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Abstract

We present a Lagrangian phase-field method to study the low Reynolds number dynamics of
vesicles embedded in a viscous fluid. In contrast to previous approaches, where the field variables
are the phase-field and the fluid velocity, here we exploit the fact that the phase-field tracks a
material interface to reformulate the problem in terms of the Lagrangian motion of a background
medium, containing both the biomembrane and the fluid. We discretize the equations in space
with maximum-entropy approximants, carefully shown to perform well in phase-field models of
biomembranes in a companion paper. The proposed formulation is variational, lending itself to
implicit time-stepping algorithms base on minimization of a time-incremental energy, which are
automatically nonlinearly stable. The proposed method deals with two of the major challenges
in the numerical treatment of coupled fluid/phase-field models of biomembranes, namely the
adaptivity of the grid to resolve the sharp features of the phase-field, and the stiffness of the
equations, leading to very small time-steps. In our method, local refinement follows the features
of the phase-field as both are advected by the Lagrangian motion, and large time-steps can
be robustly chosen in the variational time-stepping algorithm, which also lends itself to time
adaptivity. The method is presented in the axisymmetric setting, but it can be directly extended
to 3D.

Keywords: phase field models, biomembranes, vesicles, meshfree methods, variational
methods, adaptivity

1. Introduction

Biomembranes self-assemble in a fluid, and often, the fluid mechanics are important in their
dynamical behavior. Examples include the dynamics of vesicles in shear flows (see, e.g. [1, 2,
3, 4]), or the relaxation dynamics of membrane structures brought out-of-equilibrium [5, 6].
Describing explicitly the fluid surrounding biomembranes may also be useful in studying the
interactions between membranes and other structures [7]. Here, we consider the simplest, yet
very common and useful model of a biomembrane: an inextensible interface with curvature
elasticity, given by the Helfrich energy. We ignore here the bilayer architecture, the monolayer
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extensibility, the surface viscosity, and the inter-monolayer friction, which can be important in
some situations [8]. Our goal here is to develop a robust and efficient computational technique for
biomembranes embedded in a viscous fluid, capable of handling arbitrarily large shape changes
and the associated flows. We resort to phase-field models of biomembranes, and propose a non-
conventional discretization of the membrane-fluid system. In a companion paper [9], we have
shown that high-order phase-field models of biomembranes can be accurately approximated
in a direct Galerkin approach with the maximum-entropy meshfree approximants [10], in an
adaptive, accurate and efficient way. Here, we elaborate a Lagrangian method for the dynamics
of vesicles embedded in a viscous fluid, which builds on the meshfree approximation of the phase-
field equations. The proposed method shares common features with the optimal mass transport
(OTM) method presented in [11].

Background

A number of models and numerical approaches have been proposed to analyze the hydro-
dynamics of fluid membranes in a viscous fluid. These include a mesoscopic model, combining
a particle-based method for the fluid and a dynamically triangulated surface model for the
membrane [3], which has been put forth to study the effect of membrane viscosity and thermal
fluctuations in the dynamical behavior of vesicles in simple shear flow, as well as the behav-
ior of vesicles and red blood cells in microcapillaries [12]. Other methods rely on conventional
continuum mechanics models, e.g. [13, 14], where a sharp-interface Helfrich model coupled with
a Lagrangian form of the Navier-Stokes Equations is discretized with finite elements. An al-
ternative sharp-interface approach in three dimensions was presented in [15, 4], which relies on
spherical harmonics representations of the vesicle shapes and fields on it, and on a boundary
integral method for the Stokes flow. This method has been exercised in systems containing
many interacting vesicles. Immersed boundary methods [16] represent an alternative approach
to handle fluid-structure interaction, maintaining the Eulerian framework for the fluid media
and the Lagrangian description for solid objects immersed in the flow. This family of methods
have been applied to understand the hydrodynamic effects on fluid vesicles and biomembranes
in [17, 18]. Phase-field models of vesicles [19] have also been coupled with the ambient hydro-
dynamics [20, 21], through an Eulerian description of the fluid with a source term of membrane
elastic forces, and a transport equation to advect the phase-field representing the membrane.
Alternative phase-field approaches to vesicles in a flow have been proposed in [22, 23], where
the local area inextensibility was also accounted for, and in [24].

Phase-field models offer advantages when compared to sharp-interface models, in that they
provide unified treatment of interface tracking and surface mechanics with a single partial dif-
ferential equation (PDE) governing the phase-field. Phase-field approaches do not suffer from
severe mesh distortions, and can easily deal with large deformations and even topology changes
[22, 25] without demanding specific reparametrization techniques [13] or control of the tangen-
tial motions of the nodes [26]. In contrast, phase-field models are encoded by nonlinear PDEs,
often high-order, which develop sharp features, and therefore present computational challenges.
In phase-field models of biomembranes, an artificial length-scale ε governing the width of the
smeared interface is introduced, and the sharp-interface limit is recovered as ε→ 0 [19, 22, 27].
For phase-field models to accurately represent the sharp-interface limit, ε needs to be much
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smaller than other relevant dimensions in the problem. Furthermore, this length-scale needs
to be resolved by the computational grids, typically leading to expensive calculations. From a
practical viewpoint, the high computational cost, associated with increasing the dimension of
the problem and having to resolve numerically the (small) thickness of the smeared interface, can
be outweighed by their simplicity, making them amenable to scalable parallel implementations.
Besides, the computational cost can be considerably mitigated with spacial adaptivity [28, 29].

The proposed method

In previous phase-field approaches to the ambient hydrodynamics-biomembrane mechanics,
the problem is formulated in a Eulerian frame, as a coupled system combining the fluid flow
equations with a source term coming from curvature elasticity forces and the advection of the
phase-field with the flow, in which the phase-field and the fluid velocity (and pressure) are the
unknowns [22, 25]. In such approaches, adaptive strategies, not proposed so far, would require
cumbersome grid projection steps. Since in the present situation the phase-field tracks a material
interface, here we view the phase-field as a material property, and formulate a Lagrangian
description of the problem in which the unknown is the Lagrangian motion of the background
medium, containing both the fluid and the smeared interface (see Fig. 1 for an illustration). See
[30] for a related approach. We particularize the model with the phase-field approach proposed
by [19], and since biomembranes often operate in the limit of vanishing Reynolds number,
describe the hydrodynamics with Stokes equations.

With the Lagrangian viewpoint, when discretized in space, the coupled membrane-fluid
model becomes a nonlinear dissipative particle system, driven by curvature elasticity and dragged
by a viscous force admitting a dissipation potential, whose dynamics minimize an action [31]
subject to area and volume constraints. With the same spirit as variational integrators for
Hamiltonian systems [32], we choose to discretize in time the action, and then derive by con-
strained minimization the discrete evolution equations from it, rather than discretizing in time
the continuous evolution equations. The method results in time-incremental nonlinear minimiza-
tion problems, as in modern treatments of dissipative processes in materials science following the
seminal work in [33]. As a consequence, it is possible to overcome the stiffness of the dynamics
(given by the fourth-order nature of the PDE) and take robustly large time-steps. Furthermore,
the algorithm is automatically nonlinearly stable as the energy monotonically decreases.

If the initial grid adapts to the features of the phase-field, adaptivity is advected by the
Lagrangian map, and therefore local refinement along the dynamics is accomplished for free (see
Fig. 1). The Lagrangian framework allows us to pull-back the successive states of the system to
a reference configuration. Thus, we avoid the calculation of the meshfree basis functions in every
step of the evolution. It has been shown that the meshfree method considered here can withstand
significant deformation before the discretized deformation mapping ceases to be injective (i.e. the
Jacobian determinant becomes negative at a quadrature point) [10]. However, we avoid coming
close to this limit, which degrades the accuracy of the approximation, by reconnecting the nodes,
recomputing the basis functions, and resetting the reference configuration periodically along the
simulation. These reconnection steps are seamless, as detailed later: they do not involve re-
meshing, recomputing the background grid for quadrature, field projections, nor do they alter
in any way the variational structure of the discrete equations, e.g. the nonlinear stability of the
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Figure 1: Main ideas behind the Lagrangian phase-field formulation. The background medium containing the
viscous fluid and the smeared interface is rearranged by a deformation map y(x), which deforms the phase-field,
illustrated by a color map on the nodes of the computational grid. The phase-field is advected (pushed forward)
as a material property as φ = φ0 ◦ y. The gradient of the deformed phase-field transforms as indicated, and
as shown in the text, we can also compute ∆φ as a push-forward of ∆φ0. This allows us to write the Helfrich
curvature energy in terms of y, and the viscous dissipation in terms of ẏ. Computationally, the deformation is
discretized in terms of particle positions, indicated with colored circles, and the phase-field and its derivatives are
sampled at fixed quadrature points in the reference configuration. As the Lagrangian simulation proceeds, the
adaptivity follows the phase-field features.

dynamics. In situations involving extreme Lagrangian deformations, particles may accumulate
or cover insufficiently parts of the domain. In such cases, a full re-meshing and field projections
are required. We did not find the need to doing this, except in the example depicted in Figure
6.

From a purely numerical viewpoint, as exemplified later, accounting for the ambient fluid
can help in devising adaptive strategies in space, resolving with detail the sharp and moving
features of the phase-field, even if we are only interested in equilibria. Indeed, vesicles are
prone to buckling events, i.e. large shape transformations under small changes of the enclosed
volume or the spontaneous curvature as the system transitions between different metastable
equilibrium branches. Consequently, if the grid is locally adapted to a given conformation [28]
and the control parameters are slightly perturbed, the new energy minimizer may not be well
described by the current mesh, strongly biased by the previous minimizer. This poses a serious
challenge to adaptive phase-field methods based on free energy minimization. In contrast with
possibly discontinuous equilibrium paths, dynamics are always continuous, making it possible
to gradually adapt the resolution to the phase-field. Gradient flow dynamics, even without a
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clear physical meaning [34, 27, 13], have been used to numerically obtain equilibrium shapes,
and the adaptive method we proposed here can be used in this vein.

The structure of this paper is as follows. In Section 2, we derive the Lagrangian formulation
for the phase-field membrane embedded in a viscous fluid, and obtain variationally the governing
equations of the coupled dynamics. In Section 3, we propose the space and time discretization.
In Section 4, we illustrate the method with several examples. Finally, we collect conclusions in
Section 5.

2. Lagrangian phase-field formulation for biomembranes in a viscous fluid

2.1. Lagrangian form of the phase-field model

The formulation we present here is three-dimensional, and the particularization to axisym-
metry is given in Appendix A. Consider a fixed fluid domain Ω, containing a fluid membrane
described at time t = 0 by a phase-field φ0(x). Such initial phase-field may result from an equi-
librium calculation. Consider now a motion of the background continuum medium containing
both the fluid and the smeared interface, i.e. a smooth bijective mapping on Ω at each instant
of time, yt(x) [35, 36]. Viewing the phase-field as a material property, attached to the material
particles, it is pushed forward by the motion following

φt(x) = φ0 ◦ y−1
t (x) = φ0

(
y−1
t (x)

)
. (1)

From this point on, we omit the explicit dependence on t of the motion and the pushed-forward
phase-field. Ignoring the Gaussian curvature term, the Helfrich elastic energy of the membrane
in terms of the phase-field can be computed as [19]

E =
3

8
√

2

k

2ε

∫

Ω

[
ε∆φ+

(
1

ε
φ+ C0

√
2

)(
1− φ2

)]2

dΩ,

where k is the bending stiffness of the bilayer, and ε is a regularization parameter controlling
the width of the smeared interface. The enclosed volume and surface are can be computed as

V =
1

2

(
V ol(Ω) +

∫

Ω
φ dΩ

)

and

A =
3

2
√

2

∫

Ω

[
ε

2
|∇φ|2 +

1

4ε
(φ2 − 1)2

]
dΩ

To compute the spacial derivatives of the phase-field, we recall Eq. (1) and the inverse function
theorem to obtain

∇φ =
(
∇φ0F

−1
)
◦ y−1, (2)

where F = Dy is the deformation gradient, or FiI = ∂Iyi, where upper-case subindices denote
indices or partial differentiation with respect to material (Lagrangian) coordinates, i.e. “x”, while
lower-case subindices refer to spacial (Eulerian) coordinates, i.e. “y”. To compute the Laplacian
of the pushed-forward phase-field, we resort to indicial notation and omit the composition with
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the deformation map or its inverse as it can be inferred from the context. From the relation
∂iφ = ∂Iφ0F

−1
Ii we have

∂2
ijφ ◦ y = ∂2

IJφ0F
−1
Ii F

−1
Jj + ∂Iφ0∂jF

−1
Ii . (3)

Now, from F−1
Ik FkJ = δIJ , we obtain

∂jF
−1
Ii = −F−1

In F
−1
Ji F

−1
Kj∂KFnJ = −F−1

In F
−1
Ji F

−1
Kj∂

2
JKyn.

In particular, we have
∆φ ◦ y = ∂2

IJφ0F
−1
Ii F

−1
Ji + ∂Iφ0∂iF

−1
Ii . (4)

Thus, inserting these Eqs. (2,4) into the above functionals and pulling-back the integration by
the deformation map to the Lagrangian domain, the elastic energy, enclosed volume, and surface
area can be interpreted as functions of the deformation mapping alone, depending parametrically
on the initial phase-field:

E[y] =
3

8
√

2

k

2ε

∫

Ω

[
ε∆φ ◦ y +

(
1

ε
φ0 + C0

√
2

)(
1− φ2

0

)]2

det(F ) dΩ, (5)

V [y] =
1

2

(
V ol(Ω) +

∫

Ω
φ0 det(F ) dΩ

)
, (6)

and

A[y] =
3

2
√

2

∫

Ω

[
ε

2
|∇φ0F

−1|2 +
1

4ε
(φ2

0 − 1)2

]
det(F ) dΩ (7)

Lengthy but otherwise straightforward calculations allow us to compute the variations of these
functionals with respect to the deformation. We report directly the first and second derivatives
of E, V and A after spacial Ritz-Galerkin discretization, required for the solution method, in
Appendix B.

2.2. Lagrangian form of the fluid dissipation potential

To simplify the exposition of the method, we consider the Stokes equations for a slightly
compressible fluid, i.e. a penalized formulation of the incompressible Stokes equations. The
numerical treatment of the incompressible case with a stabilized maximum-entropy meshfree
method is straightforward [37], but would distract from the main ideas of the present work.

Following standard continuum mechanics definitions, the Eulerian velocity field can be com-
puted as

v = ∂ty ◦ y−1.

Consequently, the velocity gradient tensor can be written as

∇v ◦ y = ḞF−1,

where ḞiI = ∂I∂tyi, and the rate-of-deformation tensor in the Lagrangian domain as

d ◦ y =
1

2

(
ḞF−1 + F−T Ḟ T

)
.
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The Rayleigh dissipation potential for a compressible Newtonian fluid can therefore be written
as [38]

Diss[∂ty; y] = µ

∫

Ω
d : d dΩ +

λ

2

∫

Ω
(div v)2 dΩ

=
µ

4

∫

Ω

∣∣∣ḞF−1 + F−T Ḟ T
∣∣∣
2

(detF ) dΩ +
λ

2

∫

Ω

[
trace(ḞF−1)

]2
(detF ) dΩ. (8)

where µ is the shear viscosity of the fluid, and by Diss[∂ty; y] we highlight the parametric
dependence of the functional on the current deformation y. The coefficient λ can be interpreted
here as a penalty parameter enforcing incompressibility approximately. For an incompressible
Newtonian fluid, the second term above is replaced by the constraint

tr(ḞF−1) = 0, (9)

the linearization of the condition detF = 1.

2.3. Governing equations

The dynamics of the system can be obtained by minimizing the Rayleigh dissipation potential
plus the rate of change of the elastic energy with respect to the variables expressing the rate of
change of the system [31, 39, 8]. Here, the dynamics of the coupled membrane-fluid system are
obtained by minimizing the functional

Diss[∂ty; y] + δE[∂ty; y]

with respect to ∂ty subject to the constraint

δA[∂ty; y] = 0.

To control the enclosed volume explicitly, without relying on the fluid (quasi)-incompressiblity,
the following constraint can be added

δV [∂ty; y] = 0.

We note that this formulation enforces the global area preservation along the dynamics, while
physically, local area preservation throughout the membrane is more meaningful, see [4, 8] and
[23] for the phase-field modeling the local constraint. Again, for the sake of clarity, we stick here
to the global constraint as in [21].

3. Discrete equations

3.1. Space discretization: function approximation and quadrature

We start from a node set X = {x1, x2, . . . , xN} adapted to the reference phase-field φ0, and
define the associated local maximum-entropy basis functions pa(x), a = 1, . . . , N , for a given
aspect ratio parameter γ [40, 9]. We also consider a set of quadrature points X̂ = {x̂1, x̂2, . . . , x̂Q}
and the associated quadrature weights W = {w1, w2, . . . , wQ}, obtained for instance from a
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triangulation of the node set X. The quadrature points and weights are only set up once in the
calculation, and are subsequently transported by the motion. They are not altered by the node
reconnection steps, see below. The gradient and the Hessian of the reference phase-field can be
obtained through interpolation with the smooth meshfree basis functions:

φ0(x) =
∑

a

pa(x)φa0, ∂Iφ0(x) =
∑

a

∂Ipa(x)φa0, ∂2
IJφ0(x) =

∑

a

∂2
IJpa(x)φa0,

which only need to be evaluated at the quadrature points in X̂ to yield the values φα0 , ∂Iφ
α
0 ,

and ∂2
IJφ

α
0 for α = 1, 2, . . . , Q. If computer memory is not an issue, these objects only need to

be evaluated once at the beginning of a simulation. The motion is represented numerically as

yt(x) =
∑

a

pa(x)ya(t). (10)

At the initial instant we have ya(0) = xa, and as a result of the linear consistency of the
approximants, y0(x) = x. Furthermore, we have

∂ty =
∑

a

pa(x)ẏa, FiI =
∑

a

∂Ipa(x)yai , ∂2
JKyn =

∑

a

∂JKpa(x)yan.

Recalling Eqs. (2,4), and approximating the integrals by numerical quadrature, the func-
tionals in Eqs. (5), (6) and (7) can be calculated, and expressed as functions of the nodal
positions, Eh(y), V h(y), and Ah(y), where the array y collects all the nodal positions ya(t).
These functions depend parametrically on φ̂α0 , ∂I φ̂

α
0 , and ∂2

IJ φ̂
α
0 for α = 1, 2, . . . , Q.

Likewise, by replacing the numerical ansatz into Eq. (8), the dissipation potential can be
written as

Dissh(ẏ;y) =
1

2

[
µKµ

ai,bj(y) + λKλ
ai,bj(y)

]
ẏai ẏ

b
j ,

where

Kµ
ai,bj(y) =

∫

Ω

(
δijF

−1
Ik ∂IpaF

−1
Jk ∂Jpb + F−1

Ij ∂IpaF
−1
Ji ∂Jpb

)
(detF ) dΩ,

and

Kλ
ai,bj(y) =

∫

Ω
F−1
Ii ∂IpaF

−1
Jj ∂Jpb(detF ) dΩ.

Then, the dynamics of the resulting nonlinear dissipative particle system follow from minimizing

1

2
ẏTK(y)ẏ − fE(y)T ẏ

with respect to ẏ subject to [
∇Ah(y)

]T
ẏ = 0,

where elastic forces are defined as fE(y) = −∇Eh(y) and we note that by the chain rule
Ė = −fE(y)T ẏ. To account for the constraint, we write the Lagrangian

L(ẏ, σ;y) =
1

2
ẏTK(y)ẏ − fE(y)T ẏ + σ

[
∇Ah(y)

]T
ẏ,
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where σ is the membrane tension, which leads to the system

[
K(y) ∇Ah(y)[
∇Ah(y)

]T
0

](
ẏ
σ

)
=

(
fE(y)

0

)
.

This system of nonlinear differential algebraic equations can be solved with standard algorithms.
The system is stiff because of the nature of the curvature energy, and because of the presence
of constraints. We find that standard numerical packages have serious difficulties in dealing
with these equations, and require very small time-steps when the system is significantly out
of equilibrium. Instead, we develop next variational time-incremental integrators, which can
robustly deal with large time-steps.

3.2. Variational time discretization

The time-discretization in the previous section is performed on time-continuous evolution
equations derived from minimizing an action subject to constraints. Here, we adopt an alter-
native viewpoint, by first discretizing in time the action, and then minimizing the time-discrete
action with respect to the configuration of the system at time-step n+ 1.

Let us consider the simplest finite difference approximations for the rate of change of the
nodal positions

ẏ ≈ yn+1 − yn

∆t
,

and for the rate of change of the energy

Ė =
E(yn+1)− E(yn)

∆t
.

We can then discretize in time the action, and given yn find yn+1 by minimizing

1

2
(y − yn)TK(yn)(y − yn) + ∆tE(y) (11)

with respect to y, subject to
Ah(y) = A0,

where we have multiplied the action by ∆t2 and ignored the constant E(yn) in Eq. (11). This
method is related to the backward-Euler method, and many other variational time-integrators
can be defined by choosing different time-discrete approximations of the action. The resulting
nonlinear optimization program can be solved with a variety of methods. Here, we impose
the constraints with Lagrange multipliers and solve the first order optimality conditions with
Newton’s method, although an augmented Lagrangian method, combined with line-search may
be more robust at very large time-steps. Note that for large time-steps, the objective function
in Eq. (11) is dominated by the curvature energy, and the system nearly minimizes this energy
in one step. On the contrary, small time-steps give more weight to the viscous dissipation,
penalizing changes in the configuration of the system. Even though E(y) has in general a
complex, non-convex landscape, for a sufficiently small time-step, the viscous dissipation makes
the objective function convex, and hence the nonlinear optimization problem becomes easier
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to solve. We also note that, by construction, E(yn+1) ≤ E(yn), and therefore the method
is endowed automatically with nonlinear stability. Of course, the issue may be being able to
numerically solve the nonlinear optimization problem.

We make the algorithm explicit in the dissipation matrix K(y), as otherwise the method is
significantly more complex and most of the nonlinearity is in E(y). In practical applications,
we often update the Hessian of E(y) once every time-increment, instead of in each iteration of
Newton’s method. We find that this significantly reduces the computational cost without af-
fecting much the convergence of Newton’s method. The treatment of the surface area constraint

may be simplified by discretizing in time the linearized constraint,
[
∇Ah(yn)

]T
(y − yn) = 0.

However, this option leads to significant drifts in the surface area for large time-steps. Finally,
we note that adaptive time-stepping algorithms can be easily designed, for instance adapting ∆t
in such a way that ∆E is nearly constant. The adaptivity may also be driven by the number of
iterations needed in the nonlinear solver.

3.3. Numerical quadrature and node reconnection

y(x̂↵)

x̂↵

xa

Reset the reference 
configuration

y(x) =
X

a

pa(x)ya

ya

The basis functions           
are defined by the 

reference set of nodes   

pa(x)

xa  ya

x̂↵  y(x̂↵)
w↵  (det F )w↵

(r�0)
↵  (r�0F

�1)↵

(@2
IJ�0)

↵  Eq. (3)

Reference configuration

Recompute           with 
the new set of nodes

pa(x)

Figure 2: As the Lagrangian simulation proceeds, the deformation may significantly distort the domain. To avoid
this, we periodically reset the reference configuration, as shown in the figure. This involves reseting the reference
node position to the current position, recomputing the meshfree basis functions from the new node set, which
involves new neighbor searches as indicated with the colored regions, and reseting the quadrature points x̂α, the
corresponding weights, and the reference phase-field first and second derivatives as indicated in the figure. Note
that the reference phase-field value at the quadrature points, φα0 , does not need to be updated as the phase-field
is a material property and the quadrature points keep their material identity.
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As discussed in Fig. 2, the evolution most likely produces large distortions, which may even
lead to non-injective deformation mappings in Eq. (10), i.e. negative Jacobian determinants
detF . Even if the deformation map remains injective, it is a good idea to avoid excessive distor-
tions, which degrade the accuracy of the approximation. For this reason, we periodically reset
the reference configuration, reconnect the nodes, and build new basis functions to parameterize
the deformation maps from the new reference configuration. The reconnection can be done when
a measure of the distortion (a norm of F ) exceeds a threshold, or simply every a fixed number
of time steps. Numerical experience shows that frequent reconnection leads to better numerical
accuracy, but also that the method is very robust and can deliver acceptable results with very
few reconnections. In practice, the frequency of reconnection can be set by weighing accuracy
and efficiency, although objective criteria would be desirable.

Note carefully that the reconnection procedure does not require any projection of fields
if the multiplicative structure of the composition of maps is exploited. Indeed, suppose that
the deformation map in the motion at which we decide to reset the reference configuration is
y(x) =

∑
a pa(x)ya, and its deformation gradient F . The new node set is simply {y1, . . . , yN}

and the new quadrature points are y(x̂α), α = 1, . . . , Q. The value of the phase-field at these
material points is simply the original value φ0(x̂α) since the phase-field is viewed as a material
property. Its derivatives need to be updated with the formulas seen previously, but no new
interpolation of the phase-field is needed and no new quadrature needs to be defined. The reset
algorithm is sketched in Fig. 2. Remarkably, such reset of the reference configuration exactly
preserves the elastic energy, area, and enclosed volume of the system, as can be understood from
examining Eqs. (5,6,7).

4. Numerical examples

We present next a set of numerical simulations to test the proposed method. We first
illustrate the general performance of the method with regards to space and time adaptivity.
The former is automatic if the initial grid adapts to the interface, while for the second we set
the time-step such that the energy decrement per step is roughly constant. We compare the
proposed variational time integration with explicit Euler time-stepping. We then describe three
representative simulations of relaxation dynamics of vesicles initially placed out-of-equilibrium,
showing large shape changes, and requiring multiple node reconnections. Finally, we evaluate
kinetic effects on the shape trajectory by deflating a vesicle at different rates. In all examples,
we consider 6 integration points per cell (the triangles of the Delaunay triangulation of the the
initial set of nodes) and an aspect ratio parameter for the maximum-entropy basis functions
of γ = 0.8 [9]. The regularization parameter is chosen as about 1% of the size of the vesicle,
i.e. ε/

√
A0/(4π) = 0.01.

Figure 3 shows (with a movie/with a collection of snapshots) the relaxation dynamics of an
oblate vesicle brought out-of-equilibrium. The reduced volume, a non dimensional measure of
the volume to area ratio, is v = 0.9. We show the location of the nodes ya(t), and color-code
them by the value of the phase-field. In this example, exhibiting moderate deformations, we
do not reconnect the nodes and therefore the method is purely Lagrangian, with the initial
configurations as a reference configuration during the whole motion. The calculation proceeds
robustly despite the large deformations. It can be appreciated how the phase-field elastic energy
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maintains the transversal density of the nodes, and how the adapted region follows the features
of the phase-field. We check the accuracy of this simulation with additional runs with a larger
number of integration points, more nodes, and different γ parameters.

The performance of the method is analyzed in Fig. 4. The left plot shows the non-dimensional
energy E∗ = E/k and the non-dimensional time-step as a function of non-dimensional time
t∗ = tk/(µR3

0). The energy monotonically decreases as expected, converging towards the equi-
librium energy calculated independently with a parametric method. As the process advances,
the adaptive time-step grows to roughly keep the energy decrement per time-step constant. Re-
markably, the time-step changes by two orders of magnitude during the simulation. At the final
stages, the time-step hits the maximum allowed size.

Table 1: Elastic energy and computational cost for different constant time-steps and methods (VTI: variational
time-integration, FE: forward Euler). t∗1 = 1.0 · 10−3, t∗2 = 1.1 · 10−2.

Method ∆t∗ E∗(t∗1) E∗(t∗2) steps grad hess

VTI 1.0 · 10−2 9.374 9.243 1 2 2
VTI 1.0 · 10−3 9.374 9.240 10 20 10
VTI 1.0 · 10−4 9.374 9.239 100 200 100
FE 1.0 · 10−5 9.374 9.239 1000 1000 0

Although more sophisticated time-stepping schemes are possible, as compare the proposed
variational time-integration (VTI) method with an explicit forward Euler (FE) method. It
is computationally infeasible to perform the full relaxation dynamics with the forward Euler
method, which imposes very stringent conditions on the time-step. Instead, we focus on a portion
of the dynamics, and report the results in Table 1. In the VTI method, we use Newton’s method
to numerically solve the optimization problem in Eq. (11), and for computational efficiency,
update the Hessian matrix only once per time-step, not per iteration. However, for the largest
time-step, we need to update the Hessian in each iteration for convergence. In all cases, Newton’s
method converges in two iterations. The table compares the VTI method with time-steps ∆t∗ =
10−2, 10−3, 10−4, and the FE method with the largest time-step for stability in this interval,
∆t∗ = 10−5. The accuracy is reported in terms of the energy at the end of the interval, and the
computational cost in terms of gradient and Hessian evaluations. The table shows the ability of
VTI to robustly take large time-steps with accurate results. In contrast, we find that for this
nonlinear system, it is very difficult to stably adjust the time-step length in the FE method. We
find that the VTI method provides a similar accuracy to the explicit method with time-steps
between one and two orders of magnitude larger. This ratio is even more dramatic in the initial
fast stages of the dynamics.

We next exercise the method in more challenging dynamics, involving large shape changes.
Figure 5 (left) shows a stomatocyte-discocyte dynamical transition. For the considered reduced
volume v = 0.6, both a stomatocyte and a discocyte are metastable configurations, the latter
having lower energy. We slightly displace the stomatocyte equilibrium configuration beyond the
energy barrier, and then the system spontaneously evolves towards the discocyte configuration.
The reference configuration is reset, as illustrated in Fig. 2, when large distortions occur as mea-
sured with the gradient of deformation mapping. In this simulation, the reference configuration
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is reset every 20 time-steps. The time-adaptive scheme allows us to efficiently track the entire
transition, and by the end of the simulation the time-step is 2,048 times the initial time-step.
Figure 5 (right) shows the response of an prolate vesicle (v = 0.8) subject to an instantaneous
change of spontaneous curvature from C0 = 0 to C0

√
A0/(4π) = 10.0, which can be the result of

exposing the bilayer to a different chemical environment [5, 6, 27]. The system evolves towards
a configuration consisting of two dissimilar spheres connected by a narrow neck, which best
adjusts to the imposed spontaneous curvature with the available volume. Both simulations run
on a CVT adapted grid of 6,124 nodes.

Figure 6 shows an even more dramatic shape change, in which a prolate vesicle is deflated
from v = 0.9 to v = 0.55 and its spontaneous curvature increased to C0

√
A0/(4π) = 12.0,

leading to an elongation and pearling transformation, widely observed in experiments [41]. The
method robustly follows all the large shape deformations with an adapted grid of 12,650 nodes.
This simulation requires frequent nodal reconnection, and even four complete re-meshing steps
at later stages, in which a new grid is built and adapted to the current phase-field and the
phase-field is projected onto the new grid.

Finally, we present a series of simulations highlighting kinetic effects. By subjecting a vesicle
to fast changes (here a volume decrease rate), the system follows an out-of-equilibrium path that
significantly deviates from the quasi-static response. We then fix the enclosed volume, and let
the system relax towards equilibrium. In Fig. 7, we report the response of the system to three
different volume decrease rates in terms of elastic energy evolution and shape at the instant of
maximum energy for each evolution, which corresponds to the end of the deflection process. It
can be observed that, due to the fluid dissipative forces, the faster the dynamics, the further
apart is the shape at this instant from the equilibrium shape (D), eventually reached by all the
simulations for T ∗ ≈ 1.00. Also, the faster the rate, the larger the deviation between the elastic
energy at this instant and the elastic energy in equilibrium. In principle, kinetic effects such as
those reported here could assist in the transition to a different equilibrium branch, and bring the
system to a qualitatively different equilibrium configuration. We are currently exploring such
phenomena.

5. Conclusions

We have proposed an adaptive meshfree Galerkin method to numerically approximate the
dynamics phase-field models of biomembranes embedded in a viscous fluid. We have shown the
ability of the proposed method, based on smooth approximants, to deal with the high order
character of the equations in a direct manner. Furthermore, adaptivity is very natural for a
meshfree method, and proves essential to resolve the sharp features of the phase-field model at
an affordable cost. We have presented an original Lagrangian and variational formulation of
the coupled fluid-membrane dynamics, which lends itself to efficient and robust time integrators
based on time-incremental minimization problems. In this method, the local refinement follows
naturally the sharp features of the phase-field. This combination of methods shows promise
of robust, scalable computations of complex membrane systems in three dimensions, currently
under development.
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Appendix A. Cylindrical coordinates

We consider cylindrical coordinates, but assume that there is no angular dependence of any
function along the angular direction. We have x = (R,Z,Θ), and y(x) = (r(R,Z), z(R,Z),Θ).
The metric tensors of the reference and the deformed coordinate systems are

GIJ =




1 0 0
0 1 0
0 0 R2


 , gij =




1 0 0
0 1 0
0 0 r2


 .

It follows immediately that the volume element can be written as dv = rdrdzdθ, dV = RdRdZdΘ.
The deformation gradient becomes

F iI =




r,R r,Z 0
z,R z,Z 0
0 0 1


 ,

where the comma denotes partial differentiation. We denote by F̃ its first 2 × 2 minor. The
Cauchy-Green deformation tensor can be written as CIJ = F iKF

j
JgijG

IK [35]. Consequently,
exploiting the block structure,

J =
√

detCIJ = (r/R) det F̃ .

Thus, we have
dv = J dV = r(det F̃ ) dRdZdΘ.

For a function φ0(R,Z), the gradient and the differential components coincide

φ0,JG
IJ = φ0,I =




φ0,R

φ0,Z

0


 .

By the chain rule, recalling that φ = φ0 ◦ y−1, we have

φ,i = (F−1)I i φ0,I ,
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which reduces in the (R,Z) plane to

φ̃,i = (F̃−1)I i φ̃0,I ,

owing to the block structure of the formation gradient and the fact that φ0,θ = 0.
To compute covariant derivatives of vector fields and one-forms

vi|j = vi,j + γijkv
k, αi|j = αi,j − γkijαk,

we need the connection coefficients, which can be computed from

γijk = (1/2)gil(glj,k + glk,j − gjk,l).

The only non-zero components are

γrθθ = −r, γθrθ = γθθr = 1/r.

For a vector field v(r, z) = (vr(r, z), vz(r, z), 0), we can compute the covariant derivative

(∇v)ij = vi|j =




vr,r vr,z 0
vz,r vz,z 0
0 0 vr/r


 ,

and taking the trace, its divergence

div v = vr,r + vz,z + vr/r.

Now, from the above expressions, we can compute the Hessian of φ as

φ|ij = φ,ij − γlijφ,l.

Again, it has a block diagonal structure

φ|ij =

(
φ̃|ij 0

0 φ|θθ

)
.

In the first 2 × 2 minor, the Cartesian structure given in Eq. (3) is preserved, while in the θθ
component we have

φ|θθ = rφ,r = r
[
(F−1)Rrφ0,R + (F−1)Zrφ0,Z

]
.

The Laplacian is computed correspondingly as

∆φ = φ|ijg
ij = ∆φ̃+ φ,r/r = ∆φ̃+ (1/r)

[
(F−1)Rrφ0,R + (F−1)Zrφ0,Z

]
.

The Lagrangian expression of the rate-of-deformation tensor can be computed as [35]

2DIJ = gik

(
V k
|IF

i
J + V i

|JF
k
I

)
,

15



where the covariant derivative of the material velocity is defined as

V i
|J = V i

,J + γijkV
jF kJ .

This tensor is simply

V i
|J =




V r
,R V r

,Z 0
V z

,R V z
,Z 0

0 0 V r/r


 ,

which leads to

2DIJ =

(
Ṽ k
,I F̃

k
,J + Ṽ k

,J F̃
k
,I 0

0 2rV r

)
=

(
˙̃F T F̃ + F̃ T ˙̃F 0

0 2rV r

)
.

Now, noting that the Eulerian rate-of-deformation tensor can be computed as dij◦y = DIJ(F−1)I i(F
−1)J j

[35], we have

2dij ◦ y =

(
F̃−T ˙̃F T + ˙̃FF̃−1 0

0 2rṙ

)
.

Its trace can be computed as

(div v) ◦ y = (dijg
ij) ◦ y = (1/2)trace(F̃−T ˙̃F T + ˙̃FF̃−1) + ṙ/r,

while its norm squared is

|d ◦ y|2 = (dijdklg
ikgjl) ◦ y = (1/4)|F̃−T ˙̃F T + ˙̃FF̃−1|2 + (ṙ/r)2 .

Appendix B. Derivatives for gradient and Hessian of the energy, volume, and area

The main expressions and derivatives required to implement the proposed algorithm are
presented in this appendix. We start with the derivatives of the motion, then move to nodal
derivatives involving the gradient, and finish with the Hessian, used in Newton’s method. Lighter
gray symbols correspond to terms required in the axisymmetric formulation, which just need to
be dropped in 3D.

Appendix B.1. Spacial derivatives of the motion

The motion is discretized as

y(x, t) =
N∑

a=1

pa(x)ya(t)

From now on, we ignore the arguments of the basis functions and nodal values for simplicity,
y =

∑N
a=1 p

aya. We then have for the deformation gradient

FiI =
N∑

a=1

∂Ip
ayai , ∂JFiI =

N∑

a=1

∂I∂Jp
ayai , ∂JF

−1
Ii = −F−1

Il F
−1
Ki ∂JFlK .
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Appendix B.2. Nodal derivatives of the motion

Nodal derivative of F and F−1

∂ybk
FiI =

N∑

a=1

∂Ip
a∂ybk

yai = ∂Ip
b∂ybk

ybi = ∂Ip
bδik, ∂ybk

F−1
Ii = −F−1

Il ∂ybk
FlKF

−1
Ki .

Nodal derivative of ∇F

∂ybk
∂JFiI =

N∑

a=1

∂I∂Jp
a∂ybk

yai = ∂I∂Jp
b∂ybk

ybi = ∂I∂Jp
bδik.

Nodal derivative of ∇F−1

∂ybk
∂JF

−1
iI = −(∂ybk

F−1
Il F

−1
Ki ∂JFiI + F−1

Il F
−1
Ki ∂ybk

∂JFiI + F−1
Il ∂ybk

F−1
Ki ∂JFiI).

Nodal derivative of detF

∂ybk
detF = detF (F−1

Ii ∂ybk
FiI)

Second nodal derivative of F−1

∂yaj ∂ybk
F−1
Ii = −(∂yaj F

−1
Il ∂ybk

FlKF
−1
Ki + F−1

Il ∂ybk
FlK∂yaj F

−1
Ki )

Second nodal derivative of ∇F−1

∂yaj ∂ybk
∂JF

−1
Ii = −(∂yaj ∂ybk

F−1
Il F

−1
Ki ∂JFlK + ∂ybk

F−1
Il ∂yaj F

−1
Ki ∂JFlK + ∂ybk

F−1
Il F

−1
Ki ∂yaj ∂JFlK +

∂yaj F
−1
Il F

−1
Ki ∂ybk

∂JFlK + F−1
Il ∂yaj F

−1
Ki ∂ybk

∂JFlK +

∂yaj F
−1
Il ∂ybk

F−1
Ki ∂JFlK + F−1

Il ∂yaj ∂ybk
F−1
Ki ∂JFlK + F−1

Il ∂ybk
F−1
Ki ∂yaj ∂JFlK)

Second nodal derivative of detF

∂yaj ∂ybk
detF = detF (F−1

Ii ∂ybk
FiI)(F

−1
Mm∂yaj FmM )− detF (F−1

Im∂yaj FmKF
−1
Ki ∂ybk

FiI)

Appendix B.3. Derivatives of the phase-field

From the numerical discretization of the reference phase-field

φ0(x) =
N∑

a=1

pa(x)φa0,

we have

∂Iφ0 =

N∑

a=1

∂Ip
aφa0, ∂I∂Jφ0 =

N∑

a=1

∂I∂Jp
aφa0

Consequently, we can compute the gradient and Hessian (2×2 minor for axisymmetry or full
tensor in 3D) of the deformed phase-field

∂iφ = ∂Iφ0F
−1
Ii , ∂i∂jφ = ∂I∂Jφ0F

−1
Ii F

−1
Jj + ∂Iφ0∂JF

−1
Ii F

−1
Jj

Its Laplacian becomes

∆φ = ∂I∂Jφ0F
−1
Ii F

−1
Ji + ∂Iφ0∂JF

−1
Ii F

−1
Ji +φ,r/r.
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Appendix B.4. Nodal derivatives of the energy, volume and area

Defining for convenience

C1 = (φ0/ε+ c0

√
2)(1− φ2

0), C2 =
1

4ε
(1− φ2

0)2, W = ε∆φ+ C1,

we have

E = fE

∫

Ω0

W 2 detFrdΩ0,

A = fA

∫

Ω0

[ ε
2
|∇φ|2 + C2

]
detFrdΩ0,

V =
1

2

[
V ol(Ω0) +

∫

Ω0

φ0 detFrdΩ0

]
,

where fE = 3k/(16
√

2ε) and fA = 3/(2
√

2).
The gradient of the energy then follows as

∂ybj
E = fE

∫

Ω0

(2W∂ybj
W detF +W 2∂ybj

detF )r +W 2 detF∂ybj
rdΩ0,

where

∂ybj
W/ε = ∂ybj

∂i∂iφ = ∂I∂Jφ0∂ybj
F−1
Ii F

−1
Ji + ∂I∂Jφ0F

−1
Ii ∂ybj

F−1
Ji +

∂Iφ0∂ybj
∂JF

−1
Ii F

−1
Ji + ∂Iφ0∂JF

−1
Ii ∂ybj

F−1
Ji + ∂ybj

φ,r/r − (φ,r/r
2)∂ybj

r

The gradient of the area is

∂ybj
A = fA

∫

Ω0

[ ε
2
∂ybj
|∇φ|2 detF +

( ε
2
|∇φ|2 + C2

)
∂ybj

detF
]
r

+
( ε

2
|∇φ|2 + C2

)
detF∂ybj

rdΩ0,

where,

∂ybj
|∇φ|2 = ∂ybj

∂iφ∂iφ = ∂Iφ0∂ybj
F−1
Ii ∂Jφ0F

−1
Ji + ∂Iφ0F

−1
Ii ∂Jφ0∂ybj

F−1
Ji

= 2∂Iφ0F
−1
Ii ∂Jφ0∂ybj

F−1
Ji .

Finally, the derivative of the volume is

∂ybj
V =

1

2

∫

Ω0

(φ0∂ybj
detF )r + φ0 detF∂ybj

rdΩ0.

We can compute the Hessian of the energy as

∂yai ∂ybj
E = fE

∫

Ω0

(2W∂yai ∂ybj
W detF + 2∂yaiW∂ybj

W detF

+2W∂ybj
W∂yai detF + 2W∂yaiW∂ybj

detF +W 2∂yai ∂ybj
detF )r

+(2W∂ybj
W detF +W 2∂ybj

detF )∂yai r + (2W∂yaiW detF +W 2∂yai detF )∂ybj
rdΩ0,
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where,

∂yai ∂ybj
W/ε = ∂I∂Jφ0∂yai ∂ybj

F−1
Ik F

−1
Jk + ∂I∂Jφ0∂ybj

F−1
Ik ∂yai F

−1
Jk + ∂I∂Jφ0∂yai F

−1
Ik ∂ybj

F−1
Jk

+∂I∂Jφ0F
−1
Ik ∂yai ∂ybj

F−1
Jk + ∂Iφ0∂yai ∂ybj

∂JF
−1
Ik F

−1
Jk + ∂Iφ0∂ybj

∂JF
−1
Ik ∂yai F

−1
Jk

+∂Iφ0∂yai ∂JF
−1
Ik ∂ybj

F−1
Jk + ∂Iφ0∂JF

−1
Ik ∂yai ∂ybj

F−1
Jk

+∂yai ∂ybj
φ,r/r − (1/r2)∂yai φ,r∂ybj

r − (1/r2)∂ybj
r∂yai φ,r + (2φ,r/r

3)∂yai r∂ybj
r.

For the area, we have

∂yai ∂ybj
A = fA

∫

Ω0

[ ε
2
∂yai ∂ybj

|∇φ|2 detF +
( ε

2
|∇φ|2 + C2

)
∂yai ∂ybj

detF

+
ε

2
∂ybj
|∇φ|2∂yai detF +

ε

2
∂yai |∇φ|

2∂ybj
detF

]
r

+
[ ε

2
∂yai |∇φ|

2 detF +
( ε

2
|∇φ|2 + C2

)
∂yai detF

]
∂ybj

r

+
[ ε

2
∂ybj
|∇φ|2 detF +

( ε
2
|∇φ|2 + C2

)
∂ybj

detF
]
∂yai rdΩ0,

where,

∂yai ∂ybj
|∇φ|2 = 2∂Iφ0∂yai F

−1
Ik ∂Jφ0∂ybj

F−1
Jk + 2∂Iφ0F

−1
Ik ∂Jφ0∂yai ∂ybj

F−1
Jk

Finally,

∂yai ∂ybj
V =

1

2

∫

Ω0

φ0∂yai ∂ybj
detFr + φ0∂yai detF∂ybj

r + φ0∂ybj
detF∂yai rdΩ0.
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ticle finite element method for fluid–soil–structure interaction problems, Computational
Mechanics 48 (2011) 307–318.

[31] H. Goldstein, C. Poole, J. Safko, Classical Mechanics, Addison-Wesley, 2001.

[32] A. Lew, J. E. Marsden, M. Ortiz, M. West, Variational time integrators, Internat. J. Numer.
Methods Engrg. 60 (2004) 153–212.

[33] M. Ortiz, E. A. Repetto, Nonconvex energy minimization and dislocation structures in
ductile single crystals, Journal of the Mechanics and Physics of Solids 47 (1999) 397–462.

[34] Q. Du, C. Liu, X. Wang, Simulating the deformation of vesicle membranes under elastic
bending energy in three dimensions, Journal of Computational Physics 212 (2006) 757–777.

[35] J. Marsden, T. Hughes, The mathematical foundations of elasticity, Prentice-Hall, 1983.

[36] T. Belytschko, W. Liu, B. Moran, Nonlinear Finite Elements for Continua and Structures,
John Wiley & Sons, England, 2001.

[37] C. Peco, A. Rosolen, M. Arroyo, Stabilized analysis of Stokes’s equations with local maxi-
mum entropy meshfree approximantsIn preparation.

[38] J. Happel, H. Brenner, Low Reynolds Number Hydrodynamics: with special applications
to particulate media, Martinus Nijhoff Publishers, 1983.

21



[39] M. Arroyo, A. DeSimone, Relaxation dynamics of fluid membranes, Phys. Rev. E 79 (3)
(2009) 031915.

[40] A. Rosolen, D. Millán, M. Arroyo, On the optimum support size in meshfree methods: a
variational adaptivity approach with maximum entropy approximants, International Jour-
nal for Numerical Methods in Engineering 82 (7) (2010) 868–895.

[41] J. Sanborn, K. Oglecka, R. S. Kraut, A. N. Parikh, Transient pearling and vesiculation of
membrane tubes under osmotic gradients, Faraday Discussions DOI: 10.1039/C2FD20116J.

22



Figure 3: Relaxation dynamics of an oblate vesicle in a viscous fluid, initially brought out-of-equilibrium. We
represent the time-evolution of the nodes ya(t), color-coded with the phase-field. The adapted grid has 6124
nodes.
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Figure 4: Energy relaxation and time adaptive strategy for the dynamics depicted in Fig. 3. Energy and time-step
evolution, where time is represented in logarithmic scale. The blue horizontal line shows the equilibrium energy
obtained independently with a parametric method based on B-Splines.
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Figure 5: Left: Stomacyte-discocyte transition. Right: Prolate vesicle evolving after an instantaneous change
of spontaneous curvature (6,124 nodes, constant area and volume). The points represent the nodes, color-coded
with the phase-field, while the arrows depict the flow field in a symmetry plane.
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Figure 6: Relaxation dynamics of a constant area vesicle under combined volume decrease and spontaneous
curvature increase (12,650 nodes, constant area).
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