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Abstract. The mechanical and thermal behaviours of layered structures is of great 

importance for many advanced material systems and loading conditions. The responses of 

layered structures are controlled by the constitutive properties of each layer as well as the 

thicknesses. A comprehensive data-based approach is essential for both material analysis and 

design in direct or inverse problems. In this work parametric numerical modelling and Artificial 

Neural Network (ANN) are jointly used to develop data for layered structures. Mechanical and 

thermal finite element (FE) models are used to produce data for different material property and 

thickness domains. The use of ANN program is established and evaluated for different loading 

conditions. Using indentation as a typical case for mechanical loading and localized heating as 

typical example for thermal loading, ANN program was used to predict the behaviour of layered 

structures with different properties and layer thicknesses. Use of the data system in establishing 

dominating factors, synergetic effect on mechanical-thermal performance in advanced 

materials design is discussed.  
 

1 INTRODUCTION 

Layered materials are widely used in different groups, including metals, plastics, rubbers, 

foams and composites[1][2][3][4][5]. Many processing techniques could be used to manufacture 

layered structures for example, welding, brazing, adhesive bonding, co-injection, compression, 

etc. In some cases, materials need to satisfy a combination of design requirements, including 

combination of mechanical and physical properties. In the material design process, it is 

relatively straight forward to design or estimate the material properties when the material is 

under uniform/uniaxial loading conditions, either along the in-plane or out-of-plane directions, 

usually, following a mixture of rules for laminating perfectly bonded structures[6]. For localised 

loading conditions, such as indentation[7][8], the stress strain state is complicated and the 

contribution of different layers to the indentation resistance is dependent on both the 

constitutive properties of each layer and the thickness. It is even more challenging for complex 

interface profiles. In addition, for thermal properties, the through-thickness heat conduction 

under uniform heating can follow a simple rule for perfect contact conditions, but the in-plane 
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behaviour is difficult to be represented by a normalised conductivity value when the material 

for each layer has significantly different thermal conductivities. This may cause difficulties in 

the design, materials selection and analysis processes, more comprehensive data is required for 

different conditions and applications.  

Neural network has been increasingly used to study materials of complex systems for which 

a robust closed-form analytical solution is not attainable [9][10][11][12]. This process is able to 

predict material behaviours from known properties/structures or inversely used to predict the 

material properties or geometrical variables. It is particularly useful when multiple variables 

have to be considered. In many cases it is combined with numerical modelling for situation with 

complex stress strain conditions or materials such as indentation, in which the stress strain field 

around the indenter is not uniform even for homogenous materials. For layered systems, a fully 

trained ANN could be used as a powerful tool in the selection of materials or determine the 

optimal layers number, sequency and/or layer thickness without the requirement of rerunning 

multiple FE models. ANN-FE combination can also be used to produce large scale off-line data 

for design optimisations and analysis, which could be particularly useful for application-

specific layered material design. 

In this work, a comprehensive data-based approach is explored. Parametric numerical 

modelling and Artificial Neural Network (ANN) are jointly used to develop data for layered 

structures under indentation loading and thermal loading. Different types of data are produced 

from the FE models then trained with different programs including the Levenberg-Marquardt 

and Bayesian Regularization. The use of ANN program for predicting different types of data is 

presented associated with varying layer properties or thickness. The work highlighted some key 

dominating factors for layered system and key issues for mechanical-thermal performance 

design and analysis is discussed  

2 FE MODELS AND DATA DEVELOPMENT 

2.1 FE indentation models  

Figures 1&2 show typical indentation and thermal models of a layered system. A parametric 

program is produced with the key parameters of the .inp file, which allows altering sample size, 

number of layers, layer thickness, etc. Other tunable parameters also include material properties 

for each layer with both linear and nonlinear models. The interface profiles between each layer 

can also be changed to include curved interfaces. The work in this paper is focused on 

presenting some typical data with straight layer interfaces. A python program with loop function 

is used for the purpose of extracting the key data (such as P-h curves, temperature profiles) 

from multiple models. The program automatically open ABAQUS .odb files from the 

parametric studies, extract the data, and save them as data file, which can be used as input/target 

in the ANN program.   

For the indentation model (Figure 1), the indenter shape/size, indentation depth can all be 

parameterized. The contact condition, frictional coefficient can be varied when dealing with 

different materials. A range of data such as indentation force-displacement data (a typical data 

is shown in Figure 1(b)) and other key deformation data (the stress between each layer, the 

sinking-in and pile up) can also be used as the target data.  
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(a) Typical FE model of indentation process 

with a rigid spherical indenter. 

 

(b) Typical force-indentation depth data. 

Figure 1 FE model of spherical indentation of layered systems and typical force-indentation 

depth data. 

2.2 Thermal model o layered systems    

Two typical types of thermal models are shown in Figure 2. Figure (a) is for a situation in 

which the heat is applied uniformly for through-thickness heat transfer, Figure (b) shows a 

situation where the heat is applied over a finite length (localized heat flux). For a layered system 

with straight interfaces, the temperature could be effectively transfer through the layers 

represented by the effective thermal conductivity for case of the through-thickness conduction. 

Under uniform heat transfer (Figure a), the normalized effective thermal conductivity is not 

significantly affected by how many layers rather than the overall volume fraction under a 

perfect contact condition/assumption. However, it could be influenced by the interfacial heat 

transfer coefficient and profiles as well as contact conditions (imperfect contacts), which can 

be considered in the FE model through parametric studies. The localized/finite heating area 

model reflects a case in which the heat conduction is affected by the through-thickness and in-

plane configuration in particular the layer stacking sequence. In the model, the heat can be 

applied either across the surface or localized areas through parametric studies. These features 

allow a comprehensive data set to be produced reflecting different loading and boundary 

conditions to study the effects of variables with different level of significance.  

 

 
  

(a) FE model of through-thickness 

heat conduction (Steady state) 

(b) FE model of localized heating model. 

(Steady state).  

Figure 2 Typical thermal models of layered systems and typical data.  
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2.3 ANN    

ANN has been developed into a generalized tool, which can be used for both, direct or 

inverse modelling processes. The direct approach is useful for materials and thickness selection 

in design while inverse modelling can be used for predicting the properties and other parameters 

which cannot be measured directly. The nature of the data input is critical to the performance 

of an ANN program. The FE parametric modelling allows production of data for ANN in an 

effective way. It also allows a systematic assessment of ANN’s performance rather than an 

assessment based on limited amount of data. Figure 3 shows the general structure of the 

proposed ANN’s network. The program used a back-propagation learning method, which is 

applicable to a multilayer network that uses differentiable activation functions and supervised 

training. As illustrated in figure 3, the forward connections are used for both the learning and 

operational phases, while the backward linkages are used only for the learning phase. Each 

training pattern is propagated forward, layer by layer until an output pattern is computed. The 

computed output is then compared to a desired/target output and an error value is determined.  

 

The errors are then used as inputs to feedback connections from which adjustments are made 

to the synaptic weights layer by layer in a backward direction. Different optimisation algorithms 

were evaluated including the Levenberg-Marquardt, Bayesian Regularization and Scaled 

Conjugate Gradient. As the work is focused on practical application of ANN, the evaluation 

has been focused on key issues such as their accuracy, time to converge for acceptable accuracy, 

sensitivity to number of training, testing and validation data. It was also tested based on its 

sensitive to data perturbation and bias on data continuity, which will enhance the practical 

application function of the program. For ANN, a large number of data will be required. Both 

data input and image-based approaches have been developed. This work is to focus on data 

input approach. For example, different approaches have been proposed to represent the P-h 

curves. One is using trendline method, the other is to use force at different depth. The 

optimisation of the ANN has been focused on selection of transformation function, use of early 

stopping, number of neurons, etc. In the thermal modelling with the localized heating, the 

temperature can be represented by the temperature profiles at key location such as the horizontal 

line on the surface away from the heating zone and the vertical line underneath the heating zone.  

 
Figure 3 Proposed feed-forward neural network with back propagation algorithms. 
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3 TYPICAL DATA AND ANALYSIS 

3.1 Typical indentations data of different material systems  

The force-displacement data for a layered material is affected by many factors such as layer 

thickness, properties and interface properties. One typical case is the properties of each layer. 

Figure 4 shows a typical training process of ANN based on material properties of a two layers 

system: the stiffness of the two layers E1 and E2 are varied, the thickness of the two layers are 

fixed and supported by a stiffer base. The stiffness is ranged between 1-5MPa for the two layers. 

This is part of a research in developing conductive rubbers for corrosion control in welded metal 

systems, for which the conductivity needs to be increased in the meantime maintaining the 

softness/flexibility of the materials. Different training algorithm has been explored including 

The Levenberg-Marquardt (LM), Bayesian Regularization (BR) and Scaled Conjugate Gradient 

(SCG). As shown in the figures, both the LM approach and the BR approach are able to 

converge quickly, and the Mean Squared Error (MSE) and the R squared error shows that the 

system is able to achieve a high level of fitting of the indentation depth-forces data.  

 

 
 

(a) ANN fitting process: MSE. (LM) (b) R squared error for training, testing and 

validation. (LM) 

 

 
(c) ANN fitting process: MSE (BR) (d) R squared error for training, testing 

and validation. (BR) 

Figure 4 Typical ANN traing with the Levenberg-Marquardt (LM) and Bayesian 

Regularization (BR) approach.  
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Figure 5 shows typical error when predicting indentation data using the LM algorithms and 

Bayesian Regularization. Figure 5(a) is the prediction accuracy of the data used in the training, 

while Figure 5(b) is the prediction accuracy/error range for data that have not been used in the 

training. Many different sets of data have been tested and these are some typical results 

reflecting the range of error. In both cases the error range is relatively low. The error for the 

untrained data is slightly higher in some data set than that of the trained data but both are within 

a reasonable range for materials design. The error of predicted data based on the Bayesian 

Regularization is better than LM, but no major difference on the design margins.  

 

 
 

 
(a) Prediction error with trained data.   (b) Prediction error with untrained data.  

Figure 6 Typical data showing the ANN prediction error range for indentation forces.  

 

Figure 6 shows a typical fitting process of thermal model with localized heat flux over a finite 

area. In the model, the thermal properties of the materials are fixed and the thickness for the 

two layers are varied. Figures 6 (a&b) is the fitting data for temperature distribution along the 

vertical line underneath the heating zone with Levenberg–Marquardt algorithm and Bayesian 

regularization. Figure 6(c&d) is the fitting process for the temperature profile along the 

horizontal line away from the heating area. In both cases, low MSE has been reached showing 

that ANN is effective in predict the temperature distribution.  

 

 

 
 

 

(a) Mean squared error in ANN training 

for fitting temperature distribution 

underneath the heating zone 

(Levenberg–Marquardt algorithm). 

(b) Mean squared error in ANN training 

for fitting temperature distribution 

underneath the heating zone (Bayesian 

regularization). 
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(c) Mean squared error in ANN training 

for fitting temperature distribution 

along the horizontal line away from 

the heating zone. (Levenberg–

Marquardt algorithm) 

(d) Mean squared error in ANN training  

for fitting temperature distribution 

along the horizontal line away from the 

heating zone. (Bayesian 

regularization) 

 

Figure 6 Typical ANN training data for the temperature distribution along the vertical line 

underneath the heating zone and the horizontal line away from the heating zone.  

 

 

Figure 7(a) shows typical prediction accuracy/error range for thickness data that has not been 

used in the training (LM approach). An average error value is used to represent the difference 

between the predicted temperature profile and the target values of the temperature along the 

horizontal lines. Many different sets of data have been tested and these are some typical results 

representing the range of error. The error for the untrained data is within 5%. The error for the 

trained data is much better (not shown). This suggests that the ANN is effective in predicting 

the temperature at different positions at a reasonable accuracy. Figure 7(b) plots some typical 

temperature profile along the horizontal lines away from the center of the heating area predicted 

by the ANN. The data near the heating zone shows no major difference between different layer 

thickness combination, but there is a clear difference away from the heating zones. This 

suggests that the ANN could provide more comprehensive data for the thermal behavior of a 

layered system.  
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(a)  Average error of the ANN predicted 

temperature using untrained data 

(b) ANN predicted temperature profile for 

different combination of layer thicknesses (in 

mm).  

Figure 7 Typical ANN fitting data and predicted data of the temperature distribution alon 

the horizontal line away from the heating zone.  

4 DISCUSSION 

Layered structures offer the freedom in design properties balancing the mechanical and 

functional properties. For indentation resistance the contribution of each layer is dependent on 

the properties and the thickness of the layer as well as the indentation depth. For homogeneous 

materials, the elastic behavior can be represented by the analytical solution at lower strain 

levels. But for layered system the force-displacement is complicated and difficult to be 

represented by simple model. This becomes even more complicated with nonlinear properties 

in different material property domains (elastic-plastic, hyperelastic and hyperfoam models). For 

example, the post yielding behaviors of an elastic plastic make it more difficult to predict the 

indentation force as the factor of significance varies with the strain levels[13]. Similarly, 

hyperelastic or hyperfoam behavior also make it more difficult to predict once the material 

reaches the plateau stage or the densification stage[14]. ANN program offers the flexibility in 

the number and forms of input and the data type of output. The Bayesian regulation also offers 

the capacity to deal with limited numbers. The output offers more flexibility, including data, 

curves or even images. For example, the force-displacement data can be represented by either 

the coefficients of the curve or directly by the force data. This is essential for developing 

practical applications of data for applications with outcome relevant to different service 

requirements. As illustrated by FE and ANN data, the thermal conductivity process combined 

with thickness and in-plane directions of layered systems, could be complicated, particularly 

for localised heating. In many cases, the properties of material could not be represented by a 

single effective or normalised values. The ANN approach offers a way to predict complex 

temperature distributions. As shown in Figure 7, the temperature at specific locations can be 

predicted for different layer thicknesses. This is applicable to many material systems such as 

metal, rubber, and foams. For composites materials, the filler could significantly affect the 

thermal properties of matrix such as rubber. In foam materials, the thermal properties can be 

modified by controlling the porous structures, the length and thickness of the cell wall or beams. 

The recent development in advanced joining (such as hybrid welding) has also opened new 
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opportunities, which can joint materials with different properties and interfacial profiles. For 

example, stainless steel (either single phase or duplex stainless steels (DSS)) are increasingly 

being bonded with other steels, aluminum and coppers to balance the corrosion, toughness and 

thermal properties. These metals have significant difference in thermal conductivities. The 

thermal conductivity of stainless steel is much lower than that of aluminum and coppers. The 

large range of thermal properties could offer more freedom on the design optimization process. 

The approach also offers data relevant to some manufacturing process such as welding. For 

example, in electrical resistance welding of layered structures, the heat is generated over a local 

area, predictive data within a certain range for the heat transfer over the layered (both through-

thickness and in-plane) is useful for the welding process design. In additional, the development 

of 3D printing and additive manufacturing also offer the capacity to produce gradient or layered 

systems with controlled properties. All these examples are clearly indicating that there is an 

opportunity to tune both the mechanical and thermal process by combining FE and ANN, 

offering an effective alternative to pure experimentally based approached. Future work would 

include developing FE-ANN models to modulate synergy of mechanical, thermal, and other 

properties by tuning multiple materials and geometrical parameters.   

 

5 SUMMARY 

In this work, a comprehensive data-based approach is explored for both layered material 

analysis and design. Parametric numerical modelling and artificial neural network are jointly 

used to develop a data system for layered structures. Different types of data are produced from 

the FE models then used in training, testing and validation of ANN with different programs 

including the Levenberg-Marquardt and Bayesian Regularization. The data for some typical 

cases of mechanical loading (indentation with a spherical indenter) and thermal loading 

(localised heating) is presented. The use of ANN program for predicting different types of data 

is presented associated with varying layer properties or thickness. The work highlighted some 

key factors for layered system, relevant application cases in materials and manufacturing. The 

key issues for mechanical-thermal performance design and analysis are also discussed. 
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