∥ f̂ff ext − f̂ff int + f̂ff ∆V

∥∥∥> ε and n < nmax do

4: Update: KKKmem, KKK∆nnn
l , KKK∆z

l , KKK∆z f
l , f̂ff ext , f̂ff ∆V and f̂ff int using ûuun and zn

f

5: Solve:
(

KKKmem−KKK∆nnn
l −KKK∆z

l −KKK∆z f
l

)
∆ûuun+1 = f̂ff ext − f̂ff int + f̂ff ∆V

6: Update displacement: ûuun+1 = ûuun +∆ûuun+1

7: Update structure: x̂xxn+1 = X̂XX + ûuun+1

8: Calculate ∆zn+1
f using Eq. (18)

9: zn+1
f = zn

f +∆zn+1
f

10: n = n+1
11: end while

5 PARTITIONED METHOD

In the partitioned approach the problem of finding the static deformation under ponding load is formu-
lated as a fixed-point problem with structural displacement field as the variable. The structural solver
uses the vertical distance field ddd (= z− z f ) from the free surface to calculate the hydrostatic pressure
and solves for the displacement uuu. Based on the updated structural deformation the volume-conserving
solver updates the free surface position. This process is continued till the norm of the fixed point resid-
ual, discussed below, is lower than a certain pre-defined tolerance. The fixed point iterations discussed
above can be used with the convergence accelerators such as Aitken relaxation [7, 8] and IQN-ILS [9] to
achieve faster convergence. Mathematically, if we denote the volume-conserving solver as an operator
F and the structural solver for the membrane surface as S , then we can write,

ddd = F (uuu)

uuu = S(ddd)

and the resulting fixed point problem can be written as,

uuu = S ◦F (uuu). (19)

The residual of Eq. (19) (fixed point residual) at the kth iteration is written as rk = ũuuk+1−uuuk where uuuk is
the displacement at the kth iteration and ũuuk+1 = S ◦F (uuuk).

The implicit partitioned coupling method for the problem is given in Algorithm 3. Note that in each
coupling iteration, the structural solver uses KKK∆nnn

l in the non-linear iterations as the input is a pressure
field (calculated from ddd) on the wetted surface. Compared to the monolithic methods discussed before,
the main advantage of this method is its modularity. Moreover, it is also more robust since we are doing
volume conservation on the equilibrium shapes obtained with stationary pressure loading. Therefore, it
is less likely that there will be a drastic difference between the structural displacements of consecutive
coupling iterations that might otherwise result in the wetted surface to move above the free surface.
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Algorithm 3 Implicit partitioned coupling (IPC) method

1: k = 0
2: ũuu1 = S ◦F (uuu0)
3: r0 = ũuu1−uuu0

4: while
∥∥rk
∥∥> ε and k < kmax do

5: Calculate uuuk+1 using convergence accelerator [9, 7, 8]
6: k = k+1
7: ũuuk+1 = S ◦F (uuuk)
8: rk = ũuuk+1−uuuk

9: end while

6 NUMERICAL EXAMPLE

The discussed methods for ponding analysis were developed in an open-source finite element code called
KRATOS. In this section we present a numerical example: Ponding on a square membrane. The numer-
ical example is used to compare the computing time and robustness of the algorithms. It is to be noted
that the volume calculation algorithm and the volume conserving algorithm was checked by applying
them on a hollow hemisphere where the analytically formula for the volume is available. Due to the
space constraint this is not discussed here.

6.1 Ponding on a square membrane

We perform ponding analysis on a flat square membrane of side a = 10 m clamped along the edges
using the monolithic and partitioned methods. The material is modeled as Saint-Venant Kirchhoff plane
stress material with material properties: Young’s modulus E = 108 N/m2, Poisson ratio ν = 0.3 and
thickness t = 0.001 m. The membrane is located in the X-Y plane with the centre O at the origin as
shown in Fig. 2a. The geometry is discretized with 7748 linear triangle elements shown in Fig. 2b. As
seeding event we apply an initial deformation, uuuinit = [0,0,−cos(xπ/a) cos(yπ/a)]. The ponding fluid,
water (γ f = 104N/m3) in this case is added gradually to simulate ponding. Membrane deformations due
to three different volumes of water are shown in Fig. 3. In the figure, the purpose of choosing the color
bar from negative to positive value very close to zero is to distinguish the wetted surface or region from
the remaining membrane surface.

The algorithms are first compared in terms of computing time, shown in Fig. 4. In these simulations,
a volume of increment of 20 m3 is added in every load step to simulate ponding. From Fig. 4, we can
clearly observe that the monolithic methods are approximately 3 times faster than the partitioned method.
Moreover, the two monolithic methods discussed in the paper have similar performance, if we look at
the computing time. However, when the two algorithms were compared in terms of robustness MVCC
seems to be more robust. This was observed by checking the convergence behavior of the algorithms with
increasing volume increments. The MVCC could handle the volume increment of 200 m3 but MVCIS
failed with the volume increment 150 m3. The algorithm MVCIS failed when the wetted surface moved
above the free surface position set at the previous non-linear iterations. This is not observed in MVCC
because both solvers have the knowledge of the other solver’s behaviour built into it and also because the
volume conservation was not strictly imposed on non-equilibrium shapes of the structure, as discussed
in Section 4.2. It was also found that the IPC algorithm had the same robustness characteristics when
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(a) (b)

Figure 2: Ponding on a square membrane: a) problem set up, b) meshed geometry (viewed from top).

used with a quasi-Newton convergence accelerator and was able to find the equilibrium shapes up to
200 m3 volume increment. This is because the volume conservation is applied on the equilibrium shapes
obtained with stationary pressure loading, as explained in Section 5.

(a) (b) (c)

Figure 3: Deformation of square membrane due to hydrostatic loading from different volumes of wa-
ter, where the blue color on the surface indicates negative vertical distance from the free surface, and
therefore represents the wetted region: a) Vf = 20 m3, b) Vf = 100 m3, c) Vf = 200 m3.

10



Navaneeth K Narayanan, Roland Wüchner and Joris Degroote
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Figure 4: Comparison of CPU time for different fluid volumes (Vf ) for IPC, MVCIS, MVCC.

7 CONCLUSIONS

In this paper, the performance of two monolithic methods and a partitioned method was compared. It
was found that the monolithic methods were superior to the partitioned method, if we just look at the
computing time. However, when it comes to robustness the partitioned method was found to be more
robust than MVCIS. The problem with the MVCIS was that the volume conservation was applied on non-
equilibrium shapes of the structure and the linearized behavior of the other solver was not included in
both solvers. These problems were addressed in MVCC algorithm by formulating volume conservation
as an additional non-linear equation and its subsequent linearization in the N-R iterations, making it a
faster and more robust algorithm for ponding analysis.
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