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Abstract

The objective of this paper is twofold. First, a stabilized finite element method for
the incompressible Navier-Stokes is presented, and several numerical experiments are con-
ducted to check its performance. This method is able to deal with all the instabilities that
the standard Galerkin method presents, namely, the pressure instability, the instability
arising in convection dominated situations and also the less popular instabilities found
when the Navier-Stokes equations have a dominant Coriolis force, or there is a dominant
absorption term arising from the small permeability of the medium where the flow takes
place.

The second objective is to describe a nodal-based implementation of the finite ele-
ment formulation introduced. This implementation is based on an a priori calculation
of the integrals appearing in the formulation and then the construction of the matrix
and right-hand-side vector of the final algebraic system to be solved. After appropriate
approximations, this matrix and this vector can be constructed directly for each nodal
point, without the need to loop over the elements and thus making the calculations much
faster. In order to be able to do this, all the variables have to be defined at the nodes
of the finite element mesh, not on the elements. This is also so for the stabilization
parameters of the formulation. However, doing this gives rise to questions regarding the
consistency and the conservation properties of the final scheme that are addressed in this
paper.

Key Words: Finite elements, incompressible Navier-Stokes equations, stabilization meth-
ods, mesh graph
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1 Introduction

This paper presents a finite element formulation for solving the generalized incompressible
Navier-Stokes equations, including Coriolis forces and the effect of the permeability of the
medium. The formulation is based on the sub-grid scale concept, which was introduced for
the scalar convection-diffusion equation in [1] and generalized to systems of convection-dif-
fusion-reaction equations in [2]. This formulation applied to the generalized Navier-Stokes
equations is presented also in [3], where the linearized problem is analyzed. The numerical
analysis undertaken in this reference shows that the method is optimally convergent and that
it is able to deal with the instability problems of the standard Galerkin approach. Here, some
standard benchmark problems are presented using this formulation in situations outside the
scope of the classical analysis, such as thermally coupled flows or flow of nonlinear materials.
Likewise, the method is extended to transient problems.

The numerical instabilities of the Galerkin method that the present formulation circum-
vents come from very different sources. The first one is the classical inf-sup condition for
the velocity-pressure finite element interpolations, which is needed in order to have pressure
stability (see, e.g. [4]). The second is also classical and concerns the oscillations found when
the flow is dominated by convection, that is, the cell Reynolds number is large. Finally,
when the viscosity is small compared either to the Coriolis forces or to the absorption effects
coming from the medium permeability, numerical oscillations may also appear (see [3] for a
more detailed description of the numerical instabilities arising in these cases). The stabilized
formulation presented here is able to deal with all these numerical problems, allowing in
particular the use of equal velocity-pressure interpolation, assumed throughout in the paper.
The idea of using a stabilized method able to deal with the pressure instability and convec-
tion dominated flows is old and is in fact the origin of the Galerkin/least-squares method
[5]. Extensions of this method to the transient incompressible Navier-Stokes equations are
presented for example in [6, 7], among others.

Although the flexibility, generality and sound theoretical foundations of finite element
methods applied to fluid flow have been widely acknowledged, they have been also blamed for
being difficult to implement, leading to time consuming numerical codes. Perhaps this is why
many commercial codes use finite volume rather than finite element methods, despite of the
fact that the latter offer a wider range of possibilities, including higher order approximations.
The second objective of this paper is to present a non-standard implementation of the finite
element formulation presented herein. After computing the volume integrals of the products
of the shape functions and its derivatives, the system matrix and force vector of the resulting
algebraic system are obtained from them. This is done at each iteration and at each time step,
without the need to recompute volume integrals any more. However, some approximations
are required to do this. These approximations and their implications are described in this
paper.



Whereas for a standard finite element implementation the normal flow of the calculation
involves a loop over the elements, the calculation of the element contributions (to the system
matrix and to the force vector) and the assembly of these into the global arrays, the flow
of the calculations for the algorithm presented here is very different. The system matrix is
formed of block matrices corresponding to the nodal points that can be obtained directly,
without any reference to the elements. This is done by looping over the nodes of the finite
element mesh and then over the nodes connected to a given nodal point. This involves the
storage of the graph of the mesh, as well as the graph of the boundary mesh when the
contributions from the boundaries need to be accounted for. It has to be stressed that, in
principle, this approach is independent of the element type, and it is not restricted to linear
simplicial elements as the edge-based implementations described for example in [8, 9, 10].

The nodal-based implementation of the finite element formulation necessitates of some
approximations. First of all, all the variables need to be defined at each nodal point and
the integrals where they appear have to be computed making using of their nodal values
only. This is in particular true for the stabilization parameters of the formulation. Whereas
taking them as constant over each element leads unnoticedly to the consistency and the
conservativity of the formulation, these two properties might be lost when the stabilization
paramenters are considered to vary continuously through the interpolation of their nodal
values.

The paper is organized as follows. In the following section, the general problem for a ther-
mally coupled incompressible fluid is presented. The numerical approximation is discussed in
Section 3, which includes a simple time discretization, the linearization of the equations and
the finite element approximation using a stabilized formulation. Section 4 presents the nodal-
based implementation of this formulation, including the approximations needed, a discussion
about the consistency and conservativity of the scheme, a description of the way to store the
mesh and boundary graphs and the final algorithm itself. Numerical examples are presented
in Section 5. They have been chosen as representative of the approximations involved in the
scheme. Results turn out to be very similar to those obtained using a standard element-based

implementation, but requiring much less CPU time.

2 Problem statement

In this section we shall consider the flow problem for an incompressible fluid in laminar
regime and taking into account several physical effects. These include the fact that the
reference frame where the computational domain is attached varies in time, the coupling of
the Navier-Stokes equations with the heat transport equation through Boussinesq assumption,
the permeability of the medium where the fluid flows, and a generalized Newtonian behavior

of this fluid, allowing its viscosity to depend on the invariants of the strain rate tensor.



The equations describing the problem are

du+ (u-V)u+2wxu—2V-[ve(u)] + Vp+ou+ fgd = f, (1)
V.u=0, (2)
80 + (w- V)9 — V- (kV9) = S, (3)

to be solved in Q x (0,tg,), where  C R™d (ngg = 2 or 3 being the space dimension) is the
computational domain and [0, ¢g,] is the time interval to be considered. In (1)-(3), u denotes
the velocity field, p is the kinematic pressure (i.e., the pressure divided by the density), ¥
is the temperature, v is the kinematic viscosity, which may depend on the invariants of the
symmetrical part of the velocity gradient e(u), w is the velocity of rotation of the frame of
reference (and thus 2 w x w is the Coriolis force), o is the inverse of the permeability of the
medium, (3 is the thermal expansion coefficient, g is the gravity acceleration vector, f is the
vector of body forces, x is the thermal diffusivity (that is, the thermal conductivity divided
by the heat capacity) and S is the heat source. The density pp is assumed constant to obtain
equations (1)-(3).

In the most general case, the force vector f in (1) contains the acceleration terms coming
from the temporal variation of the reference basis and the reference buoyancy forces from the

Boussinesq assumption, that is
F=g(1+p%) —ap— wxz—wx(wx). (4)

In this equation, ¥ is the reference temperature from which buoyancy forces are computed,
ag- is the acceleration of the frame of the reference measured from an inertial system and
expressed in the moving reference, and the vector of position in this moving reference has
been denoted by ¢ = (z1,z2,23) = (z,v,2) in the 3D case. Here and below, a Cartesian
coordinate system is assumed.

The rheological behavior that will be assumed for the fluid in one of the numerical exam-
ples is the power law, which is perhaps the most common constitutive equation for generalized

Newtonian fluids. The expression of this law is
v = py ' Ko [4L(e)] " V/2 (5)

Here, Ky and n are physical constants (K is the material consistency and n the rate sensi-
tivity) and Iz(g) is the second invariant of the strain rate tensor, Iy(e) := € : £/2, the colon
standing for the double contraction of second order tensors.

The reasons for considering such a variety of physical phenomena in the model are the
following. Firstly, Coriolis forces and permeability effects have been introduced only because
of generality. When they dominate, numerical oscillations may appear, global for the former,
reduced to boundary layers for the latter. The stabilized method presented here allows to
remove them, as it was shown in [3].



The nodal-based implementation described later on is based on a particular way of writing
the convective terms in the Navier-Stokes and the heat equation. In order to see the effect
on both, it is interesting to solve thermally coupled flows.

Finally, the possibility of dealing with nonlinear materials will be used to demonstrate
the effect of another approximation that will be done for the viscous term. This is especially
relevant not only in the case of a non Newtonian behavior of the fluid, but also in the case of
turbulent flows. The most common turbulent models make use of the Boussinesq assumption,
which leads to the introduction of an additional viscosity to be added to the physical one.
This turbulent viscosity varies from point to point according to the law that the turbulence
model being employed determines. Nonlinear fluids as those considered in this paper can be
considered as representative of fluids with non constant viscosity.

In order to write the boundary conditions for equations (1)-(3), consider the boundary
I' = 09 split into two sets of disjoint components as I' = Tgqy UTyy and also as T' = Tg; U Ly,
where T'y, and T'y; are the parts of the boundary with Dirichlet type boundary conditions
for the velocity and the pressure, respectively, and I'y, and I'y; are those where Neumann
type conditions are prescribed. If the Cauchy stress tensor (divided by the density) is written
as o = —pI + 2ve(u) and prescribed values are represented by an over-bar, the boundary

conditions to be considered are

w(®; ) = wl(x, 1) on Tyy, (6)
n-o(xz,t) = t(x,t) on [y, (7)
¥z, t) = I(x,t) on Ty, (8)
kn - Vi (x,t) = hiz,t) on Ty, (9)

for ¢t € (0,gn).
To close the problem, initial conditions have to be appended to equations (1)-(3) and
the boundary conditions (6)-(9). They are of the form u(z,0) = u%(z), ¥(z,0) = 9°(z) for

x € Q, where u®(x) is a given initial velocity and 9°(z) a given initial temperature.

3 Numerical approximation

3.1 Time discretization

Let us consider now the temporal discretization of equations (1)-(3), for which we use the
generalized trapezoidal rule. Let 0 = t0 < t! < ... < t¥ = tg, be a partition of the time
interval and « € [0, 1]. To simplify the notation, we shall take the time step size 6t := "1 —¢"

constant for all n. Let us also introduce the notation

5fn = fn+l_fn7
fn-l-a = af’lH-l + (1 - Ol)fn,



= 0,
ot
where f is a generic function of time and f™ denotes the value of f at time t" or an approx-
imation to it.
Let us assume for simplicity that the force vector f and the heat source S are continuous
in time. The generalized trapezoidal rule applied to equations (1)-(3) leads to the following

time discrete problem: from known «" and ¥", find "t pntland 97 such that

5tun 4 (un+a . V)un—i—a ) wn—{—a x un+a — 9V « [Vn—%ae(un—i—a)] + vpn+1

Foumte 4 gponte = fre, (10)
v.un-}-l ____0’ (11)
507 + (W . VYO — V- (5VOTHE) = ST (12)

and satisfying the boundary conditions

w9 () = a"T(z) on Tyy, (13)
n-o"(z) =t""%x) on Tuy, (14)
9" (x) = 9" %(x)  on T, (15)
kn - VO (x) = A"t (x)  on Ty (16)

Observe that the problem can be posed in terms of w™ and 9" rather than u"*! and
97+1 by using the fact that §f™ = (f"T* — f) /e, for any function f.

The values of interest of the parameter o are @ = 1/2 and a = 1, corresponding to the
Crank-Nicholson and the backward Euler schemes, respectively. Both are unconditionally
stable, although the former is expected to be second order accurate whereas only a first
order approximation can be expected for the latter. Under certain regularity assumptions,
this is known to hold at least for the standard Galerkin method [11], although no analysis
is available for the stabilized formulation presented below (see [12] for a similar approach to

the transient problem for the convection-diffusion equation).

3.2 Weak form

Once the time discretization has been carried out, we are left with the boundary value problem
defined by the differential equations (10)-(12) and the boundary conditions (13)-(16). This
problem will be discretized in space using a finite element method. It is therefore necessary
to obtain first the variational form of the boundary value problem. For that, let us consider
the functional spaces

Vn-l—a' — {u(:c) c Hl(ﬂ)nSd . u = ’l_l:n+a on de}a
Vo = {u(w) € H'(@)™ | w=0onTa},



@={a@) e 2@ | [ ga0=0ifTo = o},
Q
pte = {9(z) € H'(Q) | & =9"" on Tat}
¥ = {9(x) € H'(Q)| ¥=00n Tat}
where, as usual, L?(£2) denotes the space of square integrable functions in the domain € and
H'(Q) the subspace of L?(Q2) of functions with square integrable first derivatives.
Once these functional spaces have been introduced, the week form of the problem defined

by (10)-(12) and (13)-(16) reads as follows: find u™™® € V"*e, p"*l € Q and 9"+ € Y+
such that

/ v [(5,5’11," —+ (un—'.—a . V)un+a 19 wn+a % un—i—a e Uun+a o Q,Bﬁn—'—a] dn
Q

—|—/ 2e(v) : V" (u" 1) dQ — / p" IV v dQ
Q Q

= / v frredo+ [ v e, (17)
Q Cav
/ gV - u"tdQ =0, (18)
Q
/ W [50" + (e - V)9ne] dQ + / KV - VO™ dO
Q Q
:/QdeQ+ [ ypear, (19)
nt

for all test functions v € Vp, ¢ € @ and 9 € Wy.

3.3 Linearized equations and iterative coupling

The final step previous to the finite element approximation of the nonlinear variational prob-
lem (17)-(19) is to linearize it. In our case, there are two sources of nonlinearity, namely, the
convective term of the Navier-Stokes and the heat equations and the fact that the viscosity
depends in a nonlinear way on the viscosity through a non Newtonian constitutive model.
Concerning the linearization of the convective term of the Navier-Stokes equations, both
the fixed point Picard scheme and the Newton-Raphson method can be considered. Let us
denote by the superscript 7 the iteration counter. Given an approximation whtest o ghte,

the next one is computed by approximating
(nrenitl . V)un—i-a,i—l—l ~ (unted Vg et
iy [(un+a,i+1 LV )untat (e, v)u71+a,i] , (20)
where \; = 0 corresponds to the Picard method and A; = 1 to the Newton-Raphson scheme.

The former is first order, whereas the latter is second order but needs an initial guess close

enough to the converged solution to converge.



The linearization of the constitutive model (5) is not as easy as that of the convective
term. In fact, the expression of the viscosity in terms of the velocity in this case is not even
differentiable. In such a situation, the simplest way to deal with the constitutive nonlinearity
is to use a Picard-like strategy, taking the viscosity evaluated with the velocity w" T when
w4+l g to be computed. Of course only a linear convergence rate can be expected if this
is done, and the use of Newton’s scheme for the convective term seems useless. However, this
depends on the relative importance of the nonlinearities coming from the convective and the
viscous terms. In some situations where the influence of the constitutive law is small and the
flow is governed by convection, we have found useful to use Ay =1 in (20), even though the
simple fixed point scheme is used for the viscosity.

The convective term in the heat equation is another nonlinearity of the problem. However,
instead of linearizing this term and dealing with the fully coupled problem, with velocity,
pressure and temperature as unknowns, we shall use an iterative coupling, as described for
example in [13]. The idea is to use the temperature known from the previous iteration in
the momentum equation (17), and then use this equation and (18) to compute the velocity
and the pressure. With the velocity computed, we can proceed to solve the heat transport
equation. Again, only a linear convergence rate can be expected for this iterative scheme.
However, if the nonlinear term of the momentum equation drives the iterative scheme, it can
be useful to use A; = 1 in (20).

Having the previous considerations in mind, the fully linearized form of problem (17)-(19),
coupling iteratively the heat equation to the momentum and incompressibility equations,
is as follows: given a guess "t for 4™t and 9"+ for 9"+, find w"ToF € VITe,
pttLitl € @ and Yttt € U guch that

/ v - {5tun,i+1 +2 whte % un+a,i+1 + aun+a,i+1 + 9,319H+a’i
Q
+(un+aal * V)un+a’l+1 + Al [(un+a7z+1 . v)un+ay1 _ (un+0,2 5 V)un‘i'a,ljl} (1Q
+/ 2e(v) : " Ulg (u T dQ — / PPy Ly dQ
2 Q
:/”‘f"+“dﬂ+ v-tredr, (21)
2 Loy
[ av-wrteitaa =0, (22)
Q
/ ) [6t,l9n,z’+1 + (un+a,i+1 . V),ﬁn—l—a,i+l] dQ + / KV - Vﬁn+a’i+1 40
@ Q
Q Tnt

for all test functions v € Vg, ¢ € Q and 9 € ¥y, Here, "% means that the viscosity
is evaluated with "t whereas S"T®it! is evaluated with w"T®*! (S can depend on u



through Joule’s effect, for instance). Likewise,

5un,i—|—1 1 n+a,i+1 n
5= o -u").
After (21)-(23) has been solved, convergence needs to be checked and, if not achieved, set

i < 1+ 1 and solve this problem again.

3.4 Finite element approximation

We are now in a position to undertake the finite element approximation of the linear vari-
ational problem (21)-(23). In order to discretize it in space, let {€2°} be a finite element
partition of the domain €2, with index e ranging from 1 to the number of elements ny. We
denote with a subscript h the finite element approximation to the unknown functions, and
by v, qn and 1y, the velocity, pressure and temperature test functions associated to {Q°}.

The finite element approximation to the functional spaces where the unknowns and the
test functions belong are also characterized by a subscript h. A very important point is that
we are interested in using equal interpolation for all the unknowns (velocity, pressure and
temperature). Therefore, all the finite element spaces are assumed to be built up using the
standard continuous interpolation functions.

In order to overcome the numerical problems of the standard Galerkin method, a stabi-
lized finite element formulation to solve (21)-(23) is applied. This formulation is presented
in [2] for the general case of systems of convection-diffusion-reaction equations, and applied
to the incompressible Navier-Stokes equations in [3], where its convergence properties for
the linearized problem are analyzed. The bottom line of the method is to test the contin-
uous equations by the standard Galerkin test functions plus perturbations that depend on
the operator representing the differential equation being solved. In our case, this opera-
tor corresponds to the linearized form of the time-discrete Navier-Stokes equations (10)-(11)
and the heat equation (12). In this case, the method consists of finding 'u,”+0 A+l e yte
pﬁ“’iﬂ € Qp and 192““’“1 € U}t such that

/vh pite i+l dQ+/ 26 (vp) : VTSI (u i1y 40 — / ity g 40
Q

ne
1 /‘ Cn+a , n+a Z+1 n+a 1+1 dQ + Z / Cn+0 i n+a i+1 dQ

Tel

- Z/ v+ Cn—i—a z) . fn+oz dQ + / v En+a dr, (24)
an
/Qthgm,m dQ+Z/Q L. (,,.Zi!-a,iﬂ +7"Zém’i+1) 49
e=178°

Tle]

=2 [ T, (25)
e=1 ¢

10



/ Py - AR + / KV, - VIR AQ
Q

Tel

+Z/ Cn+az n+az+1+ g;—a z+1) do

_ Z /Q (4 +Goror) srostdQ 4 [y e, (26)
e=1 € nt

for all test functions vy, € Vo u, qn € Qn and 9y, € Yo, where

1
rn—i—a i1 — 5t n,i+1 +9 wn+a x uz—l—a ,i+1 + un+a i+ + ﬂﬁn—H”

ul
(gt Dy ey [ Vyu e — vyt (@)
pifeitl = _9v. [V"+""i€(uz+a’i+1)] + VpZ'H’iH, (28)
rg+a,i+1 g epz+1’i+1 ko 6pn+1 % +V- n—l—a z+1’ (29)
prbeitl gt 4 (up e vwg*‘*’”l, (30)
pbeitl . _y (ﬁ-wz*“"i*l), (31)

the functions ¢,1, Cu2 and ¢, are computed within each element as

Cor = Tu {(un - V)vp +2 w X vy —ovp + 2V - [ve(vp)]}, (32)
Cu2 = 'rpv *Vh, (33)
Cp = TuVah, (34)
Co =19 [(un - V)n + V- (V)] (35)
and the parameters 7, 7, and 7y are also computed element-wise as [3, 14]
C[4v | 2l ]'1
u_[hZ - +lw|+o| (36)
7y = 4v + 2Juy|h + | w|h® + oh?, (37)
4k 2|uh|] =
=+ (38)

where h is the element size for linear elements and half of it for quadratics.

There are several remarks to be made to the previous equations:

REMARK 1. Tt is observed that (28) and (31) (the terms of the original differential equa-
tions integrated by parts in the weak form of the problem) involve second derivatives of the
unknowns. This is why the integrals involving these terms have to be evaluated element by

element.

11



REMARK 2. The term (28) involves also derivatives of the viscosity, in the case in which it is
variable. These are very difficult to incorporate in the formulation, although in the next sec-
tion it is discussed how to deal with the viscosity variation in the nodal-based implementation

presented there.

REMARK 3. In (29) we have introduced a parameter e that corresponds to a penalty
parameter for the incompressibility constraint. When Ay = 0 the penalty strategy can be
considered the ‘classical’ one. On the other hand, when Xy = 1 it is seen from (29) that
the effect of the penalization disappears when convergence is achieved. This iterative penalty
method is discussed and analyzed in [15]. The benefit of taking Ay = 1 is that larger values
of € may be used with a good approximation of the incompressibility constraint. The use
of penalty methods is very useful when pressures are discontinuous, since then they can
be eliminated at the element level. When continuous pressures are used, they may help
to improve the convergence of the iterative methods if they are used to solve the algebraic

system of equations.

REMARK 4. In expressions (32)-(38) the velocity uy, the speed of rotation w and the

viscosity v are evaluated at the time step and iteration indicated in (24)-(31).

REMARK 5. Tt is observed from (32)-(35) that these terms are precisely the adjoints of the
(linearized) operators of the differential equations to be solved applied to the test functions
(observe the signs of the viscous and permeability terms in (32) and of the diffusive term in
(35)). This method corresponds to the algebraic version of the sub-grid scale approach 1, 2]
and circumvents all the stability problems of the Galerkin method. In particular, in this case
it is possible to use equal velocity pressure interpolations, that is, we are not tight to the

satisfaction of the inf-sup stability condition. O

4 Nodal-based implementation

4.1 Motivation

In this section, the second objective of this paper is attempted, that is, to present a nodal-
based finite element implementation of the stabilized finite element formulation presented in
the previous section.

Let npis be the total number of nodes of the finite element mesh and let N* be the
shape function (i.e., the standard finite element interpolation function) associated to node a,
a =1,...,npts. From now on, superscripts a and b will refer to the nodes of the mesh.

To obtain the algebraic version of problem (24)-(26), the standard procedure is to inter-

12



polate the unknowns as
Mipts

" .
Upi = ZN Uy, §= 1y cuns gt
a=1

Npts

pr =Y NP,
a=1
Npts

9y =) N°O°,
a=1

where upper characters U, P and © are used to denote the nodal values of the corresponding
lower case variables (at the time step and iteration of interest). The test functions are then
taken as vy ; = N6, for k = 1,...,nsq (0;1, being the Kronecker delta), g, = N? and 9, = N?,
b=1,..,nps. After the boundary conditions of Dirichlet type are prescribed, this leads to
an algebraic system of equation the solution of which yields the nodal unknowns. The matrix
of this algebraic system changes from time step to time step and from iteration to iteration
due to three reasons: the convective term, the viscous term and the stabilization parameters
given in (36)-(38). All these terms depend on the velocity, and hence on the iteration and
time step. The former dependence could be avoided by treating explicitly in time these terms,
but this would be at the expense of loosing stability of the time integration.

The time consuming task in the calculation of the matrix of the algebraic system (tradi-
tionally referred to as ‘stiffness matrix’) is the numerical integration involved. However, i is

possible to introduce some approzimations that allow to express all the integrals in terms of
/ NNt dQ,
Q
/ N°9;N®dQ, / GNONPAQ,  i=1,...,nu, (39)
Q Q
/ ONCONYAQ, g =1, e,
Q

for a,b = 1,...,nps, and, if the second derivatives of the shape functions within an element

are not zero (or negligible), also in terms of

el Nel

Y [ NeAN'dQ, > [ AN°N'AQ,

e=1 Qe e=1 Qe

TNl Tel

S [ AN“9;N®dQ, S [ 9N“AN’dQ, i=1,...,Neq (40)
e=1 Qe e=1 Qe

Tel

> [ AN“AN'4Q,
e=179¢

for a,b = 1,...,npts. In the previous expressions, d; denotes the partial derivative with respect
to the i-th Cartesian coordinate and A is the Laplacian operator. For fixed domains €, all

the integrals in (39) and (40) can be computed at the beginning of the run and stored.

13



At this point there are two questions to be treated. The first is which are the approx-
imations needed to be really able to use only (39) and (40) to build up the matrix of the
algebraic system. This is the subject of Sections 4.2 and 4.3.

The second question is how to store the integrals in (39) and (40). The efficiency of
the overall implementation depends on how efficient the storage scheme is. The method we

employ is described in Section 4.4.

4.2 Approximation of the viscous and convective terms

As it has been mentioned before, the convective and the viscous terms (when the viscosity
depends on the velocity) need to be recomputed at each iteration of each time step. However,
it is possible to approximate these two terms so that they can be computed with the integrals

appearing in (39).

Convective term

Let us begin with the convective term in (24) and assuming for simplicity a Picard lineariza-
tion, that is, A\; = 0. The terms appearing when A; = 1, as well as the convective ferm in
the discrete heat equation (26), can be dealt with in a similar way.

Let aj, = uZJra’i and uj, = uz+a’i+1. When the velocity test function is taken such that
Vpi = NY§;1., with k fixed (k = 1,...,n4), the convective term is

Nsd

/th [(an - V)us] 402 = ; (/Q Nbaj, ;0;N° dQ) U (41)

The need for an additional approximation arises because of the function aj ; appearing within
the integrals. Calling A? the nodal values of this function, the approximation that is proposed
here is

Nsd

Nsd
3 ( / Nbay, ;8;N® dg) ~ ASY ( / Nb9;N® dQ) : (42)
g=L Q Jj=1 @

where ¢ = b or ¢ = a. In any case, the convective term will be expressed in terms of the

integrals of (39), as desired. The reasons for one choice or the other are discussed next:

Choice ¢ = b in (42). Suppose that there exists a nodal integration rule of order njyt.
The integration points are then the nodes of the mesh, of coordinates 7, g = 1,...,npts.
The associated weights for the e-th element are denoted W¢, and the number of nodes per
element by n,,q (the same superscript ¢ is used for the numbering of the element nodes).
Interpolating the velocity components in the left-hand-side of (42) and using the fact that
Ne(z) = §%°, we have that

Nsd Nisq Tpts
> (/ N'ap;O;N* dQ) =) > AS (/ N°N°9;N* dQ)
j=1 W9 Q

j=lc=1
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Nsd Mpts Tlel Mnod

o Z Z A; Z Z Wé?abgécgajNa(mg)’QE + O(hmin)

j=lc=1 e=1 g=1

Nsd el

=Y A <ZW£ ajN“(:cb)\Qe> + O(hMm)
j=1 e=1
Nsd

=) A (/ﬂ N9;N*® dQ> + O(hMnt), (43)
=1

which justifies the use of (42) with ¢ = b. It is seen that the error is O(h"nt). It is known that
the nodal numerical integration is of order ni,y = p + 1, where p is the order of the standard
Lagrange interpolation. Therefore, the error of approximation (42) is the same as the order
of the finite element interpolation when ¢ = b. However, the argument used to arrive to this
conclusion is not valid for the stabilization term, whereas the following can also be applied

in this case, as will be shown later.

Choice ¢ = a in (42). Since a;, is approximately divergence free, we can approximate

/ wn - [(an - V)uy) dQ ~ / - [V - (an ® up)] dS2. (44)
Q Q

In fact, it is not necessary to consider this as an approximation, since the convective term of
the original continuous equations could have been written directly as V- (u ® u) rather than
(u - V)u. What is definitely an approximation is to interpolate the product aj @ wy, instead
of each of the components separately. Doing this when vy ; = Nb§;, yields:

Nsd Nsd Npts
Z / vh,iaj(ah,juh,i) dQ = z/ Nbaj (ZNGA?U;;) dQ2
i,j=1"9 j=179 a=1

Ngd Mpts

=3y 4 (/Q NbO;N° dﬂ) ug, (45)

j=la=1
which justifies (42) for ¢ = a. The performance of this approximation, as well of the following,
will be checked through numerical experiments. However, it can be anticipated that a certain
loss of accuracy can occur, since piecewise polynomial solutions of order p will not be anymore
solution of the discrete problem when elements of order p are used, since for such solutions

u ® u is a polynomial of order 2p.

Viscous term

Let us consider now the approximation of the viscous term in (24). When v;,; = N b§i1, with
k fixed, this term is

Nsd
2/ E(’Uh) : VE(uh) dQ = Z / I/ai’l)h’j (ai'uh,]‘ + ajuhﬂ') dQ2
Q imle
Nsd

= Z/Q V@iNb (aiuh,k + 8kuh,i) dQ, (46)
= b
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where €, is the interior of the support of N?, that is, the union of the domains of the elements
to which node b belongs. To see how these integrals can be approximated, let f and g be
two given functions, both bounded and the former with bounded derivatives. Expanding f
in Taylor series, the integral of their product in a domain € is

Nsd

/QO fgd = f(z) /Qogdm; 8ifl /Q (s — 5:) g 09

Nsd

1
= a,-ajf|§c/Q (s —B5) {5 — B1) g 40+ ..
0

i,j=1
If d is the diameter of Qp and meas({g) its measure, we see that
Fadf = F{&) / 9dQ + O (d™meas()) , (47)
Qo Qo
where m = 2 if  is the center of mass of Qg with ‘density’ g and m = 1 otherwise. The
idea is now to apply this to the integrals in (46), with f = v and g = ;N (Oup i + Okup;i).
Obviously, it would be desirable to know the center of mass of 2, with density this function
g, which is unknown. What is proposed here is to take v in (46) as constant and equal to its
value V° at node b. Doing this and interpolating the velocity yields:
Nsd Nsd

Z/ v O;N® (Osun k + Opup,) dQ = Z P ;N (Oyup gk + Okup,i) dQ
=17 =1

Nsq Mpts

=3 [Vb ( /Q ;N°9;N® dQ) U +1° < /Q N 9 N¢ dQ> Ul-“} . (48)

i=1 a=1
Again, this expression involves only the integrals in (39).

The way to evaluate »° is not absolutely clear. For constitutive laws such as (5), the
viscosity depends on the velocity gradients, which are discontinuous for standard C° finite
element interpolations. In order to obtain nodal values of these velocity gradients, we use a
standard least-square smoothing from the element-wise values. If Gf;, a = 1, ..., nps, are the
nodal values of d;uy j, 1,5 = 1,...,nsd, these are the solution of the linear system

Npts

Npts
3 (/Q NPN© dQ) Ge=% (/Q Nbo,N© dQ) US,  b=1,. s, (49)
a=1 a=1

which only involves the integrals in (39). Moreover, to avoid the need for solving (49), we use
a nodal numerical integration rule to compute the integral of the left-hand-side, yielding a
diagonal ‘mass’ matrix. Also, since for quadratic elements there are weights which are zero,

they are replaced by those corresponding to the splitting of the quadratic elements into a

number of linear elements.
REMARK 6. Since

/ ;NP9 N® d) — ;NP9 N dQ, (50)
Q Qmea
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it is tempting to evaluate the viscosity at a point in €, N, not necessarily node b. However,
if v depends also on node a, the second equality in (48) does not hold and the viscous term
would be wrongly approximated, since for ‘exact’ nodal values Uf the discrete variational
equation (24) would not be satisfied. This can be understood as a lack of ‘consistency’ of
the numerical formulation. In practice, what we have observed is a completely oscillating

behavior of the iterative scheme, leading to converged solutions only for mild nonlinearities.

REMARK 7. It is difficult to assess the quality of the approximation in (48), especially
because we are interested in cases with a very complex dependence of the viscosity with the
velocity (either through a constitutive equation as (5) or through the use of a turbulence
model). In general, only an error of order h (m = 1 in (47)) can be expected. However,
the order of approximation of the finite element method is also lower for non Newtonian
fluids as those governed by (5) than when v is constant (see for example [16]). The need for
the least-square smoothing (49) makes things even more complex. Nevertheless, numerical
experiments, one of which is presented in Section 5, show that the resulting numerical method

yields results very similar to those of the conventional element-based implementation. ]

4.3 Nodal stabilization parameters: Consistency and conservation

The last point that needs to be analyzed is the way in which the stabilization terms appearing
in (24)-(26) can be approximated to achieve the goal of using only the integrals in (39) and
(40) in the implementation. For the purposes of this section, it suffices to consider the
stationary problem with w = 0 and o = 0. Also, A = Az = 0 are taken. Likewise, attention
shall be focused on the Navier-Stokes equations, although the same ideas can be applied to
the heat equation.

As before, let aj, be the velocity of the previous iteration and uy, the velocity field that
needs to be computed. The first approximation to be considered refers to the viscous term
of the element residual in (24). Using the fact that the exact velocity is divergence free, the

approximation
2V - [ve(up)]|qe = vAup|ge +2 Vv - €(up)|qe (51)

avoids the need for computing and storing all the second derivatives of the shape functions,
and only their Laplacian needs to be dealt with. Observe that this does not affect the natural
boundary conditions associated to the discrete weak problem, since it is used only for the
element-wise evaluation of the viscous term. To simplify the calculations, the second term
in (51) is evaluated at the previous iteration, computing nodal values for it by using a least-
squares smoothing for the viscosity gradients and the velocity gradients as in (49). These
nodal values are then added to those of the external force f, which is considered to account

for them in the following.
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Using approximation (51) and considering the simplified situation described above, the
discrete problem to be solved is

/ vy - [(ap - V)up]dQ + 2/ e(vp) : ve(up)dQ — / ppV - vy dQ
Q Q Q
+Smom,1('vh; Uhaph) + Smom,?(’uh,; uh) = Rmom(vh,)v (52)

€ /Qthh dQ + /QQhV - up, + Scont (qn; Un, ) = Reont (qh), (53)

where the right-hand-side terms Riom(vs) and Reont (qn) come from the force vector (4) and
the surface traction in (7),

Tel

Ruom(vp) == /th L fdQ+ /1“ vy - tdl + Z /QETU [(an - V)vp + vAvy] - fdQ,
nv e:1

el

Rcont(Qh) = Z AETUVQh ’ fan
e=1

and the stabilization terms are given by

Tel
Smom(ons 1) = 3 [ 7 [(@n - Vo +vhw)
e=1
[(an - V)up — vAuy, + Vpy] 42, (54)
Tel
Smoma(oniwn) = 3 [ (V- o)(V - un) 2, (55)
=]
’ Tel
Seone(aniun, ) = 2 [ ruVan-[(@n - Vyun = vAun -+ Vpa] 4 (56)
e=1

where the stabilization parameters 7, and 7, are given by (36) and (37), respectively.

Suppose for a moment that I'yy = 0€, that is, all the boundary conditions are of Neumann
type (case in which the solution would not be unique) and that we can take the test function
v}, constant. Assuming that ay, is divergence free (or using expression (44) for the convective
term) equations (52)-(53) imply in this case

/ (n-ah)uhdﬁz/fdﬁ—l—/ tdr, (57)

o0 Q o0

e/pth+/ n-u,dl =0, (58)
Q 0N

which can be understood as global conservation statements for the momentum and the mass
of the fluid contained in the domain Q. It is in this sense that the finite element method can
be considered as ‘conservative’.

However, equations (52)-(53) are not enforced for constant test functions vy, and gy, but
only for test functions of the form v), = Nbep and g = N% b= 1,...,npts, b = 1,...,0q,

where e, is the unit vector along the zj coordinate. Since the addition of all the shape
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functions N? is 1, equations (57)-(58) can also be obtained by adding up for b =1 to b = ns
equation (52) enforced for v, = N be; and also (53) enforced for ¢, = N b but provided that

Npts

> Stmom,1(N’ex; up, pr) =0, (59)
b=1
Nipts

>~ Smom2(N’ex; un) = 0, (60)
b=1
Npts

ZScont(Nb;uhaph) =0. (61)
b=1
These equations can be considered as the sufficient conditions for the stabilized finite element
method to be conservative (see [14] for further discussion).

In a standard implementation of the formulation, the stabilization parameters are com-
puted depending only on the element, and not on the test functions being used in (54)-(56).
However, the idea of the nodal-based implementation presented here is to use nodal values
for all the parameters of the formulation, and in particular for 7, and 7,. It can be readily
observed from (54)-(56) for v, = NP that conditions (59)-(61) will not hold if 7, and 7,
depend on b. If this happens, it is impossible to assess that the numerical formulation is
conservative.

Of special interest is what happens to the continuity equation (53) when a penalty pa-
rameter is used. Taking ¢, = N° and adding up for all b yields

Tlpts Tle]

ZZ/ Fu VN - [(@ - V)up — vAup + Vpy] dQ+e/pth+/ 7+t AT = 0.
b=1 e=1"%¥ Q o0

If 7, is independent of b, the first term is zero and thus the mean pressure value is zero when
so is the mass flux in the domain Q. This is an interesting property of penalty methods
that does not hold when 7, changes according to different values of b, since the first term is
not necessarily zero in this case. If the mass flux is zero (for instance because of a Dirichlet
prescription for the velocity), the outcome is that the smaller the value of € is, the larger the
mean pressure value. This behavior has been observed in numerical experiments.

Despite this lack of ‘conservation’, which has to be acknowledged, the stabilization pa-
rameters 7, and 7, will be evaluated at node b when v, = N be, and when ¢, = N°. The
reason for this is related to the consistency of the scheme, which is discussed next.

Let us consider the stabilization term (54). Taking v, = N be; and interpolating the
velocity and the pressure it is found that

Tel Nsd
Smom,l(Nbek; uhaph) = Z /Qe Tu l:z (ah,iaz'.Nb) + I/Aij|
e=1 =1
Nipts Ngd Npts Npts
A S (an @i N UR —v> AN°UR + Y 0 N“P*| dQ
a=1j=1 a=1 a=1
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Nipts

Ny
Z Zd/m ahlaN)(ahjaN)dQ Ug

a=1 |i,5=1

“pts Nsd MNel
[ / 7uv (an,BiN") AN dQ} Ug
i=1.e=1

nptS

+; [Z / ru (a1 10iN") O N° dQ] P

Nipts sd Me
5 {Z / AN (an ;0;N) dQ | UE
a=1 |j=1
Nipts [ Ne Npts [ el
-3 [ TuuzANbANa dﬂ] Ug+ Y [Z /Q Tu AN O N* dQ} re. (62)
a=1 a=1 Le=1 S

The goal now is to make the convenient approximations to write this in terms of the
integrals in (39)-(40). First of all, observe that the integrals involving the shape functions
of nodes a and b can be extended over Q, N £, only, the intersection of the interior of the
supports of N® and N b Therefore, if approximation (47) is to be used, the functions taken
out of the integrals have to be evaluated either at node a or at node b, or a combination of
both. However, it is not a matter of choice. The only possibility to approximate (62) is to
take:

e The velocity a;, appearing in the element residual of the differential equation evaluated
at node a, and thus the i-th component equal to the nodal value Af. This corre-
sponds to the second approximation of the convective term discussed in the previous
section, that is, (42) with ¢ = a. The reasons for this choice are still valid in this case,
whereas the argument for taking ¢ = b is not valid any more, since now, for example,
Ty (ah,iaiNb) (%) # 6% (see the derivation of (43)).

e The velocity a; appearing in the operator applied to the test function evaluated at
node b, and thus the i-th component equal to the nodal value Aé’. This is needed for
consistency reasons, similar to those given in Remark 6: if aj, depends also on node «,
exact nodal values of the velocity would not satisfy the discrete variational equations.
However, the same discussion concerning the choice of the stabilization parameters is

applicable now: the resulting numerical scheme will not be conservative.

e The viscosity evaluated at node b. This is also due to the consistency requirement

discussed in the previous section.

e The parameters 7, and 7, evaluated at node b. Even though this produces a non-
conservative scheme, it is essential to have a consistent numerical method, in the sense
that exact solutions of the continuous problem should also be solutions of the discrete

one, provided they belong to the finite element space. The expressions we use for these
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parameters are (36) and (37) (and obviously (38) when the heat equation is dealt with),
taking wup as the nodal velocity at node b, v the viscosity at this node and % as the

minimum distance from node b to the surrounding nodes.
Using all these approximations in (62) one finds

Nsd
S AbAsrd ( | aivto,ne dQ)
Q

ij=1

Npts [Msd el
=S DA (Z O;N'AN® dﬂﬂ U
a=1 e=178

Li=1

Npts

Smom,l(Nbek; uhaph) ~ Z

a=1

U

Tpts [Nsd

+30 [ abe < / 8; N9, N dﬂ)] pe
a=1 Li=1 Q

Tel

Npts _nsd
S (Z / AN”@-N”dQ)
j=1 e=179°

a=1 |,

Ui

Npts

i Tlel
=S w2 (Z ANbAN“dsz)]U,g
a=1

e=1 Qe

Npts

[ el
+y |V <Z ANbakN“dQﬂpa.

a=1 L e=1 Qe

Once again, the objective of using only the integrals in (39)-(40) has been accomplished.

REMARK 8. It is interesting to note that even when a; = 0, the final algebraic system of
equations will not be symmetric if the stabilization parameters change from node to node,

that is, if the mesh is not uniform or the viscosity is variable. ]

The way to treat the stabilization terms (55) and (56), and also the one coming from the
stabilization of the heat equation when this is solved, is exactly the same as for (54): the
stabilization parameters must be evaluated at the node associated to the test function being

used and the convective velocity and viscosity evaluated as explained above.

4.4 Mesh graph and basic algorithm

Once it has been established that the matrix of the algebraic system can be built up making
use of the integrals in (39) and (40), the question that needs to be addressed is how to store
these integrals in an efficient way. The technique adopted in this work is to use a compressed
sparse row (CSR) format to store the npis X npgs ‘virtual” matrix M pesh, whose coefficients
are Mgf;sh = 1 if nodes a and b are connected, = 0 otherwise. This is the matrix of the graph
associated to the finite element mesh.

In order to store M esn using the CSR format, two arrays are needed. Let NZD be the

number of nonzero coefficients in M ,esn. These two arrays are:

Rumesh (Npts);  Rmesh(a) = Coefficient of M yesn where row number a starts, (63)
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Crnesh(NZD);  Ciesn(I) = Column in M pegn of the coefficient I. (64)

For implementation convenience, it is useful to take Rpesn of dimension npys + 1, with
Runesh (npts + 1) = NZD + 1 (see the algorithm of Box 1).

The arrays in (63)-(64) allow to access to all the components of the integrals in (39) and
(40) when these are stored in npts X npts matrices (each component of which can be a ngq
vector or a msg X Nsq matrix). Moreover, Rpyesh(npts) and Cpesh(NZD) can also be used to
store in CSR format the stiffness matrix of the problem, and thus they define completely
its topology. Once they have been computed, the memory for the classical array of nodal
connections, which has the list of nodes that each element has, can be freed.

To compute the contributions to the force vector due to the surface traction tin (7) or
the heat flux h in (9), the integrals of the shape functions products over the boundaries are
needed. However, these can be obtained from the corresponding integrals over the interior of

the domain using the expression
/ niN“NbdF:/ 8iN“N”dQ+/ NN dQ,  i=1,...,ne, (65)
a0 Q Q

where n; is the i-th component of the exterior normal to Q. The left-hand-side of (65)
is equal to n;(Z) multiplied by the integral of NeNb where & is a point in 9Q N Q, N Q.
Assuming that this point is the same for all ¢ it is found that

1/2

Tsd 2
NaNbsz:i:[Z (/ n,L-NaNbdF> } . (66)
GI)

ox2 i=1
The sign of this integral is determined from the sign of the integrals in (65).

To store the boundary integrals in (66) it is a waste of memory to use a matrix with the
same sparsivity pattern as M pesn. It if preferable to store also the boundary graph, that is,
the matrix Myoun, of dimensions nppe X Nppe, where 1y, is the number of boundary nodes.

If NZB is the number of nonzero coefficients of Mgy, the arrays needed to store it are

Rpoun(nbpt); Rboun(a) = Coefficient of Moyn where row number a starts, (67)

Choun(NZB); Cpoun(I) = Column in Moy, of the coefficient 1. (68)

As for Rpmesh, it is useful to take Rpoun of dimension nppt + 1 and Ryoun (nbpe +1) = NZB+ 1.
Let us see know how the arrays in (63)-(64) (and (67)-(68)) allow to construct the stiffness
matrix and force vector of the algebraic problem using the approximations described in the

previous section. This algebraic problem has the form

MR

where U and P are the arrays of nodal unknowns of velocity and pressure, respectively,

F; and F'5 are the force vectors arising from the body forces and the surface traction, and
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matrices K, G, D and L have the structure

i), =[]

o-lev], &= o],

D:[D“”], Da”z[pg”]t, (69)
) - [L“b],

Fi=[F%), Fi=[Fy], Fa=[F].

Indexes a and b in these expressions run from 1 to npgs, whereas 4 and j run from 1 to ngq.

Box 1: Construction of the arrays of the algebraic system

FOR b =1,np DO:

e Compute 72, 7'},’
e Set Fﬁk =0for k=1,..,n4q, FQb =0
FOR I = Ruesn(b); Rmesn(b+1) —1 DO:
e Identify the column node: a = Ciyesh (1)

e Compute the contributions to the stiffness matrix
Kf?, Gf,’c“, Dga, Lbe for k.1 =1,...,nsq (see Box 2)

e Add contribution to the force vectors

Flb,k for k=1,...,n54, FS (see Box 3)

END

END

The arrays (69) can be computed by looping first over each nodal point and then over the
nodes connected to it, as indicated in Box 1. This can be done making use of (63)-(64). This
algorithm turns out to be very efficient compared to the standard loop over the elements to
compute the element contributions. In particular, all gather-scatter operations are avoided,
and there is no need to perform the classical assembly operations.

Of course, Dirichlet boundary conditions have to be incorporated before solving the final
linear system of equations.

The components of the matrices in (69) are indicated in Box 2. The situation considered
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Box 2: Components of the stiffness matrix

Nsd Nsd
K=" Af < /Q N*9;N* dQ) S+ 7Y ( /Q O;N°O;N* dQ) Ok
=1 i=1

+00 ([ NP N®dQ) + 78 | | O NPON®dQ
Q P \Ja
Nsd

+r0 S AbA ( /Q 8;N"9; N dQ> 51

i,7=1
Nsd Tel
P70y A (Z o NP AN dQ) Okt
=1 e=1

Nsd Tiel
+l/b’TgZAg <Z AN”aiN“ dQ) Okt
=1 e=1 Qe
Nel
— (PP (Z ANPAN® dQ) Okl
e=1 Qe
Nsd
Ghe — _ ( / B, NP N dQ> +7Y Al ( / 0;N" ), N dQ)
Q i—1 Q
el Z
+ubr) (Z AN’g,N® dQ>
e=1 Qe
Nisd
Dbe — ( / NP N® dﬂ> +rby A ( / LN O; N dQ>
Q i=1 Q

Tlel
—7) <Z O N°AN® dQ>
e=1"8°

Nsd
L= ( / N°N© dQ> + 7oy ( / OiN*O;N“ dQ)
Q - \Ja
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is the same as in subsection 4.3, that is to say, the stationary problem with w =0, 0 =0
and A\; = Ay = 0. The extension to the most general case, including thermally coupled flows,
is straightforward.

The expressions of Box 2 summarize all the approximations introduced in this paper

related to the viscous term, the convective term and the stabilization terms.

Box 3: Contribution to the force vectors

Y« Fp+ ( / NN dQ) i
Q

Nsd Nel
+T > A ( /Q NN dQ) FE 4wl (Z /Q eAN”N“ dQ) o
1=1 e=1

Nsd

FoF 4ty (/Q ;NP N® dQ) 1
1=1

e If @ and b are boundary nodes:

Flp« Fhp+ ( / NbN® dI‘) B
N

In Box 3, the body force and the surface traction have been assumed to be interpolated

from their nodal values as

Npts Nbpt
f~> Nef t~ ) N°t (70)
a=1 a=1

5 Numerical examples

In this section we present the results of some numerical examples obtained with the stabilized
finite element formulation proposed in this paper. Two types of conclusions can be drawn
from them. On the one hand, these examples serve to check the behavior of the stabilized
formulation is situations more general than those in which it can be analyzed [3]. These
situations include thermally driven flows, flows of nonlinear materials and transient problems.
An example of each situation is presented.

On the other hand, these numerical examples also serve to compare the performance of
the standard element-based implementation of the stabilized formulation and the nodal-based

one presented in Section 4, which involves several additional approximations.
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The last two examples are intended to demonstrate that the work developed in Section 4
‘makes sense’. Firstly, because the resulting numerical scheme is shown to be (almost) opti-
mally convergent in a numerical test, despite all the approximations needed to arrive to it,
and secondly because this scheme turns out to be very efficient, an attribute of which finite

element methods are usually blamed for lacking.

5.1 Thermally coupled flow in a cavity

In this example, the convective motion of a fluid enclosed in the square cavity [0, 1] x [0, 1] and
driven by a temperature gradient will be numerically analyzed. The left vertical wall z = 0 is
heated and maintained at a constant temperature 9 = 1, while the right vertical wall z = 1 is
kept at 9 = 0. Horizontal walls are assumed to be adiabatic, i.e., boundary condition (9) with
h = 0 is prescribed. Homogeneous Dirichlet boundary conditions are prescribed everywhere
on the boundary for the velocity.

Let L be a characteristic length of the problem and Gy a characteristic temperature

gradient. The Grashof number Gr and the Prandtl number Pr are defined as

L3G
= PellGe  p Y
v K

Gr
Taking L = 1 and Gy = 1 in our case, the physical parameters have been adjusted to yield
a Prandtl number Pr = 0.005 and a Grashof number Gr = 3 x 10%. For this combination of
values, there is a unique and stable stationary solution to the Navier-Stokes equations coupled
with the heat equation using the Boussinesq assumption [17]. Thus, the stationary version
of problem (1)-(3) is solved in this example. The gravity is assumed to point downwards.

The finite element mesh employed to discretize the problem, which is refined near the
boundaries, consists of 2684 bilinear (Q1) elements and 2809 nodal points. The Navier-
Stokes equations have been linearized up to first order, and the standard penalty method,
with € = 1079, has been used to fix the pressure mean to zero. The convergence tolerance
has been taken as 0.01% in the relative L? norm.

The velocity field, the pressure contours and the temperature contours are shown in fig.
1-fig. 3. These results are very similar using the standard element-based implementation
and the nodal-based one presented in this paper. The comparison is made in fig. 4-fig.
9, where the z- and y-velocity sections, as well as the temperature section at z = 0.5 and
y = 0.5 (that is, the mid-sections of the cavity) are shown. It is important to remark that
this example involves two of the approximations discussed in Section 4, namely, those related
to the convective term for both the Navier-Stokes and the heat transport equations, and the

approximations needed to deal with their stabilization terms.
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5.2 Flow over a cylinder

This example involves the flow past a cylinder, another widely solved benchmark problem.
The computational domain is Q = [0,16] x [0, 8] \ D, with the cylinder D of diameter 1 and
centered at (4,4). The velocity at z = 0 is prescribed to (1,0), whereas at y = 0 and y =8
the y-velocity component is prescribed to 0 and the z-component is left free. The outflow
(where both the z- and y-components are free) is # = 16. The Reynolds number is 100,
based on the cylinder diameter and the prescribed inflow velocity. The finite element mesh
employed consists of 4000 linear triangles, with 2100 nodal points, and is refined near the
cylinder.

In order to obtain the fully developed vortex shedding characteristic of this problem,
90 time steps have been performed with §¢ = 1 and a = 0.5 (Crank-Nicholson scheme),
employing for that the element-based implementation. The convergence tolerance within
each time step has been taken as 1% (a single Picard iteration has been needed to converge).
The solution thus obtained shows a fully developed periodic flow pattern. These results
have been taken as the initial condition for a more accurate calculation, now computed with
6t = 0.1 and requiring a convergence tolerance of 0.01% in the relative L? norm. Two
or three Newton-Raphson iterations have been performed for each time step, both for the
element-based and the nodal-based implementations of the formulation.

The period of the oscillations has been found to be 5.9 time units with both implementa-
tions. The values given in references [18] and [19] are 6.0 and 5.6, respectively. In Reference
[20], the period obtained with a very fine mesh (3426 Q9/P; elements, 14000 nodal points)
is 5.8 time units. See also [21] for results obtained using a similar stabilized formulation.

The streamline snapshots and the pressure contours shown in fig. 10-fig. 13 correspond
to t = 7 and t = 10, that is, approximately half a period (¢ = 0 corresponds to the periodic
solution computed as described earlier with a higher tolerance and a higher time step size).

The important point is the comparison of the results obtained with the element-based
and the nodal-based implementations. This is done in fig. 14-fig. 19. It is observed there
that there are only slight differences in the spatial amplitude of the oscillations, as well as

some differences in the results near the cylinder (in particular, in the average pressure level).

5.3 Extrusion of a nonlinear fluid

In this section we present some numerical results obtained for the well-known 4:1 plane
extrusion problem. This is a very popular test for non-Newtonian flows, since all the flow
features that characterize these fluids are present in this problem.

The computational domain in this case is [0, 20] x [0,4] U[20,40] x [3,4]. The inflow is the
section z = 0, where the velocity field is prescribed to (v;(y),0), where v, (y) has a parabolic

profile with maximum 1 at y = 4 and minimum 0 at y = 0. The outflow y = 40 is left free,
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that is, condition (7) with £ = 0 is prescribed. On y = 4 the velocity is set to (1,0) and on
the rest of the boundary the no-slip condition is used.

The finite element mesh employed for the space discretization is composed of 2100 bilinear
(Q1) elements, with a total of 2201 nodal points. There are 15 elements in the y-direction
from coordinates y = 3 to y = 4 and only 12 from y = 0 to y = 3. The concentration of
elements in the former zone is needed if one wants to reproduce accurately the shear thinning
effect of fluids whose viscosity obeys the power law that we consider now, given by (5). Since
the effective viscosity values that result from this law are very high, the convective term of the
Navier-Stokes equations is neglected (the flow is assumed to be governed by creep), as well
as the buoyancy forces due to temperature (the flow is assumed to be thermally uncoupled).

The values of the physical constants that have been used are (all in ST units): py = 1200
(density), Ko = 10° (material consistency) and n = 0.4 (rate sensitivity). For this value of n
the effect of the non-constant viscosity is pronounced. Since the expression of the viscosity (5)
tends to infinity when I5(e) tends to zero, a cut-off value v, = 102 for v has been introduced.
The values of the viscosity for the converged solutions are always below this limit, except in
isolated points.

The streamlines and pressure contours for this problem are shown in fig. 20 and fig. 21,
respectively. As before, results are very similar using the element-based and the nodal-based
implementations. A detailed comparison is made in fig. 22-fig. 25, where the z- and y-
velocity components at £ = 30 and y = 3.5 are shown. In these figures, the results obtained
using a mesh of 525 biquadratic (Q2) elements with the same set of nodes as the mesh of
bilinear elements are also shown for the nodal-based implementation. It has to be remarked

that the element-based one did not converge using (o elements.

5.4 Convergence test

Let us consider now a 2D steady state test with analytical solution to check the behavior in
space of the finite element approximation to problem (1)-(3). We take Q as the unit square
and the force term so that the exact solution is p = 0 and wu(z,y) = (f(z)g'(v), —f'(z)g(y)),
with f(z) = 2%(1 — z)? and g(y) = y*(1 — y)?. This velocity field vanishes on 9.

As physical properties we have taken v = 0.001 and different values of w = |w| and o.
In particular, results will be shown for ¢ = 0, 1000 and w = 0, 1000. We have used three
uniform finite element meshes (meshes 1, 2 and 3) of 5 x 5, 10 x 10 and 20 x 20 biquadratic
elements, so that the element sizes are h = 0.2, h = 0.1 and h = 0.05, respectively. The
resulting values of the element Reynolds number are not very high and for this particular
example the standard Galerkin approach using a stable velocity-pressure pair, such as the
Taylor-Hood element @Q3/Q;, works for meshes 2 and 3 in the absence of Coriolis force.
However, when this force exists, the Galerkin method yields completely oscillatory results all
over the computational domain (see [3]).
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In fig. 26 we have plotted the convergence of the velocities obtained with the stabilized
method as the mesh is refined in the discrete ?2 norm and for different combinations of the

values of o and w. This error is defined as

Npts Nsd 1/2 Mpts Ngd '1/2
E=|> > U - uqi(w“))g} [Z > (uz-(fv“))Q} ;

a=1i=1 a=11i=1
where ¢ are the coordinates of the nodes.

The optimal convergence rate that should be expected is 3. From fig. 26 it is seen that this
is what is found for the element-based implementation. However, for the nodal-based one it
is slightly smaller when o = w = 0 (it is approximately 2.6). This is due to the approximation
made for the convective term, which is the dominant one in this case. However, it has to be
noted that also approximation (70) has been employed to interpolate the force vector, and
this might have introduced some additional error.

A comparison of results for ¢ = a and for ¢ = b in (42) (and the corresponding approxima-
tion for the convective part of the stabilization term) is shown in fig. 27. It is seen there that
the choice ¢ = a (employed also in fig. 26) gives better results than ¢ = b. The convergence
rate obtained using a mesh of @1 elements obtained by splitting each Q2 element into four is

also plotted in fig. 27 (using again ¢ = a). In this case, convergence is optimal, with rate 2.

5.5 Efficiency test

In this final example, the efficiency of the nodal-based implementation compared to the
element-based one is studied. For that, we consider the 3D extension of the the previous
example. The domain is the unit cube € = [0,1] x [0,1] x [0,1] and is discretized using three
meshes of P, P>, Q1 and Q)2 elements.

The interest of this example is to compare the CPU time needed to construct the stiffness
matrix of the final linear system for the two implementations of the stabilized method. Al-
though this linear system has not been solved, the force term has been taken so as to obtain
as exact solution u(z,y,z) = (h(2)f(2)g'(v), —h(2)f'(2)g(y),0), with f(z) and g(y) as in the
previous example and h(z) = z(1 — z). Likewise, w = (1,1,1) and o = 1000 have been used.

Results are shown in Table 1, where the meshes employed have been identified as follows:
‘t’ corresponds to tetrahedral elements and ‘h’ to hexahedral, ‘I’ to linear and ‘q’ to quadratic
interpolations, and ‘1’, ‘2’ or ‘3’ identify the number of nodes of the mesh. These meshes
have respectively 72, 133 and 25% nodal points, equally distributed.

For the case of tetrahedral linear elements (P;), that is, for meshes tl1, t12 and t13, two
possibilities have been considered, namely, the use of 4 points to perform the numerical inte-
gration (which corresponds to ‘full’ integration) and 1 point (which introduces an important
numerical integration error but is possible for this stationary problem). Obviously, this does

not affect the CPU time needed for the construction of the stiffness matrix in the nodal-based
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implementation, since integrals are computed and stored at the beginning of the calculations.
Similarly, for tetrahedral quadratic elements (P»), both 11 points and 4 points can be used
for the numerical integration.

The results shown in Table 1, obtained using a single SGI R10000 processor, show that
the nodal-based implementation is clearly much more efficient than the element-based one.
Obviously these results are dependent on the particular coding of the corresponding finite
element algorithm, but this can not affect the general tendency observed in Table 1.

Let us consider now the memory storage required for both implementations. If the number
of nodal points is increased, the asymptotic number of resulting elements is ne = felefpts,
where foe is a factor that depends on the element type. Similarly, if feon is the average
number of nodes to which a node is connected, the number of nonzero coefficients of the
mesh graph is NZD = feonnipts. Let Mepnpts be the number of coefficients that need to be
stored to compute the stiffness matrix for the element based implementation and Mpnps for
the nodal based one. Assuming in both cases that no second derivatives need to be computed,
the coefficients Mg, and My, are:

Mep = [(1 (element of volume) 4 ngqnnod (Cartesian derivatives)) nint
+nyod (nodal connectivities)] fele

My, = 0.5 (1 (first integrals in (39)) + ngq (second integrals in (39))
+ngqnsq (last integrals in (39))) feon

Observe that in the expression of My, we have taken into account the symmetries of the
intregrals in (39), as well as the fact that (65), which allows to store only one of the integrals
in the second row of (39). Likewise, for the element-based implementation the storage of
the nodal connectivities has to be accounted for, whereas for the nodal-based one the mesh
graph can be considered as part of the memory needed to allocate the stiffness matrix of the
problem.

The coefficients Mg, and My, for the different types of meshes in terms of the factors
fele and feon are given in Table 2. It is observed there that the nodal-based implementation
is less memory demanding for lower order interpolations and for fully integrated quadratic
tetrahedra, whereas the memory required is more than for the element-based implementation

for quadratic hexahedra.

6 Conclusions

Two different aspects related to the finite element approximation of the incompressible
Navier-Stokes equations have been treated in this paper. The first of them is the numer-
ical formulation, which consists of a stabilized method able to deal with a very wide range

of flows. It has been shown that the method gives very good results for thermally driven
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flows, non Newtonian fluids and transient problems. Particular features of this stabilized
formulation are that it is based on multiplying the element residuals of the equations by the
adjoint of the linearized Navier-Stokes operator applied to the test functions, and also the
design of the stabilization parameters. Both ingredients allow to stabilize very different types
of numerical instabilities, namely, those which are classical and arise in convection dominated
flows and equal velocity-pressure interpolations, and also the less studied cases of dominating
Coriolis forces and small medium permeabilities.

The good numerical performance of the stabilized finite element formulation is main-
tained when the nodal-based implementation described here is used. The basic idea of this
implementation is to characterize the topology of the finite element mesh by the matrix of its
graph stored in compressed sparse row format. The arrays needed for this representation can
be used also to store the integrals of the shape functions and shape function derivative prod-
ucts, the corner stones of the implementation. All the arrays appearing in the fully discrete
problem can expressed in terms of them after performing the appropriate approximations.
The final numerical scheme is shown in Boxes 1, 2 and 3. Numerical experiments show that
the good numerical results due to the stabilized formulation can be obtained in an efficient

manner by means of this implementation.
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Figure 1: Velocity vectors for Example 1.

Figure 2: Pressure contours for Example 1.
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Figure 4: z-velocity at z = 0.5 for Example 1.
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Figure 5: y-velocity at £ = 0.5 for Example 1.
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Figure 6: Temperature at z = 0.5 for Example 1.
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Figure 7: z-velocity at y = 0.5 for Example 1.
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Figure 8: y-velocity at y = 0.5 for Example 1.

38



=0.5

Temperature at y

0.8

06

0.2

Element-based —<—
Nodal-based —+—

0.2 0.4 0.6 0.8 1

Figure 9: Temperature at y = 0.5 for Example 1.

Figure 10: Streamlines at ¢ = 7 for Example 2.
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Figure 11: Streamlines at ¢ = 10 for Example 2.

Figure 12: Pressure contours at ¢ = 7 for Example 2.
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Figure 13: Pressure contours at ¢t = 10 for Example 2.
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Figure 14: z-velocity at y = 4 and ¢t = 4 for Example 2.
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Figure 16: Pressure at y = 4 and ¢t = 4 for Example 2.
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Figure 17: z-velocity at y = 4 and ¢ = 7 for Example 2.
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Figure 18: y-velocity at y = 4 and ¢t = 7 for Example 2.
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Figure 19: Pressure at y =4 and t =7 for Example 2.

Figure 20: Streamlines for Example 3.
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Figure 21: Pressure contours for Example 3.
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Figure 22: z-velocity at z = 30 for Example 3.
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Figure 24: z-velocity at y = 3.5 for Example 3.
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Figure 25: y-velocity at y = 3.5 for Example 3.
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Figure 26: Discrete £2 errors for Example 4 for different values of |w| = w and o = s for the
element-based (E-B) and nodal-based (N-B) implementations.
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L Mesh Element-based | Nodal-based l Factor ‘

t11, 4 points 0.94 0.06 15.67
t11, 1 point 0.35 0.06 5.83
hl1 0.71 0.09 7.89

tql, 11 points 0.87 0.10 8.70
tql, 4 points 0.43 0.10 4.30
hql 2.48 0.21 11.81

t12, 4 points 7.57 0.44 17.20
t12, 1 point 2.81 0.44 6.39
hl2 5.67 0.68 8.34

tq2, 11 points 6.89 0.79 8.72
tq2, 4 points 3.44 0.79 4.35
hq2 19.98 1.87 10.64

t13, 4 points 60.52 3.87 15.64
t13, 1 point 22.65 3.87 5.85
hl3 44.60 6.14 7.26

tq3, 11 points 55.19 7.10 777
tq3, 4 points 27.14 7.10 3.82
hq3 165.04 15.95 10.35

Table 1: Comparison of the CPU time needed to construct the stiffness matrix in Example 5.

Mesh | foe | Map | feon | Mup |
tl, 4 points 6 336 9 58.5
tl, 1 point 6 102 9 58.5

hl 1 208 27 175.5

tq, 11 points | 0.75 | 263.25 | 26.625 | 173.0625
tq, 4 points | 0.75 | 100.5 | 26.625 | 173.0625
hq 0.125 | 280.125 | 64 416

Table 2: Comparison of the asymptotic number of coefficients needed to store derivatives for

the element-based implementation and integrals for the nodal-based implementation.
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