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Abstract. FE formulation of solid mechanics problems typically require iterative strategies to 
solve the resulting nonlinear system. Basic strategies with prescribed load values, such as the 
Newton-Raphson method, are not valid in the presence of structural snap-back due to material 
or geometric non-linearity. In this case, the most common strategy is the cylindrical Arc-length 
method, which prescribes the norm of displacements as constraint, in order to obtain the load 
factor increment. However, because the constraint is quadratic, additional non-trivial criteria 
need to be introduced for choosing the appropriate solution, and the wrong choice may lead to 
potential spurious unloading among other problems. As a way to overcome these shortcomings, 
alternative methods have been proposed which are based on an energy dissipation constraint. 
Constitutive dissipation may be considered as an always increasing “time” parameter with the 
advantage that the corresponding constraint equation is always linear.  Iterative methods based 
on a dissipation constraint can be found in the literature.]. But most of those formulations are 
based on specific constitutive models. In contrast, the present formulation is general in the sense 
that it is valid for any constitutive model, as long as the model subroutine provides, additional 
to the standard output, also the appropriate values of dissipation and dissipation derivatives. 
Some application examples in concrete structures with progressive fractures are also provided 
to illustrate the performance of the model proposed. 

1 INTRODUCTION 
Discontinuities such as cracks or fractures play a fundamental role in the mechanical 

behavior of concrete, rock and other quasi-brittle materials. Other sources of non-linearity may 
be plasticity or distributed damage. The numerical solution of those problems inevitably require 
iterative methods. The Newton-Raphson (NR) method has been extensively used in the analysis 
of non-linear solid mechanics problems because it is an effective and intuitive method, 
relatively simple to implement, and with different variants or adaptations such as full Newton-
Raphson, quasi-Newton-Raphson or modified Newton-Raphson [1].  However, in NR methods, 
the loading factor is always monotonically increasing, and therefore these methods cannot 
follow load-displacement curves exhibiting “snap-back” behavior that may take place in very 
brittle materials or structures. For these situations, more sophisticated iterative techniques such 
as Arc-Length (AL) or Indirect Displacement Control (IDC) methods have been proposed.  

Arc-Length technique was originally developed by Wempner and Riks [2,3], and relevant 
alternative formulations were extensively used such as [1,4,5]. In particular, Crisfield [1] 
developed a cylindrical Arc-Length strategy, probably the most popular of these methods and 
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widely used even in commercial codes. Arc-Length strategy has been modified or adapted by 
[6-8], among others. Arc-Length (AL) strategy is based on the calculation of the load factor at 
each iteration with the objective of satisfying a prescribed “constraint", the increment of the 
norm of the overall nodal displacement vector. As a result, a quadratic polynomial expression 
is generally obtained, this complicates the solution with possibility of negative discriminant or 
bad solution selection (for example, spurious unloading). Similarly, in Indirect Displacement 
Control (IDC) methods the constraint control can be adapted to a region e.g. near the crack 
mouth [7, 9, 10], although this requires some a priori knowledge of the precise location of such 
crack.   

Alternatively, another family of methods with variable load step size has been proposed 
using as a constraint the dissipation energy. This may be an advantageous choice in inelastic 
dissipative problems, because dissipation is an always-growing magnitude and it leads to a 
linear constraint, thus avoiding the introduction of additional criteria to choose the correct 
solution. Gutiérrez [11] introduced the use of constitutive dissipation as a parameter to control 
the loading process in non-linear solid mechanics; in particular, he developed a formulation 
based on energy release control, for the numerical simulations of failure in quasi-brittle solids 
using a scalar damage model. Later, the formulation has been expanded in the literature [12-
18] to generalize it in different context such as geometrically linear and non-linear damage, or 
for plasticity models. Recently, Özdemir [19] has adapted May et al. (2016)'s formulation to be 
used in commercial software packages, and in particular in Abaqus. 

The above considerations motivate the development and implementation of a new Indirect 
Displacement Control method based on energy dissipation in the framework of quasi-brittle 
materials with discrete fractures represented by elasto-plastic zero-thickness interface elements.  

2 IDC METHOD BASED ON ENERGY DISSIPATION  
Generally speaking, when the mechanical behavior of the domain or structure is nonlinear, 

an incremental-iterative procedure is required to solve the nonlinear equations. The iterative 
procedure may be seen as a sequence of trials (iterations) of the displacement vector increment 
( ∆i 𝐮𝐮), and for each of those iterations a correction of the displacement vector is introduced 
( δi 𝐮𝐮) until the solution satisfies mechanical equilibrium and constraints. This may be 
expressed as: 

∆i 𝐮𝐮 = ∆i−1 𝐮𝐮 + δi 𝐮𝐮 (1) 

where i represents the current iteration and the correction δi 𝐮𝐮 is calculated as a linear solution 
of residual forces from previous iteration 𝐭𝐭i−1 , plus the variation of external forces in the current 
iteration δi λ𝐪𝐪: 

δi 𝐮𝐮 = � 𝐊𝐊i−1 �
−1
� δi λ𝐪𝐪+ 𝐭𝐭i−1 � (2) 

Rearranging terms as follows δi 𝐮𝐮𝐼𝐼 = � 𝐊𝐊i−1 �
−1
𝐪𝐪  and δi 𝐮𝐮𝐼𝐼𝐼𝐼 = � 𝐊𝐊i−1 �

−1
𝐭𝐭i−1 , equation (2) may 

be expressed as: 
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δi 𝐮𝐮 = δi λ δi 𝐮𝐮𝐼𝐼 + δi 𝐮𝐮𝐼𝐼𝐼𝐼 (3) 

Until here, the incremental-iterative strategy depends on the load factor δi λ, which has to be 
determined as the result of the imposed constraint, and therefore may have different 
expressions. For example, Crisfield uses the norm of the incremental displacement as the Arc-
Length constraint, 

∆𝑙𝑙2i = ∆𝐮𝐮𝑇𝑇i ∆𝐮𝐮i  (4) 

and developing this equation the classical second-degree expression for the load increment is 
obtained (see e.g. [1,20]), from which the choice has to be made of the correct solution (or 
alternative strategy provided if discriminant negative, i.e. no solution exists). In the present 
study, these choices have been made according to the criterion proposed in [1]. 

The Arc-Length method is very robust and has been used and implemented in a wide variety 
of codes due to its effectiveness, especially in the description of Snap-Back (SB) and Snap-
Through (ST). However, in situations with Snap-Back, where the softening slope is very sharp 
and similar in magnitude to the elastic unloading, the root associated to an elastic/spurious 
unloading can be mistakenly chosen. As a way to remedy these shortcomings, this article 
focuses on the use of a dissipation constraint (alternative to Crisfield’s displacement norm 
constraint). If done properly, this energy constraint approach leads to a linear equation with a 
single solution valid in principle for any dissipative constitutive model [21]: 

δλi =
ΔW� D − ΔWD − �∂WD

∂𝐮𝐮 � δi 𝐮𝐮IIi−1

�∂WD

∂𝐮𝐮 � δi 𝐮𝐮I
 (5) 

In this expression, the prescribed increment of dissipation is  ΔW� D, ΔWDi−1  represents the total 
energy dissipation accumulated during the current iterative process since the last converged 
state, and ∂WD/ ∂𝐮𝐮 is the vector of derivatives of total element dissipation with respect to nodal 
displacements, which is calculated as an integral of the derivative of constitutive dissipation 
w.r.t. strain (or relative displacements, in interfaces), which is a new magnitude to be derived 
from the constitutive model. 

The evaluation of constitutive dissipation derivatives also makes it possible to calculate the 
dissipation rate associated to each of the two roots of the classical AL method, which in turn 
may be used as alternative criterion to choose between the two roots, in the case of using the 
traditional cylindrical AL method. This option is labeled as “AL(D)” in the example of the next 
section. 
 

3 NUMERICAL EXAMPLE 
The three-point bending (TPB) test is used to validate and compare the load control strategies 

based on dissipation energy. The example consists of a beam of 5x1m simply supported at the 
two lower corner nodes, with the left corner totally restrained. The loading consists of an 
increasing prescribed vertical displacement at the top central point of the beam (Fig. 1). This 
domain is discretized into a regular mesh of 100x20 linear quadrangles and 20 zero-thickness 
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interface elements (Fig. 2). 

 
Figure 1: TPB test Boundary conditions. 

 
Figure 2: TPB test mesh discretization. Zero-thickness interface elements are inserted between continuum 

elements and are represented in red 

 
Small strain and linear elasticity are assumed for the continuum, with Poisson's ratio 𝜈𝜈 = 0.0 

and Young's modulus taking one of the three following values depending on the case: 𝐸𝐸 =
6000 MPa (Case A), 𝐸𝐸 = 7000 MPa (Case B) and 𝐸𝐸 = 8000 MPa (Case C). A single line of 
interface elements is pre-inserted along the central vertical cross-section of the beam (dashed 
line). These elements are equipped with the fracture-based elastoplastic constitutive law 
developed in [24], with the following parameter values: normal and tangential elastic stiffness 
𝐾𝐾𝑁𝑁 = 𝐾𝐾𝑇𝑇 = 107 MPa/m, tensile strength 𝜒𝜒 = 2 MPa and mode I fracture energy 𝐺𝐺𝑓𝑓𝐼𝐼 = 4 · 10−4 
MPa·m. Other model parameters not relevant in this case are cohesion 𝑐𝑐 = 10 MPa, friction 
angle tanΦ = 0.7, limit stress dilatancy 𝜎𝜎𝑑𝑑𝑑𝑑𝑑𝑑 = 20 MPa and fracture energies in mode IIa 
𝐺𝐺𝑓𝑓𝐼𝐼𝐼𝐼𝐼𝐼 = 4 · 10−3MPa·m.  

In Fig.3, the load-displacement curve obtained for the TPB problem in the three cases with 
different elastic modulus (A, B or C), and with the four iterative strategies mentioned above, 
are represented. These strategies were: Newton-Raphson (“NR”, upper-left diagram (a)), 
proposed IDC-dissipation (labelled “IDC-D”, upper-right diagram (b)), cylindrical arc-length 
(labelled “AL”, lower left diagram (c)) and cylindrical arc-length with selection of root based 
on constitutive dissipation (labeler “AL(D)”, lower right diagram (d)). As shown in Figure 3, 
the proposed strategies based on dissipation lead to consistent load-displacement curves in the 
three cases with different elastic modulus, while the traditional Newton-Raphson and 
Cylindrical Arc-Length strategies are not able of correctly reproducing the snap-back response 
of cases A and B. The Newton-Raphson strategy simply cannot follow a snap back curve which 
implies a negative load-factor increment, while the cylindrical Arc-Length strategy, which in 
general allows for negative-load factors, in these two cases fails in making the right choice 
among the two solutions of the quadratic constraint equation, thus leading to spurious unloading 
(Case B) or lack of convergence (Case C). 
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(a) 

 

 
(b) 

 

 
(c) 

 
(d) 

Figure 3: Three-point bending (TPB) test for the different cases: in black Case A (𝐸𝐸 = 6000 MPa), depicted in 
blue Case B (𝐸𝐸 = 7000 MPa) and represented in red Case C (𝐸𝐸 = 8000 MPa). The load-displacement curves 

are solved with the following strategies: (a) Newton-Raphson, (b) Indirect Displacement Control based on 
energy dissipation, (c) Cylindrical Arc-Length, root selection based on the closest solution to the old incremental 

direction, and (d) Cylindrical Arc-Length, root selection based on energy dissipation. 

Figures 3(b) and 3(d) based on dissipative-control strategies, exhibit both practically the 
same load-displacement curves; however note that the IDC strategy does it using fewer 
increments because, using only energy dissipation norm to define the load increment, the elastic 
loading branch  (which does not cause any dissipation) is entirely included in the first increment  
which extends to the point of the curve at which dissipation has reached the target value.  

In order to compare the efficiency of the various methods, the same calculation has been 
solved using an automatic adjustment of the constraint size so that the calculation takes a certain 
desired number of iterations. In this example, the desired number of iterations has been set to 
𝑛𝑛𝑑𝑑𝑖𝑖𝑖𝑖𝑖𝑖 = 10, and Table 1 summerizes the number of increments needed by AL(D) and IDC-D 
strategies. The first three columns show the number of increments needed in the AL(D) strategy 
(first column for the total, second for the elastic part of the curve, and third for the post-peak 
part), while the last column shows the total number of increments needed for the IDC-D 
strategy, which is always much lower than the AL(D). But even if, for not taking into account 
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the elastic branch (for which the IDC-D strategy does not need any increment) only the post 
peak part of the AL(D) is considered, still the IDC-D turns out more efficient in this particular 
calculation. 

Table 1: Number of increments of a variable step strategy based on the number of iterations, which is needed 
in strategy AL(D) (AL with root selection based on energy dissipation) and in strategy IDC-D (IDC  based on 

energy dissipation), for the three cases A, B and C (different elastic modulus). 

 AL(D) IDC-D 
   Total N.increments = N.incrs. elastic part  +  N.incrs. post-peak   Total N.incrs.  

Case A 128 56 72 46 
Case B 115 46 69 46 
Case C 110 40 70 45 

 
 

4 CONCLUDING REMARKS 
This article compares different iterative-incremental strategies used in non-linear material 

calculations for concrete and geomaterials. In particular, it focuses on the effectiveness of using 
dissipation energy as a control variable, taking advantage of the fact that the fracture process in 
quasi-brittle materials is controlled precisely by this magnitude. The strategy has been 
developed as an Indirect Displacement Control (IDC) method based on energy dissipation, in 
the framework of quasi-brittle materials with discrete fractures represented by elasto-plastic 
zero-thickness interface elements. In this context a TPB test example has been run with the 
different strategies to show and validate dissipation-based strategies in a case with snap-back. 
A practical advantage of the strategy developed, is that it has similar structure as the traditional 
cylindrical AL strategy, and therefore its implementation in an existing FE code is quite direct. 
A second advantage is that it is applicable to any constitutive law with energy dissipation 
(elasto-plasticity, damage, etc.), as long as the required magnitudes (dissipation increments, and 
their derivatives with respect to constitutive deformations) are provided as outputs by the 
constitutive subroutine. 
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