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Abstract. The vertex-centered edge-based reconstruction (EBR) schemes for solving Euler-

type equations are originally developed for tetrahedral unstructured meshes and imply the 

usage of quasi-one-dimensional straight-line reconstructions to calculate the flux. However, 

on the hybrid unstructured meshes with layers of highly anisotropic prismatic cells that are 

commonly used in simulations of turbulent flows with boundary layers, the straight-line 

reconstructions may lead to strongly irregular stencils, which cause both larger approximation 

errors and computational instabilities. To improve the accuracy and stability characteristics of 

EBR schemes on such meshes, we propose to use the curvilinear reconstructions for the flux 

computation. In this paper, we describe the principles and algorithms of constructing 

curvilinear reconstructions on the structured and semi-structured prismatic meshes. The 

modified EBR schemes are tested on the well-known NACA 0012 airfoil validation case for 

both two-dimensional and three-dimensional formulations, and the obtained numerical results 

are discussed in detail. 

 

1 INTRODUCTION 

The correctness of turbulent flow simulations essentially relies on accuracy of the 

boundary layers resolving. In practice, an acceptable accuracy cannot be achieved without 

constructing meshes with very fine resolution in the wall-normal direction, which usually 

leads to the appearance of highly anisotropic cells near the streamlined body. Such cells form 

structured or semi-structured prismatic layers in the boundary layer region and their geometry 

could be utilized to improve accuracy of the methods based on wide stencils.  

In this study, we consider the vertex-centered edge-based reconstruction (EBR) schemes 

that were initially formulated for unstructured tetrahedral meshes [1]. These schemes are 

based on quasi-one-dimensional reconstructions and employ wide stencils to provide the 

higher accuracy. The original formulation of EBR schemes implies the use of straight lines as 

the location domain of reconstruction points. However, on the curvilinear meshes with highly 

anisotropic cells the application of straight-line reconstructions may lead to higher solution 

error and cause stability issues. To eliminate such effects within the prismatic layers, we 

propose to use curvilinear reconstructions that better correspond to the boundary layer 
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stratification of the physical variables. Earlier, the similar approach was implemented for the 

flux correction method [2,3]. 

The paper is organized as follows. We formulate mathematical model and the original EBR 

schemes in Sections 2 and 3, respectively. Then we describe the curvilinear modifications of 

EBR schemes for structured and semi-structured prismatic meshes in Section 4. Section 5 

represents the results of validation and testing of the modified EBR schemes on NACA 0012 

airfoil validation case [4] for both two and three dimensions.  

2 MATHEMATICAL MODEL 

We consider compressible Navier–Stokes equations 
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Here,  is the density, u  is the velocity vector, p  is the pressure and E  is the total energy. 

The stress tensor is defined by 
T( ( ) (2 / 3)( ) )Iu u u , where  is the 

dynamic viscosity coefficient, I  denotes the identity matrix. Heat flux is introduced as 

k Tq , where k  is the coefficient of thermal conductivity and T is the temperature. To 

describe dependency of the dynamic viscosity coefficient from the temperature, we will use 

Sutherland’s law. 

In the section devoted to validation of the new methods, the Reynolds-averaged Navier–

Stokes (RANS) equations based on Spalart–Allmaras (SA) turbulence model [5] are 

employed. 

3 EBR SCHEMES 

To solve the equations (1) numerally on a mixed-element mesh, we construct vertex-

centered barycentric cells (called ordinary in [6]) around each node and define discrete nodal 

function 
i
Q , where i denotes the node index. The examples of two-dimensional vertex-

centered barycentric cells are given in Figure 1. The general form of the edge-based schemes 

can be written as 
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where 
i
V  is the volume of the cell corresponding to node i , 

ij
F  is the approximation of the 

convective flux F n  at the midpoint of the edge ij, n  is the outer-pointing unit normal, 
ij
s  

is the area of the common face between cells that correspond to nodes i  and j , 
1
( )N i  is the 
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set of first-order neighbors of node i  and 
,v i
F  is the approximation of the diffusive terms in  

node i . To approximate the convective flux, we use the Roe method 

1 1
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L RR Q  are the operators of straight-line edge-based 

reconstruction and 
ij
n  is the integral mean of normal n  calculated over the common face 

between cells that correspond to nodes i and j. 
 

 

Figure 1: Stencil of the EBR5 scheme for the edge ij on a triangular unstructured mesh 

The algorithm of quasi-one-dimensional reconstruction used in the original EBR5 scheme 

is as follows [1]. For each node of the edge ij we build the sets of topological neighbors of the 

first and second order. Let us denote the intersection point of the ray ji with the set of faces, 

which nodes are the second-order neighbors of node i, by index –2. The intersection of the ray 

ji with the faces of the first order we denote by index –1. The same procedure should be 

carried out for node j and the ray ij to obtain points with indexes 3 and 2. The schematic 

representation of these steps is shown in Figure 1. We determine the values of function Q  in 

points –2, –1, 2 and 3 by linear interpolation over the corresponding faces. After the 

denotation of nodes i and j with the indexes 0 and 1, respectively, it becomes possible to 

formulate reconstruction operators in terms of divided differences  
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where 
2
 = –1/15, 

1
 = 11/30, 

0
 = 4/5, 

1
 = –1/10 [1]. For the EBR3, which requires 

shorter stencil, the corresponding coefficients are 
2
 = 0, 

1
 = 1/3, 

0
 = 2/3, 

1
 = 0. On 

uniform meshes in the case of linear equations with constant coefficients, the EBR5 provides 

the fifth order accuracy, the EBR3 – the third order. 
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4 EBR SCHEMES WITH CURVILINEAR RECONSTRUCTIONS 

Straight-line reconstructions may be applied on arbitrary unstructured mesh by the 

definition. However, the accuracy of such reconstructions is directly related to the specific 

mesh structure. Especially it concerns to highly anisotropic meshes in boundary layer regions, 

where straight-line reconstructions can significantly increase numerical error and cause 

computation instabilities. The two main reasons of these effects are illustrated in Figure 2. 

The first is the imbalance of the distances within reconstruction stencil, which potentially 

leads to the instability of the numerical solution because even slight curvature of regular 

anisotropic mesh is interpreted as a tremendous mesh irregularity by the method. The second 

is the location of reconstruction points that is not consentient with high-gradient flow inside 

the boundary layer and therefore causes increased variation of the physical variables within 

the stencil resulting in higher numerical error. 

To eliminate these disadvantages, we propose to replace straight-line reconstructions in the 

EBR schemes by the reconstructions based on curvilinear stencils.  

4.1 Structured meshes 

The formulation of curvilinear reconstructions is especially simple and straightforward in 

the case of structured meshes. For these meshes, as shown in Figure 2, it is enough to consider 

topologically neighboring nodes –2 S, –1 S, 2 S and 3 S as the reconstruction points and build 

the corresponding reconstructions without any modification of formulas (2). Resulting stencil 

provides the better distance balance and reduces the variation of physical variables. 

Hereinafter the EBR schemes based on this approach we will denote as EBR IJK. Such EBR 

schemes were already applied in [7]. 

Here, we also note that there are mesh regions, where the usage of EBR IJK 

reconstructions may lead to even greater error, e.g. in the inner and outer sides of very sharp 

corners. To avoid this behavior, it is enough to limit the deviation of angle within 

reconstruction stencil and switch to straight-line reconstructions in the case of its violation. 
 

 

Figure 2: Stencils of the EBR5 and EBR5 IJK schemes for the edge ij on an anisotropic structured mesh in the 

near-wall region 

4.2 Semi-structured prismatic meshes 

Layers of prisms, as may be seen in Figure 3, generally do not have the structure in 

tangential directions and therefore do not allow constructing curvilinear reconstructions by the 

completely structural approach. 

In this paper, we propose the algorithm of creating curvilinear reconstructions that utilizes 

only mesh structure in the normal direction. The preliminary step required by this algorithm is 

the markup of all considering prismatic layers. In vertex-centered case, it can be done by 



Pavel V. Rodionov 

 5 

defining for each node the minimal topological distance from the boundary. Accordingly, the 

nodes that lie on the streamlined surface will form the zero layer, their prismatic neighbors 

will form the first layer and so forth. 
 

 

Figure 3: Stencil of the EBR5 SS scheme for the edge ij on a prismatic mesh in the near-wall region 

To reconstruct conservative variables on the edge ij connecting nodes i and j that belong to 

the same prismatic layer, we use the following algorithm that is illustrated in Figure 4: 

1. Build the sets of first- and second-order neighbors for nodes i and j. 

2. Exclude from these sets the nodes that do not belong to the considering prismatic layer. 

3. For each set of nodes, assign the set of edges, which are defined only by nodes from the 

corresponding set. 

4. Define the projection plane by the edge ij and the vector P that equals to half-sum of the 

normals built to the faces incident to the edge ij and the considering prismatic layer. If there is 

only one incident face, let the vector P equal to the normal of this face. If there is no incident 

face, use straight-line reconstructions for the edge ij and skip the next steps of the algorithm. 

5. Project the sets of edges obtained at Step 3 onto the plane defined by the edge ij and the 

vector P .  

6. Determine straight-line reconstruction stencil inside the projection plane for the edge ij. 

7. Define curvilinear reconstructions by formulas (2) using the values of metric 

coefficients that correspond to the preimages of obtained reconstruction points from the 

prismatic layer. 
 

 

Figure 4: Algorithm of the curvilinear stencil construction for the EBR5 SS scheme 
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For the edges that do not belong to any prismatic layer, we apply the straight-line 

reconstructions in complete accordance with formulas (2). Hereinafter we will denote the 

resulting scheme as EBR SS (Semi-Structured). This scheme does not have an additional 

computational costs in comparison with the straight-line EBR because all the described steps 

are supposed to be made only once before the main computation process. 

5 NUMERICAL RESULTS 

To test the curvilinear modifications of EBR schemes, we use NACA 0012 airfoil 

validation case [4]. The two-dimensional and three-dimensional computations of the problem 

are carried out by the in-house code NOISEtte [8]. 

5.1 Formulation of the test case 

The infinite wing based on NACA 0012 airfoil of a unit chord is placed inside the uniform 

airflow with the Mach number 0.15 and the temperature 300 K. The Reynolds number based 

on chord length equals to 6×106. The considered angles of attack (AOA) are 0° and 10°. 

 5.2 Computation parameters and boundary conditions 

In two-dimensional formulation, the computational domain is defined by the square

500 / , / 500x c y c  with the leading edge of airfoil placed at its center. The extrusion 

of this domain to the segment 0 / 0.25z c  is used in three-dimensional formulation. The 

conditions 0u , / 0T n  and 0
t

, where 
t
 is the coefficient of turbulent 

viscosity, are applied on the wing boundary, the in-out condition is used on the outer 

boundaries. For the three-dimensional domain, the periodic conditions are set on the 

boundaries / 0z c  and / 0.25z c . The flow is supposed to be fully turbulent. 

The two-dimensional computations are carried out on the sequence of hybrid meshes that 

consist of quadrangle layers near the airfoil surface and unstructured triangular zone on the 

rest of the domain. Schematic representation of such meshes is given in Figure 5. The sizes of 

these meshes are given in Table 1, where N is the total number of mesh nodes and Nsurf  is the 

number of nodes on the airfoil surface. To validate the two-dimensional schemes, we also 

apply the structured mesh 897×257 that is used in [4] to obtain the reference numerical 

results. 

The three-dimensional computations are carried out on the analogous sequence of meshes 

that are triangular prismatic near the wing surface and unstructured tetrahedral on the rest of 

the domain. These meshes coincide with the corresponding two-dimensional meshes at the 

cross-sections / 0z c  and / 0.25z c . The main parameters of three-dimensional 

meshes are given in Table 2, where Nsurf, z=0 is the number of nodes on the airfoil surface at 

the cross-section / 0z c . All meshes in the present study satisfy the 1y  condition at 

the considered angles of attack. 

In all computations, we use the EBR schemes to approximate the convective fluxes. The 

diffusive fluxes are approximated by the method of local element splittings, which is 

described in [9] . Pseudo-time integration is done by the implicit first-order scheme that is 

resolved by one Newton iteration based on BiCGSTAB method with ILU0 preconditioner. 
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Computations are carried out until the convergence of total energy, turbulent viscosity, drag 

and lift coefficients. 
 

 

Figure 5: Configuration of the NACA 0012 meshes 

Table 1: Parameters of the two-dimensional meshes 

2D mesh x1 x2 x3 x4 x8 897×257 

N 55K 51K 69K 83K 84K 231K 

Nsurf 102 162 246 442 930 513 

 

Table 2: Parameters of the three-dimensional meshes 

3D mesh x1 x2 x3 x4 x8 

N 515K 801K 1.4M 2.9M 9.7M 

Nsurf 3K 7K 15K 40K 176K 

Nsurf,z=0 102 162 246 442 930 

 

We should note that the EBR schemes with straight-line reconstructions appear to be 

unstable on very coarse meshes because of the significant stencil imbalance. To increase the 

stability, we introduce the parameter 
lim
C  that corresponds to the maximum distance ratio 

within the reconstruction stencil. If distances within the reconstruction stencil violate this 

limitation, the scheme switches to the EBR3. If violation is still present, we multiply the 

coefficient 
1
 in formulas (2) by 

lim 0 1
/

i j
C r r r r . In the current study, it is enough 

to use 
lim

20C  to stabilize the computation process on the very coarse meshes. 

5.3 Validation of the numerical methods 

 The results obtained by the straight-line EBR5 scheme and its curvilinear modifications on 

the finest two-dimensional and three-dimensional hybrid meshes x8 and the structured mesh 

897×257 are compared with the reference experimental and numerical data from [4].  

Comparison of the lift and drag coefficients is given in Table 3. We see that the deviation 

of obtained results from the mean reference values does not exceed 1% for the lift coefficient 

at AOA 10° and the drag coefficient at AOA 0°, and does not exceed 2% for the drag 
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coefficient at AOA 10°. We also note that on the same mesh the difference between EBR5 

schemes with straight-line and curvilinear reconstructions does not exceed 0.1% for the lift 

coefficient and 0.4% for the drag coefficient. Distributions of the pressure and friction 

coefficients are shown in Figure 6. As we see, the results obtained by the EBR5 IJK and 

EBR5 SS agree well with the experimental data and almost coincide with the reference 

numerical results. 

Table 3: Validation of the EBR5, EBR5 IJK and EBR5 SS schemes by the lift coefficient (Cl)  

and the drag coefficient (Cd) 

Scheme  (mesh) 0°: Cl 10°: Cl 0°: Cd 10°: Cd 

EBR5   (3D, x8) ~ 0 1.0862 0.00810 0.01234 

EBR5 SS  (3D, x8) ~ 0 1.0865 0.00810 0.01233 

EBR5   (2D, x8) ~ 0 1.0875 0.00811 0.01239 

EBR5 IJK  (2D, x8) ~ 0 1.0871 0.00812 0.01237 

EBR5   (897×257) ~ 0 1.0946 0.00810 0.01264 

EBR5 IJK  (897×257) ~ 0 1.0940 0.00810 0.01259 

CFL3D   (897×257) ~ 0 1.0909 0.00819 0.01231 

FUN3D  (897×257) ~ 0 1.0983 0.00812 0.01242 

NTS   (897×257) ~ 0 1.0891 0.00813 0.01243 

 
 

  

  

Figure 6: Validation of the EBR5 IJK and EBR5 SS schemes by the pressure coefficient (Cp) and the friction 

coefficient (Cf) at AOA 0° (a, b) and 10° (c, d) 

The conducted validation confirms the ability of the modified EBR schemes to simulate 

steady-state aerodynamic flow, as well as the correctness of their current implementation. 

(a) 

(c) 

(b) 

(d) 



Pavel V. Rodionov 

 9 

5.4 Comparison of the EBR schemes based on straight-line and curvilinear 

reconstructions 

To study the effect of using curvilinear reconstructions in the EBR schemes in more detail, 

we consider the numerical results obtained on the sequences of two-dimensional and three-

dimensional hybrid meshes. 

The two components of the drag coefficient at AOA 0° depending on the number of nodes 

on the airfoil surface are represented in Figure 7. The finer meshes predictably provide more 

accurate results, and the EBR5 shows better accuracy than the EBR3 as expected. The three-

dimensional results appear to be closer to the reference values than the corresponding results 

of two-dimensional computations, which may be explained by the differences in node density 

between the regular quadrangle and unstructured triangle meshes. The curvilinear 

reconstructions demonstrate the significant improvement of accuracy on the coarse meshes; 

on the fine meshes, the difference between straight-line and curvilinear reconstructions almost 

disappears due to the gradual straightening of the curvilinear stencils in the boundary layer. 

Note that on the coarsest meshes x1 the curvilinear EBR5 schemes already provide the results 

that are very close to the reference values from the finest meshes. 
 

  

Figure 7: Non-viscous and viscous components of the drag coefficient (Cd) obtained on the sequences of meshes 

at AOA 0° 

The described observations remain valid at AOA 10°, which is confirmed by the results 

depicted in Figure 8. Moreover, the presented results show the excellence of the EBR3 SS not 

only over the straight-line EBR3 but also over the straight-line EBR5 that has wider 

reconstruction stencil. This once again emphasizes the benefits from using curvilinear 

reconstructions in the EBR schemes. 

The most noticeable distributions of the pressure and friction coefficients obtained on the 

coarse two-dimensional meshes are presented in Figure 9. These results demonstrate the 

necessity of using curvilinear reconstructions on the coarse meshes, at least to get the 

reasonable distribution of the friction coefficient. 

The spatial distributions of the friction coefficient obtained by the EBR5 schemes on the 

fine three-dimensional meshes are given in Figure 10. We see that the application of straight-

line reconstructions on such meshes causes non-physical fluctuations of the friction 

coefficient, which take place even on the finest mesh. It is possible to avoid these fluctuations 

by using the curvilinear modification of the EBR5 scheme. The same effect can be achieved 
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for the EBR3 scheme and for AOA 10°. 
 

  

 

 

 

 

 

 

 

 

Figure 8: Non-viscous and viscous components of the drag coefficient (Cd) and the lift coefficient (Cl) obtained 

on the sequences of meshes at AOA 10°  

 
 

  

  

Figure 9: Most noticeable distributions of the pressure coefficient (Cp) and the friction coefficient (Cf) obtained 

on the coarse two-dimensional meshes at AOA 0° (a, b) and 10° (c, d)  

(a) 
(b) 

(c) 
(d) 
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Figure 10: Friction coefficient distributions on the wing surface obtained by the EBR5 and EBR5 SS schemes 

on the three-dimensional meshes x8, x4 and x3 at AOA 0° 

6 CONCLUSIONS 

We formulated the modifications of the EBR schemes that use curvilinear reconstructions 

on the structured and semi-structured prismatic meshes. On the series of tests based on 

NACA 0012 airfoil validation case, we demonstrated the two main advantages of using these 

modifications in boundary layer zones. The first is the increased stability of the method 

provided by the better balance of distances between the reconstruction points. The second is 

the higher accuracy of the method achieved by decreased variation of physical variables 

within the reconstruction stencil due to the employment of nodes from the same stratification 

levels of the boundary layer. The EBR schemes with curvilinear reconstructions are proved to 

have the same computational performance as the original EBR schemes. 
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