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Summary

This article presents a survey of the Core-Congruential Formulation (CCF) for geometrically nonlinear mechani-

cal finite elements based on the Total Lagrangian (TL) kinematic description. Although the key ideas behind the

CCF can be traced back to Rajasekaran and Murray in 1973, it has not subsequently received serious attention.

The CCF is distinguished by a two-phase development of the finite element stiffness equations. The initial phase

develop equations for individual particles. These equations are expressed in terms of displacement gradients

as degrees of freedom. The second phase involves congruential-type transformations that eventually binds the

element particles of an individual element in terms of its node-displacement degrees of freedom. Two versions

of the CCF, labeled Direct and Generalized, are distinguished. The Direct CCF (DCCF) is first described in

general form and then applied to the derivation of geometrically nonlinear bar, and plane stress elements using

the Green-Lagrange strain measure. The more complex Generalized CCF (GCCF) is described and applied to

the derivation of 2D and 3D Timoshenko beam elements. Several advantages of the CCF, notably the physically

clean separation of material and geometric stiffnesses, and its independence with respect to the ultimate choice

of shape functions and element degrees of freedom, are noted. Application examples involving very large motions

solved with the 3D beam element display the range of applicability of this formulation, which transcends the

kinematic limitations commonly attributed to the TL description.

INTRODUCTION

There is an elegant Total Lagrangian (TL) formulation of geometrically nonlinear mechan-
ical finite elements that has received little attention in the literature. This will be referred to
as the Core-Congruential Formulation , or CCF, in the sequel. The key concepts, presented by
Rajasekaran and Murray1 in 1973, evolved from the analysis and reinterpretation of the pioneer
work of Mallet and Marcal,2 as well as Murray’s previous work in geometrically nonlinear finite
element analysis.3 The discussion of Reference1 by Felippa4 provided parametric expressions
for the stiffness matrices that appear at various levels of the discrete governing equations. This
work originated what is called here the Direct Core Congruential Formulation, or DCCF.
In 1987 a course in nonlinear finite elements offered by the first author presented the deriva-

tion of several elements using the DCCF. Preparation of homework assignments and feedback
from students in this and follow-up offerings helped to streamline the material. Subsequently
Crivelli’s doctoral thesis5 used the CCF in the systematic development of a three-dimensional
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nonlinear Timoshenko beam element capable of undergoing arbitrarily large rotations. Chal-
lenges posed by this application pushed this formulation beyond frontiers hitherto deemed
impassable by a TL element with rotational degrees of freedom. This development was sum-
marily reported in a survey article by Felippa and Crivelli6 and explained in more detail in a
subsequent paper by Crivelli and Felippa.7
A lesson gained from this research is that, when dealing with 3D finite rotations, the CCF

should be applied in a staged fashion that allows the systematic examination of additional
terms arising in the transformations to physical degrees of freedom. That transformation
methodology gave rise to what is here called the Generalized CCF, or GCCF.
Both DCCF and GCCF share the same “divide and conquer” philosophy. However, the

core equations as well as subsequent steps that transform those equations to physical freedoms
vary in complexity. To simplify the exposition while focusing on the essential aspects, Sections
3 through 7 focus on the DCCF. Examples of application to elements amenable to the direct
treatment are presented. The GCCF is discussed in Sections 8 through 10, and illustrated with
applications to 2D and 3D beam elements.

Remark 1. Several authors have expressed the belief that the approximation performance of TL-based elements
degrades beyond moderate rotations, and an updated Lagrangian or corotational description is necessary for
handling truly large motions. For example, in 1986 Mathiasson, Bengtsson and Samuelsson8 concluded that “The
TL formulation can only be used in problems with small or moderate displacements.” More recently Bergan
and Mathisen9 voice a similar opinion: “it is commonly known that in a step by step TL formulation artificial
strains easily arise in beam elements due to nonhomogeneities in the displacement expansions in transverse and
longitudinal directions.” Our experience shows that such limitations are not inherent in the TL description but
instead emerge when a priori kinematic approximations are made to simplify element derivations. The 3D beam
element just cited exhibits computational and approximation performance for very large rotations comparable
to those based on the co-rotational and Updated Lagrangian descriptions while retaining certain advantages
listed in the Conclusions.

OVERVIEW

Basic concepts

The original development of the CCF was concerned with the construction of TL stiffness
matrices for geometrically nonlinear analysis through the congruential-transformation pattern

Klevel =
∫
V0

GTSlevelG dV, (1)

where S is the core stiffness matrix, K the physical stiffness in terms of the nodal degrees of
freedom v, G a core-to-physical-freedom transformation matrix assumed to be independent
of v, V0 the appropriate reference integration volume, and in which “level” identifies the
governing equation level at which the stiffness matrix is used. The three variational levels of
interest in practice are: energy (level 0), force equilibrium (level 1), and first-order incremental
equilibrium (level 2). Qualifiers “residual-force” and “secant-stiffness” are also used for level
1, and “tangent-stiffness” used for level 2.
The core stiffness matrix is expressed in terms of the displacement gradients at each material

point. Displacement gradients g make a better choice of core variables than finite strains
because for elements with translational degrees of freedom (DOFs) they can be expressed
linearly in terms of node displacements v as g = Gv, a property that validates (1) for all
levels. As discussed below, such elements fall under the purview of the Direct CCF.
The qualifier “core” emphasizes the goal of independence of Slevel with respect to dis-

cretization decisions such as element geometry, shape functions, and choice of nodal degrees of
freedom. Such a dependence is introduced by the congruential transformation indicated in (1)
and the integration over the element volume.
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Direct and Generalized CCF

The basic schematics of the CCF, mathematically expressed through (1), may be dia-
grammed as

Core
Stiffness
Equations

=⇒
Congruential

Transformation
Equations

=⇒
Physical-DOF

Stiffness
Equations

But this panoramic view needs to be rendered more precise. If the relation between core DOFs
(the displacement gradients g) and the physical DOFs (the node displacements v of a finite
element model) i s linear , these transformations do not depend on level:

(0) Core Energy Stiffness

(1) Core Secant Stiffness

(1) Core Internal Force

(2) Core Tangent Stiffness

=⇒
Congruential

Transformation
Equations

=⇒

Physical Energy Stiffness

Physical Secant Stiffness

Physical Internal Force

Physical Tangent Stiffness

In this diagram, numbers annotated within the “core box” denote the variational level of the
governing equation in use. Internal force and secant stiffness are two alternative governing-
equation expressions at level 1. The energy level (level 0) may also be expressed in several ways,
but this is not shown in the diagrams to reduce clutter. Under the aforementioned assumption
we obtain the Direct Core Congruential Formulation, or DCCF.
If the relation between displacement gradients g and node displacements v is nonlinear, the

transformations sketched above are not only more complex but depend on variational level and
possibly the expression form used within a level. This complication arises when elements with
rotational degrees of freedom such as beams, plates and shells are considered. It gives rise to
the Generalized Core Congruential Formulation, or GCCF.
Two variants of the GCCF may be distinguished. If the relation between g and v is nonlinear

but algebraic, the transformation equations do vary with level but in principle are still possible
as illustrated in the following diagram.

(0) Core Energy Stiffness

(1) Core Secant Stiffness

(1) Core Internal Force

(2) Core Tangent Stiffness

=⇒

=⇒

S-Congruential
Transformation

Equations

T-Congruential
Transformation

Equations

=⇒

=⇒

Physical Energy Stiffness

Physical Secant Stiffness

Physical Internal Force

Physical Tangent Stiffness

Here “T-Congruential” and “S-Congruential” are abbreviations for “Tangent Congruential”
and “Secant-Congruential,” respectively. Such a distinction is elaborated upon in Section 8.
If the relation between g and v is nonlinear and can be expressed only in non-integrable

differential form, the “Secant Transformation Equations” of the preceding diagram do not
generally exist, and the diagram must be truncated:

(0) Core Energy Stiffness

(1) Core Secant Stiffness

(1) Core Internal Force

(2) Core Tangent Stiffness
=⇒

T-Congruential
Transformation

Equations
=⇒ Physical Internal Force

Physical Tangent Stiffness
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These two variants of the GCCF are called Algebraic GCCF and Differential GCCF and denoted
by acronyms AGCCF and DGCCF, respectively, in the sequel. The main distinction between
AGCCF and DGCCF is that it makes no sense to talk about missing quantities, such as the
physical secant stiffness, with the latter.
The original development of the CCF outlined in the Introduction focused on elements with

translational-degree-of-freedom configurations. For such elements the Direct form of the CCF,
or DCCF, is sufficient. Sections 3 through 7 focus on that form, leaving the development and
application of the GCCF to Section 8 and following ones.

The CCF Philosophy: Divide and Conquer

The CCF derivation of the finite element equations naturally reflects the outlined framework.
It proceeds through two phases: a core phase followed by a transformation phase . In the initial
phase core energy, secant and tangent stiffness matrices as well as internal force vectors are
obtained. These matrices and vectors pertain to individual particles. For the stiffness matrices
they are collectively represented by the term Slevel in (1).
The key goal is to try to make such core equations as independent as possible with respect

to finite-element discretization decisions such as element geometry, shape functions, selection
of nodal degrees of freedom and (in the case of rotational DOFs) rotational parametrizations.
To emphasize this independence, the term core was coined. Complete independence is in fact
achievable if the relation between displacement gradients g and v is linear, which characterizes
the DCCF. The goal has to be tempered if the relation is nonlinear because dependencies
may arise at the tangent stiffness level. Such dependencies create the so-called complementary
geometric stiffness terms, which are characteristic of elements that fall under purview of the
GCCF.
In the transformation phase, these core forms are transformed to physical DOFs, i.e.

element node displacements. The transformation may be done directly for simple elements
and in multistage fashion for complex ones. In particular, multistage transformations are
recommended for elements that require the Differential GCCF such as 3D beam and shell
elements. In this case the transformation phase is decomposed into transformation stages that
progressively “bind” particles into lines, areas or volumes through kinematic constraints, and
eventually link the element domain to the nodal degrees of freedom. Decisions such as the
choice of specific parametrizations for finite rotations may be deferred to final stages.
What are the differences between the CCF and the more conventional Total Lagrangian

formulation of nonlinear finite elements? If kinematic exactness is maintained throughout, the
final discrete equations are identical. This is shown in Appendix 1 for the DCCF applied to
continuum elements. But in geometrically nonlinear analysis approximations of various kinds
are common, especially in structural elements with rotational degrees of freedom such as beams,
plates and shells. In the conventional formulation it is quite difficult to assess a priori the effect
of seemingly innocuous approximations “thrown into the pot,” and a posteriori exhaustive
testing of complex situations becomes virtually impossible. Sample: how does the neglect of
higher order terms in the axial deformation of a spinning 3D beam affects torsional buckling?
The staged approach recommended for the GCCF permits a better control over such

assumptions. The core equations are physically transparent, clearly displaying the effect of
material behavior, displacement gradients and prestresses. In the ensuing transformation
sequence the origin of each term can be accurately traced, and on that basis informed decisions
on retention or dropping made. This process can be aided by computer by testing subproblems
that isolate the physics modeled by specific terms.
From this discussion it follows that, from the standpoint of element development, evaluation

and testing, the most significant advantage that can be claimed for the CCF is the clean
separation of physical effects. The importance of this factor should not be underestimated,
because physical transparency is the key to success in nonlinear analysis.
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HISTORICAL BACKGROUND

In 1968 Mallet and Marcal2 attempted to establish a standard nomenclature for geometri-
cally nonlinear finite element structural analysis based on the Total Lagrangian (TL) kinematic
description. Consider a discrete, finite element model of a static structural system under dead
loading with nodal displacement degrees of freedom collected in array v. Displacements are
measured from a fixed reference configuration C0 to a current configuration C. The virtual-work
conjugate forces, independent of v, are collected in array p. The system has a total potential
energy function J = U −W that is the difference between the strain energy U and the loads
potential W = pTv. The residual node forces are r = ∂J/∂v, and the symbol ∆ denotes incre-
ment associated with the variation of the current configuration. (In keeping up with the spirit
of Reference2 actual variations are used in this Section rather than virtual ones; the latter are
identified by the usual δ prefix.)
Mallet and Marcal expressed the total potential energy, the residual (force-balance) equi-

librium equations, and the incremental equilibrium equations as follows:

J = U −W = 1
2
vT

[
K0 + 1

3
N1 + 1

6
N2

]
v− pTv, (2)

r =
∂J

∂v
=

[
K0 + 1

2
N1 + 1

3
N2

]
v− p = 0, (3)

∆r = [K0 +N1 +N2] ∆v−∆p = 0. (4)

Here K0 is the linear stiffness matrix evaluated at the reference configuration, whereas N1 and
N2 are nonlinear stiffness matrices, also evaluated at the reference configuration, that depend
linearly and quadratically, respectively, on the node displacements v. The N matrices were
said “to repeat” in the foregoing expressions. (This old notation has not survived; presently
symbol N is most commonly used to identify matrices of element shape functions.)
Five years later Rajasekaran and Murray1 examined more critically the structure of the

matrices that appear in the above equations. In that investigation they chose to start from the
“core” stiffness matrices corresponding to K, N1 and N2 expressed in terms of displacement
gradients, and in doing so laid down the main idea of the CCF. Working with specific elements
they showed that the nonlinear stiffness matrices N1 and N2 are not uniquely determined.
Indeed (2)-(4) as written are unique only for a single degree of freedom. They did not present,
however, a general expression valid for arbitrary elements. This was partly done by Felippa,4
who in the discussion of Reference1 considered again those equations, rewritten here in a more
general and compact form:

J = 1
2
vTKUv+

(
p0 − p)T v, (5)

r = Kr v+ p0 − p = f − p = 0, (6)
∆r = K∆v−∆p = 0, (7)

in which the notation of this paper — rather than that of Reference4 — is used. Here KU ,
Kr and K denote the energy, secant and tangent stiffness matrices, respectively. (Energy
and secant stiffnesses are not denoted by Ke and Ks because such symbols are used for other
purposes in the finite element course noted in the Introduction.) In addition, p0 is the prestress
force vector, which vanishes if the reference configuration is stress free and was omitted in that
discussion,4 and f = Krv + p0 is the internal force vector. The tangent stiffness is of course
fundamental in incremental-iterative solution methods and stability analysis, while the secant
stiffness (by itself or in the internal-force formKrv+p0 ) is important in pseudo-force methods.
The energy stiffness enjoys limited application per se but has theoretical importance as source
for the other two.
In linear problems KU = Kr = K = K0 and the three stiffness matrices coalesce. But

in nonlinear problems not only do the matrices differ but, as shown in the next section, KU
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and Kr may involve arbitrary scalar coefficients. Such parametrized expressions were given by
Felippa4 under the following restrictions:
(R1) Kr is symmetric.
(R2) The reference configuration is stress free.
(R3) The finite strain measure is quadratic in the displacement gradients.
(R4) The transformation between core and physical freedoms is linear.

The following treatment eliminates restrictions (R1) and (R2) altogether, and the other two
selectively. It should be noted that restriction (R4) is the condition that, with present termi-
nology, characterizes the DCCF.

CORE STIFFNESS EQUATIONS

TL Description of particle motion

A conservative, geometrically nonlinear structure under dead loading is viewed as a con-
tinuum undergoing finite displacements u. These displacements are measured from a fixed
reference configuration C0 to a variable current configuration C. No discretization into finite
elements is implied at this stage. We confine our attention to the case in which the material
behavior stays within the linear elastic range, thus implying small deformational strains but
arbitrarily large rotations. Corresponding points or particles in the reference and current con-
figuration are referred to a fixed Cartesian coordinate system and have the coordinates Xi and
xi (i = 1, . . . nd), respectively, where nd is the number of space dimensions. The displacement
field components are ui = xi −Xi.
Let the state of strain at a particle in the current configuration be characterized by ns

strains ei (i = 1, 2, . . . ns) collected in an array e, and let the corresponding conjugate stresses
be si (i = 1, 2, . . . ns), collected in an array s. Using the summation convention the elastic
stress-strain relations are written

si = s0i +Eijej, with Eij = Eji, or s = s0 +Ee, (8)

where s0i are stresses in the reference configuration (stresses that remain if ei = 0, also called
prestresses) and Eij are elastic moduli arranged as a ns×ns square array in the usual manner.
Let J , U , W , Ψ, Φ and Υ denote the analogues of J , U , W , p, f and r, respectively, at the

particle level. (The first three acquire the meaning of energy densities, whereas Ψ is a dead-
loading body force density independent of u.) The strain energy density can be expressed
as

U = eis0i + 1
2
eiEijej = eT s0 + 1

2
eTEe. (9)

The total strain energy U is obtained by integrating (9) over the structure volume: U =∫
V0

U dV ; the integration taking place — as can be expected in a TL description — over the
reference configuration geometry.
Next, introduce the ng displacement gradients gmn = ∂um/∂Xn. These are subsequently

identified as gi (i = 1, 2, . . . ng) so they can be conveniently arranged in a one-dimensional array
g. Following Rajasekaran and Murray1 and Felippa4 assume that the strains ei are linked to
the displacement gradients through matrix relations of the form

ei = h
T
i g+

1
2
gTHi g , i = 1, 2, . . . ns (10)

where hi and Hi are arrays of dimension ng × 1 and ng × ng, respectively, with Hi symmetric.
In the original References1,4 it was assumed that Hi is independent of g, which is the case
fo r the Green-Lagrange strain measure. This restriction, labeled (R3) in Section 3, will be
enforced below except in the Section of Generalization to H(g).
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Energy variations

As noted previously, for deriving core equations we regard the displacement gradients g as
degrees of freedom. On substituting (8) and (10) into (9) we obtain the “core counterparts” of
(5)–(7), in which v has become g:

J = U −W = 1
2
gTSUg+ (Ψ 0 −Ψ)Tg, (11)

Υ =
∂H
∂g

= Srg+Ψ 0 −Ψ = Φ−Ψ = 0, (12)

∆Υ = S∆g −∆Ψ = 0. (13)

Here SU , Sr and S denote the energy, secant and tangent core stiffness matrices, andΨ0, which
is independent of g, is the core counterpart of p0.
With this notation the first and second variations of the strain energy density can be

expressed as

δU = δgT (SUg+Ψ0) + 1
2
gT δSUg = δgT

(
Srg+Ψ0

)
= δgTΦ, (14)

δ2U = δgTSr δg + δgT δSrg+ (δ2g)TΦ = δgTS δg + (δ2g)TΦ. (15)

These variational equations implicitly determine Sr, Φ and S from SU and Ψ0. If the linearity
restriction (R4) holds, the term in δ2g drops out as explained in the Remark below, and

δ2U = δgTS δg. (16)

Remark 2. If g =Gv withG independent of v, δ2 g = G δ2v = 0 because v are independent variables. On the
other hand, if displacement gradients are nonlinear functions of node displacements expressable as gi = gi(vj),
then

δgi =
∂gi
∂vj
δvj = Gij δvj , δ2gi =

∂2gi
∂vj∂vk

δvjδvk +
∂gi
∂vj
δ2vj = Fijk δvj δvk↗0

. (17)

Remark 3. Thus δg is still G δv but δ2g = (F δv) δv, where F is a cubic array. The presence of the term δ2g
is taken into account in the GCCF discussed in previous Sections .

Parametrized Forms

For convenience introduce the following ng × ng matrices (with summation convention on
i, j = 1, . . . ng implied):

S0 = Eij hihj , S1 = Eij higTHj , S∗
1 = Eij (h

T
i g)Hj ,

S2 = EijHi ggTHj , S∗
2 = Eij (g

THig)Hj ,
(18)

in which parentheses are used to emphasize the grouping of scalar quantities such as gTHig.
It may be then verified that, if assumptions (R3)-(R4) of Section 3 hold, the core stiffnesses
and prestress vector in (13)–(15) possess the general form:

SU (α, β) = S0 + 1
2
α(S1 + S

T
1 ) + (1− α)S∗

1 +
1
4
βS2 + 1

4
(1− β)S∗

2 + s
0
iHi

= S0 + 1
2
α(S1 + ST1 ) + (

1
2
− α)S∗

1 +
1
4
β(S2 − S∗

2) +
1
2
(s0i + si)Hi,

= S0 + 1
2
α(S1 + ST1 )− αS∗

1 +
1
4
βS2 − 1

4
(1 + β)S∗

2 + siHi,

Sr(φ,ψ) = S0 + 1
2
S1 + φST1 + (1− φ)S∗

1 +
1
4
(2− ψ)S2 + 1

4
ψS∗

2 + s
0
iHi

= S0 + 1
2
S1 + φST1 + (

1
2
− φ)S∗

1 +
1
4
(2− ψ)S2 + 1

4
(ψ − 1)S∗

2 +
1
2
(s0i + si)Hi,

= S0 + 1
2
S1 + φST1 − φS∗

1 +
1
4
(2− ψ)(S2 − S∗) + siHi,

S = S0 + S1 + S
T
1 + S

∗
1 + S2 + 1

2
S∗

2 + s
0
iHi = S0 + S1 + S

T
1 + S2 + siHi,

Ψ 0 = s0ihi.

(19)
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Here α, β, φ and ψ are arbitrary scalar coefficients in the sense that gTSUg and Srg are
independent of them. In fact,

Φ = Srg+Ψ0 = sibi, (20)

where bi is defined in (25) below. The expressions (19) are more general than those originally
given by Felippa4 because restrictions (R1)-(R2) noted in Section 3 are no longer enforced.
Note that the secant core stiffness Sr becomes symmetric if φ = 1/2.
The “repeatable forms” (2)–(4) of Mallet and Marcal are obtained if α = β = ψ = 2/3

and φ = 1/2, in which case the combinations S1 + ST1 + S
∗
1 and S2 + 1

2
S∗

2 become the core
counterparts of N1 and N2, respectively. But this observation has largely historical interest.
More physically relevant are the following combinations:

SD = S1 + S
T
1 + S2, SM = S0 + SD,

SG = S∗
1 +

1
2
S∗

2 + s
0
iHi = siHi.

(21)

These are the core versions of the initial-displacement, material and geometric stiffness, re-
spectively. The core tangent stiffness is S = S0 + SD + SG = SM + SG.
If the Generalized CCF is required for downstream element development as explained in

Section 8, SG = siHi is called the principal core geometric stiffness and is denoted by SGP . In
this case the combination

S = SM + SGP , (22)

receives the name principal core tangent stiffness.

Remark 4. Finite element practicioners may be surprised at the nonuniqueness of SU and Sr . It appears
to contradict the fact that, given two square matrices A1 and A2 and an arbitrary nonzero test vector x,
A1x = A2x for all x implies A1 = A2. But this is not necessarily true if A1 and A2 are functions of x. More
precisely, the energy core stiffness is not unique because

gT (S1 − S∗
1)g = 0, gT (ST1 − S∗

1)g = 0, gT (S2 − S∗
2)g = 0, (23)

Remark 5. and the secant core stiffness is not unique because

(ST1 − S∗
1)g = 0, (S2 − S∗

2)g = 0. (24)

Remark 6. Adding “gage terms” such as those of (24) multiplied by arbitrary coefficients does not change δU
and consequently the secant stiffness acquires two free parameters. Uniqueness holds for the tangent stiffness
because the test vectors are the virtual displacement gradient variations, and S is not a function of δg.

Remark 7. Because of (23), an additional free parameter appears in SU if unsymmetry is allowed. If symmetry
is enforced the first two gage expressions must be combined to read gT (S1 + ST

1 − 2S∗
1)g = 0.

Spectral Forms

There is a more compact alternative expression of the core stiffnesses that offers theoretical as
well as implementational advantages at the cost of some generality. Define vectors bi and ci as

ei = cTi g, ci = hi + 1
2
Hig, bi =

∂ei
∂g

= hi +Hig. (25)

Then the spectral forms (so called because of the formal similarity of equations (26)–(28) with
the spectral decomposition of a matrix as the sum of rank-one matrices) are

SU (1, 1) = SU
∣∣
α=β=1

= Eij cicTj + s
0
iHi, (26)

Sr(0, 0) = Sr|φ=ψ=0 = Eij bic
T
j + s

0
iHi, (27)
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Sr( 1
2
, 1) = Sr|

φ=
1
2
,ψ=1

= Eij cicTj +
1
2
(si + s0i )Hi, (28)

S = Eij bib
T
j + siHi = SM + SG. (29)

Note that Sr( 1
2
, 1) is symmetric but Sr(0, 0) is not. It is seen that for energy and secant

stiffnesses, compactness is paid in terms of settling for specific coefficients.

Remark 8. The foregoing relations may be easily verified by noting that

Eij cicTj = S0 + 1
2
(S1 + S

T
1 ) +

1
4
S2,

Eij bicTj = S0 + 1
2
S1 + ST1 +

1
2
S2,

Eij bib
T
j = S0 + S1 + ST1 + S2,

Eij
∂(cicTj )
∂g

= Eij

[
ci

(
∂cj
∂g

)T

+
(
∂ci
∂g

)
cTj

]
= S∗

1 +
1
2
S∗

2 = EijejHi = (si − s0i )Hi,

Eij
∂2(cicTj )
∂g2

= 2Eij
∂ci
∂g

(
∂cj
∂g

)T

= 1
2
S∗

2,

(30)

Remark 9. and seeking these patterns in the general parametrized expressions (19).

Generalization to H(g)

If the Hi depend on g, as it generally happens if strain measures other than Green-
Lagrange’s are used, the secant and tangent stiffness core equations become more complex
because of the presence of first and second g-derivatives of Hi. The changes in the core
variational equations (14)–(15) can be succintly expressed as

δU = δgT
(
(Sr + Ŝ

r
)g+Ψ0 + Ψ̂

0
)
= δgT (Φ+ Φ̂), (31)

δ2U = δgT (S+ Ŝ) δg + (δ2g)T (Φ+ Φ̂). (32)

where Ŝ
r
, Ŝ and Φ̂ are additional core terms that arise on account of the dependence of the

Hi on g.
The parametrization and efficient characterization of such terms for several strain measures

of interest in practice, notably logarithmic and midpoint strains, are presently open problems.
Such topics would in fact be good candidates for term projects in advanced nonlinear finite
element courses.

CORE STIFFNESS EXAMPLES

Because the core equations reflect the motion of an individual particle, their form is primarily
determined by the choice of components of s, e and g that are retained in the strain energy
density. This choice is in turn a byproduct of the mathematical idealization of the actual
structure or structural component.
Several cases are worked out below to illustrate the basic steps. The core expressions devel-

oped in these examples do not force commitment to specific elements, only to a mathematical
model. For example the bar core equations may be subsequently used to develop 2-node straight
elements or 3-node curved ones. Some specific elements based on these equations are derived
in Sections 7, 9 and 10.
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Bar in 3D Space

The particle belongs to a bar moving in 3D space. The only energy contribution is due to
the longitudinal stress. We have nd = 3, ns = 1 and ng = 3. To simplify node subscripting,
Cartesian systems and displacement components will be denoted by {X,Y,Z}, {x, y, z} and
{uX , uY , uZ} rather than {X1,X2,X3}, {x1, x2, x3} and {u1, u2, u3}, respectively. In the refer-
ence configuration C0 the bar is referred to a local Cartesian system {X̄, Ȳ , Z̄}, with X̄ located
along the bar axis.
With reference to this local system, the motion of a particle initially at X̄ is defined by the

displacement components ūX = ūX(X̄), ūY = ūY (X̄) and ūZ = ūZ(X̄). The three displacement
gradients that intervene in the definition of nonlinear strains are

g =

{
g1
g2
g3

}
=

{
∂ūX/∂X̄
∂ūY /∂X̄
∂ūZ/∂X̄

}
. (33)

As uniaxial strain measure we adopt the Green-Lagrange (GL) axial strain, defined as

e ≡ e1 = ∂ūX
∂X̄

+ 1
2

[(
∂ūX
∂X̄

)2

+
(
∂ūY
∂X̄

)2

+
(
∂ūZ
∂X̄

)2
]
= g1 + 1

2
(g21 + g

2
2 + g

2
3)

=

[ 1
0
0

]T {
g1
g2
g3

}
+ 1

2

{
g1
g2
g3

}T [ 1 0 0
0 1 0
0 0 1

]{
g1
g2
g3

}
= hTg+ 1

2
gTHg.

(34)

Thus for this choice of strain, hT1 ≡ hT = [ 1 0 0 ] and H1 ≡ H is the 3× 3 identity matrix.
The conjugate stress measure s1 ≡ s is the second Piola-Kirchhoff (PK2) axial stress. The
stress-strain relation is s = s0+Ee, where s0 and s are PK2 axial stresses in the reference and
current configurations, respectively, and E is Young’s modulus.
Because H is independent of g, to form the core stiffnesses in local coordinates we can

directly use the spectral expressions (26)–(29). First construct the vectors

c ≡ c1 =

1 + 1

2
g1

1
2
g2

1
2
g3

 , b ≡ b1 =

{ 1 + g1
g2
g3

}
, (35)

which inserted into the spectral forms yield

SU (1, 1) = E ccT + s0H = E

 (1 + 1
2
g1)2 1

2
g2(1 + 1

2
g1) 1

2
g3(1 + 1

2
g1)

1
4
g22

1
4
g2g3

symm 1
4
g23

+ s0 [ 1 0 0
0 1 0
0 0 1

]
,

(36)

Sr( 1
2
, 1) = E ccT + smH = E

 (1 + 1
2
g1)2 1

2
g2(1 + 1

2
g1) 1

2
g3(1 + 1

2
g1)

1
4
g22

1
4
g2g3

symm 1
4
g23

+ sm [ 1 0 0
0 1 0
0 0 1

]
,

(37)

S = E bbT + sH = E

 (1 + g1)2 g2(1 + g1) g3(1 + g1)
g22 g2g3

symm g23

+ s[ 1 0 0
0 1 0
0 0 1

]
. (38)

In equation (37), sm = 1
2
(s0 + s) = s0 + 1

2
Ee is the average or “half-way” stress. The clean

separation into material and geometric (initial-stress) stiffnesses should be noted.
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Plate in Plane Stress

As second example we consider a particle that pertains to a plate in plane stress (membrane),
constrained to move in its plane. As usual we consider only the motion of the midplane. The
Cartesian reference system and displacement components will be denoted by {X,Y }, {x, y} and
{uX , uY } rather than {X1,X2}, {x1, x2} and {u1, u2}, respectively. The element displacement
field of a generic particle originally at (X,Y ) is defined by the two components uX = uX(X,Y )
and uY = uY (X,Y ). Three in-plane PK2 stresses contribute to the strain energy and four
displacement gradients appear in the corresponding GL strain. Consequently nd = 2, ns = 3
and ng = 4. The four displacement gradients are arranged as

g =


g1
g2
g3
g4

 =


∂uX/∂X
∂uY /∂X
∂uX/∂Y
∂uY /∂Y

 (39)

The strain measures chosen are the three components ei (i = 1, 2, 3) of the GL strains defined
in the usual manner:

e1 = eXX = g1 + 1
2
(g21 + g

2
2) =


1
0
0
0


T

g+ 1
2
gT

 1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

g, (40)

e2 = eY Y = g4 + 1
2
(g23 + g

2
4) =


0
0
0
1


T

g+ 1
2
gT

 0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 1

g, (41)

e3 = eXY + eY X = g2 + g3 + g1g3 + g2g4 =


0
1
1
0


T

g+ 1
2
gT

 0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

 g, (42)

from which expressions for hi and Hi (i = 1, 2, 3) follow. For brevity, only the derivation of
the tangent stiffness matrix will be described. Begin by forming the vectors

b1 =


1 + g1
g2
0
0

 , b2 =


0
0
g3

1 + g4

 , b3 =


g3

1 + g4
1 + g1
g2

 . (43)

Then from (29) we get the core stiffness

S = Eijbib
T
i + siHi = SM + SG, (44)

where si = s0i + Eijej, (i, j = 1, 2, 3), are the PK2 stresses in the current configuration.
In full and using the abbreviations a1 = 1 + g1, a4 = 1 + g4 we get
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SM =


E11a

2
1 + 2E13a1g3 +E33g

2
3 E11a1g2 + E13(a1a4 + g2g3) + E33a4g3

E11g
2
2 + 2E13a4g2 + E33a

2
4

symm

E12a1g3 + E13a
2
1 + E23g

2
3 + E33a1g3 E12a1a4 + E13a1g2 +E23a4g3 + E33g2g3

E12g2g3 +E13a1g2 + E23a4g3 +E33a1a4 E12a4g2 + E13g
2
2 + E23a

2
4 + E33a4g2

E22g
2
3 + 2E23a1g3 +E33a

2
1 E22a4g3 +E23(a1a4 + g2g3) +E33a1g2

E22a
2
4 + 2E23a4g2 +E33g

2
2


(45)

SG =

 s1 0 s3 0
s1 0 s3

s2 0
symm s2

 . (46)

Plate Bending

This is similar to the previous example in that the structure is a flat thin plate but now motion
in 3D space {X,Y,Z} is allowed. With this increased freedom the plate is capable of membrane
stretching and bending. For the latter a Kirchhoff mathematical model is assumed. The three
energy-contributing GL strains are now functions of six gradients. Consequently nd = 3, ns = 3
and ng = 6. The contributing gradients are arranged as

g =



g1
g2
g3
g4
g5
g6


=



∂uX/∂X
∂uY /∂X
∂uZ/∂Z
∂uX/∂Y
∂uY /∂Y
∂uZ/∂Y


(47)

The three GL strains are defined as

e1 = eXX = g1 + 1
2
(g21 + g

2
2 + g

2
3) =



1
0
0
0
0
0



T

g+ 1
2
gT


1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

g, (48)

e2 = eY Y = g5 + 1
2
(g24 + g

2
5 + g

2
6) =



0
0
0
0
1
0



T

g+ 1
2
gT


0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

g, (49)

e3 = eXY + eY X = g2+ g4+ g1g4+ g2g5+ g3g6 =



0
1
0
1
0
0



T

g+ 1
2
gT


0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0

g, (50)
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which define hi and Hi, i = 1, 2, 3. When one reaches this level of bookkeeping it is more
expedient and less error-prone to obtain the core matrices through symbolic manipulation. For
example, the followingMacsyma program forms SM and SG in matrices SM and SG, respectively:

h1: matrix([1],[0],[0],[0],[0],[0])$
h2: matrix([0],[0],[0],[0],[1],[0])$
h3: matrix([0],[1],[0],[1],[0],[0])$
g: matrix([g1],[g2],[g3],[g4],[g5],[g6])$
HH1:matrix([1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,1,0,0,0],

[0,0,0,0,0,0],[0,0,0,0,0,0],[0,0,0,0,0,0])$
HH2:matrix([0,0,0,0,0,0],[0,0,0,0,0,0],[0,0,0,0,0,0],

[0,0,0,1,0,0],[0,0,0,0,1,0],[0,0,0,0,0,1])$
HH3:matrix([0,0,0,1,0,0],[0,0,0,0,1,0],[0,0,0,0,0,1],

[1,0,0,0,0,0],[0,1,0,0,0,0],[0,0,1,0,0,0])$
b1:h1+HH1.g$ b2:h2+HH2.g$ b3:h3+HH3.g$

SM:E11* b1.transpose(b1)+E22*b2.transpose(b2)+E33*b3.transpose(b3)
+ E12*(b1.transpose(b2)+b2.transpose(b1))
+ E13*(b1.transpose(b3)+b3.transpose(b1))
+ E23*(b2.transpose(b3)+b3.transpose(b2))$

ratvars(g6,g5,g4,g3,g2,g1,a5,a1,E11,E12,E13,E22,E23,E33)$
SM:ratsimp(SM)$
SG:ratsimp(s1*HH1+s2*HH2+s3*HH3)$

These matrices may be automatically converted to TEX by appropriate Macsyma statements
(not shown above). That output was reformatted by hand for inclusion here. For the core
tangent stiffness this semi-automated process yields

SM(1, 1) = E33g
2
4 + 2E13(1 + g1)g4 +E11(1 + g1)2

SM(1, 2) = E13((1 + g1)(1 + g5) + g2g4) +E33g4(1 + g5) +E11(1 + g1)g2
SM(1, 3) = E13((1 + g1)g6 + g3g4) + E33g4g6 + E11(1 + g1)g3
SM(1, 4) = E23g

2
4 +E33(1 + g1)g4 +E12(1 + g1)g4 + E13(1 + g1)2

SM(1, 5) = E12((1 + g1)(1 + g5)) +E23g4(1 + g5) +E33g2g4 +E13(1 + g1)g2
SM(1, 6) = E12(1 + g1)g6 + E23g4g6 + E33g3g4 +E13(1 + g1)g3
SM(2, 2) = E33(1 + g5)2 + 2E13g2(1 + g5) + E11g

2
2

SM(2, 3) = E33(1 + g5)g6 + E13(g2g6 + g3(1 + g5)) + E11g2g3

SM(2, 4) = E33((1 + g1)(1 + g5)) +E23g4(1 + g5) +E12g2g4 +E13(1 + g1)g2
SM(2, 5) = E23(1 + g5)2 +E33g2(1 + g5) +E12g2(1 + g5) +E13g

2
2

SM(2, 6) = E23(1 + g5)g6 + E12g2g6 + E33g3(1 + g5) + E13g2g3

SM(3, 3) = E33g
2
6 + 2E13g3g6 +E11g

2
3

SM(3, 4) = E33(1 + g1)g6 + E23g4g6 + E12g3g4 +E13(1 + g1)g3
SM(3, 5) = E23(1 + g5)g6 + E33g2g6 + E12g3(1 + g5) + E13g2g3

SM(3, 6) = E23g
2
6 +E33g3g6 + E12g3g6 + E13g

2
3

SM(4, 4) = E22g
2
4 + 2E23(1 + g1)g4 +E33(1 + g1)2

SM(4, 5) = E23((1 + g1)(1 + g5) + g2g4) +E22g4(1 + g5) +E33(1 + g1)g2
SM(4, 6) = E23((1 + g1)g6 + g3g4) + E22g4g6 + E33(1 + g1)g3
SM(5, 5) = E22(1 + g5)2 + 2E23g2(1 + g5) + E33g

2
2

SM(5, 6) = E22(1 + g5)g6 + E23(g2g6 + g3(1 + g5)) + E33g2g3

SM(6, 6) = E22g
2
6 + 2E23g3g6 +E33g

2
3

(51)
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(which can be further compacted by introducing the auxiliary symbols a1 = 1 + g1 and
a5 = 1 + g5 as done in Section 5.3) and

SG = SGP =


s1 0 0 s3 0 0
0 s1 0 0 s3 0
0 0 s1 0 0 s3
s3 0 0 s2 0 0
0 s3 0 0 s2 0
0 0 s3 0 0 s2

 . (52)

Remark 10. If the plate element to which the particle belong has (as usual) rotational freedoms, an additional
geometric stiffness (the complementary geometric stiffness) appears in the transformation phase. Because of this,
the core geometric stiffness (52) has been relabeled as SGP , where subscript P means “principal.”

Remark 11. The core stiffness matrices may also be used for part of the formulation of thin-shell facet
elements, with the proviso that global reference axes {X, Y, Z} are to be replaced by a local coordinate system
{X̄, Ȳ , Z̄} with Z̄ normal to the element midplane.

Y

X

x

X

u

θ

1

u0

θ2

θ1

X0

RTζ

ζ
2

Figure 1 Kinematics of 2D Timoshenko beam element

2D Timoshenko Beam

Consider next an isotropic Timoshenko plane beam that moves in the (X,Y ) plane. For
notational simplicity it is assumed that the longitudinal axis of the beam is aligned with X.
The only PK2 stresses that contribute to the strain energy are the axial stress s1 ≡ sXX and
the mean shear stress s2 ≡ sXY . The corresponding GL strains are the axial strain e1 ≡ eXX

and the section-averaged shear strain e2 ≡ γXY = eXY + eYX . The constitutive equations are
s1 = s01+Ee1 and s2 = s02+Ge2, where E and G are the Young’s modulus and shear modulus,
respectively, of the material. The treatment outlined below is slightly modified from that of a
course term project by Alexander, de la Fuente and Haugen.10
The finite displacements are described in a local coordinate system that is attached to the

initial position of the beam, as illustrated in Figure 1. Under the usual kinematic assumptions
of the Timoshenko beam model (plane sections remain plane but not necessarily normal to
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the deformed centroidal axis) the coordinates of a particle in the underformed and deformed
configurations may be written

X = X0 + ζ, X0 =
{
X
0

}
, ζ =

{
0
Y

}
, (53)

x = x0 +RTζ, x0 =
{
X + u0X

u0Y

}
, RT =

[
cos θ − sin θ
sin θ cos θ

]
, (54)

where u0X and u0Y are the components of the centroidal displacement vector u0. Subtracting
(53) from (54) gives the element displacement field

u = x−X =
{
uX
uY

}
=

{
u0X − Y sin θ

u0Y + Y (cos θ − 1)
}
. (55)

Four displacement gradients contribute to the GL strains. Thus for this case we have nd = 2,
ns = 2 and ng = 4. The four contributing displacement gradients are arranged in the usual
pattern:

g =


g1
g2
g3
g4

 =


∂uX/∂X
∂uY /∂X
∂uX/∂Y
∂uY /∂Y

 . (56)

For future use in Section 9 we note that the gradients can be written in terms of generalized
section freedoms as

g =


g1
g2
g3
g4

 =


ε− Y κ cos θ
γ − Y κ sin θ

− sin θ
cos θ − 1

 , (57)

in which ε = ∂u0X/∂X is a generalized axial strain, γ = ∂u0Y /∂X a generalized shear strain,
and κ = ∂θ/∂X is the beam curvature.
The matrix form of the GL strains is

e1 = g1 + 1
2
(g21 + g2)

2 =


1
0
0
0


T

g+ 1
2
gT

 1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

g, (58)

e2 = g2 + g3 + g1g3 + g2g4 =


0
1
1
0


T

g+ 1
2
gT

 0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

 g, (59)

which define h1, h2, H1 and H2. On introducing the auxiliary vectors

b1 =


1 + g1
g2
0
0

 , b2 =


g3

1 + g4
1 + g1
g2

 , c1 =


1 + 1

2
g1

1
2
g2
0
0

 , c2 =


1
2
g3

1 + 1
2
g4

1 + 1
2
g1

1
2
g2

 , (60)

the spectral core stiffness matrices and internal force vector can be writte n

SU = Ec1cT1 +G c2c
T
2 + s

0
1H1 + s02H2 , (61)

Sr = Ec1cT1 +G c2c
T
2 +

1
2
(s01 + s1)H1 + 1

2
(s02 + s2)H2 , (62)
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S = SM + SGP , SM = Eb1b
T
1 +Gb2b

T
2 , SGP = s1H1 + s2H2 , (63)

Φ = s1b1 + s2b2. (64)

Because beam elements have rotational freedoms, a complementary geometric stiffness matrix
appears when carrying out the transformation phase. This term is considered in the subsequent
GCCF treatment of this element in Section 9.

3D Timoshenko Beam: Kinematics

The last example of derivation of core equations involve a TL 3D Timoshenko beam capable
of arbitrarily large rotations. The following material is largely extracted from a recent paper
by Crivelli and Felippa7 as well as Crivelli’s thesis5 and is continued with the DGCCF trans-
formation phase in Section 10. The notation used in those references has been slightly edited
to fit that of the present article.

Figure 2 Kinematics of 3D Timoshenko beam element

As in the 2D case, the beam is isotropically elastic with Young’s modulus E and shear
modulus G. The reference configuration of the beam is straight and prismatic although not
necessarily stress free. A local reference frame ni is attached to it, with n1 directed along the
longitudinal axis (the locus of cross section centroids). Axes n2 and n3 are in the plane of the
left-end cross section; these will be eventually aligned with the principal inertia axes to simplify
some algebraic expressions. Along these axes we attach the coordinate system {X,Y,Z}. This
description is schematically shown in Figure 2. We further define a set of moving frames,
denoted by {a1,a2,a3}, parametrized by the longitudinal coordinate X. Initially these frames
coincide with {n1,n2,n3}, and displace rigidly attached to the cross-sections of the moving
current configuration.
A beam particle originally at (X,Y,Z) displaces to

x(X) = x0(X) +RT (X)ζ(Y,Z), ζT = [ 0 Y Z ] , (65)
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where x0 describes the position of the centroid of the given cross-section, R is a 3-by-3
orthogonal matrix function that orients the displaced cross section, and ζ is a cross-section
position vector. The displacement field is

u = x−X = u0 + (RT − I)ζ. (66)

where u0(X) = x0(X)−X0(X) is the centroidal displacement (see Figure 2).
In the sequel 3×3 skew-symmetric matrices are consistently denoted by placing a tilde over

their axial 3-vector symbol; for example

ã = spin (a) =

[ 0 a3 −a2

−a3 0 a1

a2 −a1 0

]
, a =

{
a1

a2

a3

}
= axial (ã). (67)

The skew-symmetric curvature matrix κ̃ is defined by κ̃ = R(dRT/dX), which is the rate
of change of the orthogonal rotation matrix R with respect to the longitudinal coordinate.
The curvature vector is κ = axial (κ̃). We shall also require later the variation of angular
orientation δΘ, defined as the axial vector of the skew matrix R δRT :

δ̃Θ = R δRT = −δRRT , δΘ = axial (δ̃Θ), (68)

All displacement gradients gij appear in the GL strain measures. To maintain compactness the
nine gradients are partitioned into three 3-vectors:

g1 =

{
∂uX/∂X
∂uY /∂X
∂uZ/∂X

}
, g2 =

{
∂uX/∂Y
∂uY /∂Y
∂uZ/∂Y

}
, g3 =

{
∂uX/∂Z
∂uY /∂Z
∂uZ/∂Z

}
, (69)

The 9-component gradient vector is gT = [gT1 gT2 gT3 ], but this symbol is not used directly
here. Also introduce the 3-vectors

h1 =

{ 1
0
0

}
, h2 =

{ 0
1
0

}
, h3 =

{ 0
0
1

}
. (70)

With the help of these quantities, explicit expressions for the displacement gradient vectors g
can be given as

g1 =
du0

dX
+RT κ̃ζ =

du0

dX
+RT ζ̃

T
κ,

g2 = (R
T − I)h2, g3 = (R

T − I)h3.
(71)

The only nonzero components of the GL strain tensor can be written

e1 ≡ e11 = hT1 g1 +
1
2
gT1Hg1,

e2 ≡ γ12 = 2e12 = hT2 g1 + h
T
1 g2 +

1
2
(gT1Hg2 + g

T
2Hg1),

e3 ≡ γ13 = 2e13 = hT3 g1 + h
T
1 g3 +

1
2
(gT1Hg3 + g

T
3Hg1),

(72)

where H is here the 3 × 3 identity matrix. Note that from the orthogonality of the rotation
matrix R we find

e22 = h
T
2 g2 +

1
2
gT2 g2

= R22 − 1 + 1
2
(R2

21 + (R22 − 1)2 + R2
23) = R22 − 1 + 1

2
(2− 2R22) = 0,

2e23 = h
T
2 g3 + h

T
3 g2 + g

T
2 g3

= R32 +R23 + R21R31 +R22R32 −R32 + R23R33 −R23 = 0,

(73)
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and similarly e33 = 0. This confirms that the only nonzero strains are (72).
The strains (72) may be rewritten in a more physically suggestive form:

e1 = e11 = eb + ef ,

eb =
(
du0

dX

)T (
h1 + 1

2

du0

dX

)
,

ef = ζTKe + 1
2
κT ζ̃ζ̃

T
κ  ζTKe,

γ = γ12 + γ13,

e2 = γ12 = γ2 + γ2 = h
T
2 φ+ hT2 ζ̃

T
κ,

e3 = γ13 = γ3 + γ3 = h
T
3 φ+ hT3 ζ̃

T
κ.

(74)

Here eb, ef are stretching and flexural normal strains, γ2 and γ3 represent bending-induced
shear strains, and γ2, γ3 are torsion-induced shear strains. The last term in ef represents a
squared-curvature contribution to flexure, which can usually be neglected (cf. Remark 9.2).
The strain energy stored in the current configuration is

U =
∫
L0

∫
A0

U dAdX, with U = 1
2
Ee21 +

1
2
G
(
e22 + e

2
3

)
+ s01e1 + s

0
2e12 + s

0
3e3. (75)

3D Timoshenko Beam: Core Equations

The PK2 stresses associated with the GL strains (72) are s1 ≡ s11 = sXX , s2 ≡ s12 = sXY and
s3 ≡ s13 = sXZ. The constitutive equations are s1 = s01+Ee1, s2 = s02+Ge2 and s3 = s03+Ge3.
The spectral core stiffnesses can be compactly expressed in terms of the vectors ci = hi+ 1

2
Hgi

and bi = hi+Hgi for i = 1, 2, 3, where no subscript is needed in H ≡ I. Applying the spectral
formulas of Section 4.4 we obtain for the 9× 9 core energy stiffness

SU =

ESU1 +G(SU2 + SU3 ) GSU4 GSU5
GSU4

T
GSU1 0

GSU5
T

0 GSU1

+ [
s01H s02H s03H
s02H 0 0
s03H 0 0

]
, (76)

where SU1 = c1cT1 , S
U
2 = c2cT2 , S

U
3 = c3cT3 , S

U
4 = c2cT1 and S

U
5 = c3cT1 . At the residual level

we obtain for Sr a form similar to (76) except that the prestresses s0i , i = 1, 2, 3 have to
be replaced by the midpoint stresses 1

2
(s0i + si). The internal force vector conjugate to δg is

Φ = Srg+Φ0 = Φσ +Φτ , in which

Φσ =

{
s1b1

0
0

}
Φτ =

{
s2b2 + s3b3

s2b1

s3b1

}
, (77)

represent the contribution of the normal and shear stresses, respectively.
The principal core tangent stiffness matrix S = SM + SGP is obtained from (29). The

material stiffness is

SM =

ES1 +G(S2 + S3) GS4 GS5

GST4 GS1 0
GST5 0 GS1

 , (78)

where S1 = b1b
T
1 , S2 = b2b

T
2 , S3 = b3b

T
3 , S4 = b2b

T
1 and S5 = b3b

T
1 . The principal geometric

stiffness is

SGP =

[
s1H s2H s3H
s2H 0 0
s3H 0 0

]
=

[ (s01 +Ee1)H (s02 +Ge2)H (s02 +Ge3)H
(s02 +Ge2)H 0 0
(s02 +Ge3)H 0 0

]
. (79)

The contribution of (δ2g)T Φ to the complementary geometric stiffness depends on the
target variables in the ensuing transformation phase. Because this transformation requires the
DGCCF, it is taken up in Section 10 after the GCCF is discussed in Section 8.
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DCCF TRANSFORMATION TO PHYSICAL FREEDOMS

The core stiffness matrices and internal-force vector given in (26)–(29) and (20), respectively,
pertain tomaterial particles of the structure. The behavior of each particle is expressed in terms
of its displacement gradients collected in vector g. To create a discrete model the structure
is subdivided into finite elements. Finite elements equations in terms of the physical DOFs
collected in vector v are constructed through a combination of core-to-physical transformations
and integration over element domains.
In this section we stay within the scope of the Direct CCF by assuming that the trans-

formations between g and v are linear. Because all subsequent developments pertain to an
individual element, no element identifiers are used to reduce indexing clutter.
Over an individual element the displacement field uT = (u1, u2, u3) is interpolated as

u = Nv, (80)

where v now collects the element node-displacement degrees of freedom (DOFs) and N =
N(X1,X2,X3) is a matrix of shape functions independent of v. Differentiating (80) with
respect to the Xi and taking the first two v variations yields

g = Gv, δg = G δv, δ2g = 0, (81)

(for the last one see Remark 4.1). Invariance of the strain energy variations δU and δ2U
obtained by integrating (14)–(15) over the element reference volume yields

KU =
∫
V0

GTSUGdV0, Kr =
∫
V0

GTSrG dV0, K =
∫
V0

GTSG dV0, (82)

f =
∫
V0

GTΦ dV0, p =
∫
V0

GTΨ dV0, p0 =
∫
V0

GTΨ0 dV0. (83)

Although the dependency of Slevel and Ψ on g is not made implicit in these equations, it
must be remembered that the transformation g = Gv also appears there. Because of the
ensuing algebraic complexity, numerical integration is generally required unless the gradients
are constant over the element.
Often G is expressed as a chain of transformations, some of which are position dependent

and remain inside the element integral whereas others are not and may be taken outside. For
example, in the bar element treated below, G = TḠ, where Ḡ transforms g to local node
displacements while T transforms local to global node displacements.

DCCF TRANSFORMATION EXAMPLES

The Bar Element

The core equations for a geometrically nonlinear TL bar were derived in Section 5.1. These
equations are now applied to the formulation of a two-node, linear-displacement, prismatic
TL bar element. The element has constant reference area A0 and initial length L0. The two
end nodes are located at (X1, Y1, Z1) and (X2, Y2, Z2), respectively. The node displacements
are (vX1, vY 1, vZ1) and (vX2, vY 2, vZ2). The element displacement field in local coordinates
{X̄, Ȳ , Z̄} may be interpolated as

ū =

{
ūX
ūY
ūZ

}
=

[
N1 0 0 N2 0 0
0 N1 0 0 N2 0
0 0 N1 0 0 N2

]
v̄X1
v̄Y 1
v̄Z1
v̄X2
v̄Y 2
v̄Z2

 = Nv̄, (84)
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where N1 = 1− X̄/L0 and N2 = X̄/L are linear shape functions. Differentiating with respect
to the reference coordinate we get

G =
1
L0

[−1 0 0 1 0 0
0 −1 0 0 1 0
0 0 −1 0 0 1

]
v̄ =

1
L0

Ḡv̄, (85)

This transformation may be applied to the core matrices and vectors derived in Section 5.1.
For example, application to the core tangent stiffness (38) yields

K̄ =
1
L2

0

∫
V0

ḠTSḠ dV0 =
A0

L0

ḠT (EbbT + sH) Ḡ, (86)

Finally, transformation to node displacements (vXi, vY i, vZi), i = 1, 2 is handled in the usual
manner by writing the local-to-global transformation equation

ū =

{
ūX
ūY
ūZ

}
=

[
TXX TXY TXZ

TY X TY Y TY Z
TZX TZY TZZ

]{
uX
uY
uZ

}
= Tu, (87)

which is valid for both end nodes giving v̄i = Tv, i = 1, 2. Consequently the element tangent
stiffness matrix in local coordinates is given by

K =
A0

L0

[
TT 0
0 TT

]
Ḡ

T (EbbT + sH) Ḡ
[
T 0
0 T

]
. (88)

For this simple element all entries may be obtained in closed form and no numerical integration
is necessary. An efficient implementation of the tangent stiffness matrix (88) in the form of a
Fortran subroutine is given in Appendix 2. This implementation forms K with approximately
160 floating point operations.

Iso-P Plane Stress Element

For the case of plane stress considered in Section 5.2, we shall asume that the associated
finite elements are isoparametric displacement models with n nodes, and that (as usual for such
models) the nodal freedoms are of translational type. The transformation to physical DOFs
can then be handled within the purview of the DCCF.
As in Section 5.1, the reference system, current system and in-plane displacement compo-

nents are denoted by {X,Y }, {x, y} and {uX , uY }, respectively. The element nodes are located
at {Xi, Yi} , (i = 1, . . . n) in the reference configuration C0 and move to {xi = Xi + uXi,
yi = Yi + uY i}, (i = 1, . . . n) in the current configuration C. The element displacement field
may be expressed as

{
uX
uY

}
=

[
N1 0 N2 . . . 0
0 N1 0 . . . Nn

]
vX1

vY 1

vX2
...
vY n

 = Nv, (89)

in which Ni are appropriate isoparametric shape functions written in terms of natural coor-
dinates such as ξ and η for quadrilaterals. The G matrix follows upon differentiation with
respect to X and Y , and all core equations transformed as per (6.3)–(6.4). For example, the
physical tangent stiffness is

K =
∫
V0

GT (SM + SG)G dV, (90)
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where SM and SG are given by (45) and (46), respectively. As in the case of linear elements,
(90) is most conveniently evaluated by numerical integration. Because several of the integrand
matrices are sparse, in the interest of efficiency in the computer implementation the integrand
may be symbolically evaluated through a computer algebra system such as Macsyma, Maple or
Mathematica, and automatically converted to Fortran or C program statements before being
encapsulated in the Gauss quadrature loop.

THE GENERALIZED CCF

As discussed in Section 2, the Generalized Core Congruential Formulation or GCCF is required
when the relation between displacement gradients g and finite element degrees of freedom v
is nonlinear. This complication occurs in elements with rotational freedoms, such as beams,
plates and shells, if finite rotations are exactly treated.
Recall the expression (15) of the second variation δ2U of the internal energy density. This

expression has the core tangent stiffness S as kernel of the quadratic form in δg. The core
internal force Φ also appears in the inner product (δ2g)T Φ. This second term may either
survive or drop out depending on the relation of g with the target physical or generalized
coordinates (the latter term is explained below) chosen in the CCF transformation phase. In
the case of the DCCF, this term drops out and

S = SM + SG (91)

is the tangent core stiffness, which forward transforms as per (6.3). This is the situation
considered so far. But if that term survives two things happen. First, (91) is relabeled as

S = SM + SGP , (92)

in which S and SGP are called the principal core tangent stiffness and principal geometric
stiffness, respectively. Second, transforming the term (δ2g)T Φ to freedoms v produces a extra
term in accordance with the schematics

K = KM +KGP +KGC, SM → KM , SGP → KGP ,
(
δ2g

)T
Φ �→ δvTKGC δv, (93)

where → and �→ symbolize DCCF-transformation and GCCF-transformation-styles, respec-
tively. As can be seen the transformation phase produces a new term KGC called the com-
plementary geometric stiffness. That term cannot be expressed in terms of the variation δg
of the displacement gradients. Consequently there is no “core complementary core geometric
stiffness” SGC that can be added to (92). Instead it appears as a “carry forward term” that
materializes as a quadratic-form kernel upon transforming.

Generalized Coordinates as Generic Target

For elements that require the GCCF treatment a one-shot transformation between g and v is
often replaced by a multistage transformation. The degree of freedom sets used as intermediate
targets of this process will be collectively referred to as “generalized coordinates” and identified
as q. Of course the final target: element node displacements v, is a particular instance of such
array of choices.
In Section 2 it was noted that two variants of the GGCF, qualified as algebraic and

differential, should be distinguished in terms of consequences on the existence of physical
stiffness equations at various variational levels. These variants are examined below. The
ensuing development examines the transformation from displacement gradients g to a “generic
target” set of generalized coordinates qi collected in vector q. These coordinates are assumed
to be independent , a restriction removed later. Symbols K and f are used to denote tangent
stiffness matrices and internal force vectors, respectively, in terms of q.
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Algebraic Transformation

The Algebraic GCCF, or AGCCF, applies if the relation between g (source) and q (target)
is nonlinear but algebraic. We have g = g(q) or in index notation, gi = gi(qj). Differentiating
with respect to the qi variables yields

δgi =
∂gi
∂qj
δqj = Gijδqj , or δg = G δq,

δ2gi =
∂2gi
∂qj∂qk

δqjδqk +
∂gi
∂qj
δ2qj = Fijkδqjδqk, or δ2g = (F δq) δq↗0

,

(94)

Here (Fδq) is the matrix Fijk δqk = Fkij δqk; F being a cubic array. The array G receives
the name tangent transformation matrix. The second term in the expansion of δ2gi vanishes
because the qi are assumed to be independent target variables.
Enforcing invariance of δ2U yields the tangent stiffness transformation

K =
∫
V0

{
GT (SM + SGP )G+Q

}
dV0 = KM +KGP +KGC = KM +KG, (95)

where the entries of Q are (cf. Remark 4.1) Qij = Qji = FkijΦk with summation on k =
1, . . . ng. Note that Q is symmetric because Fkij = Fkji. Integration of Q over V0 yields the
complementary portion KGC of the geometric stiffness KG.
The internal, applied and prestress force vectors transform according to the formulas in

(6.4) with the G defined in (94):

f =
∫
V0

GTΦ dV0, p =
∫
V0

GTΨ dV0, p0 =
∫
V0

GTΨ0 dV0. (96)

What happens to KU and Kr? They can be obtained, somewhat artificially, by constructing
the matrix equation

g =Wq, (97)

where W is called a secant transformation matrix. Generally this matrix is far from unique
because its ng × nq entries must satisfy only ng conditions. (Care has often to be given to the
qj → 0 if 0/0 limits appear inW.) Using (97) we can proceed to form

KU =
∫
V0

WTSUW dV0, Kr =
∫
V0

GTSrW dV0. (98)

Because in generalW �=G, symmetry in the secant stiffness Kr cannot be expected even if Sr

is symmetric.

Remark 12. The AGGCF is applicable to finite elements with degrees of freedoms that include fixed-axis
rotations, because such rotations are integrable. Examples are provided by two-dimensional beams as well as
plane stress (membrane) elements with drilling freedoms if only in-plane motions are allowed.

Remark 13. Why is KGC called a geometric stiffness? Because it vanishes if the current configuration is
stress free, in which case the core internal force Φ vanishes and so does Q.
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Differential Transformation

The Differential GCCF, or DGCCF, is required if the relation between g (source) and q
(target) is only available as a non-integrable differential form between their variations:

δgi = Gijδqj , or δg = G δq,

δ2gi =
∂Gij

∂qk
δqj δqk = Fijk δqj δqk, or δ2g = (Fδq) δq.

(99)

The transformation equation (95) still applies for K whereas (96) holds for the force vectors.
But no integral g = g(q) as in the AGGCF exists. Consequently KU and Kr, which require a
secant matrix relation of the form (97), cannot be constructed. FurthermoreQ is not necessarily
symmetric; a condition for that being Fkij = Fkji or equivalently ∂Gki/∂qj = ∂Gkj/∂qi.

Remark 14. For mechanical finite elements the DGCCF naturally arises when three-dimensional finite
rotations are present as nodal degrees of freedom, because such rotations are non-integrable.

Remark 15. The relations (99) have points of resemblance with the case of non-holonomic constraints in
analytical dynamics.

Multistage Transformation

Up to this point the q have been assumed to be independent variables. But as previously
noted, for complicated elements the GCCF transformations are more conveniently applied in
stages. The target variables in one stage become the source variables for the next one.
What happens if the q are intermediate variables in a transformation chain? If the q are

linear in the final independent degrees of freedom v, all previous formulas hold because the
DCCF applies for the remaining transformations, which are strictly congruential. But if the q
are nonlinear in v, or only a non-integrable differential relation exists, term (∂gi/∂qj) δ2qj =
Gij δ

2qj in the second of (94) survives. The net effect is that the geometric stiffness acquires a
higher order component, implicitly defined as the kernel of∫

V0

ΦiGij δ
2qj dV0, (100)

This term cannot be resolved (“resolution” meaning explicit extraction of its stiffness kernel
in the form of a complementary geometric stiffness) until the transformation chain reaches
downstream variables that either are the final degrees of freedom (and thus independent),
or depend linearly on such. It is difficult to state detailed rules that encompass all possible
situations. Instead the treatment of the 2D and 3D beam element transformations in Sections
9–10 illustrates the basic techniques for “carrying forward” terms such as (100).

A 2-NODE 2D TIMOSHENKO BEAM ELEMENT

We continue here with the derivation of a 2D, isotropic Timoshenko beam element started
in Section 5.4. This example serves to illustrate the Algebraic GCCF. The specific element
constructed here has two end nodes, six degrees of freedom, and reference length L0. The cross
section area A ≡ A0 and moment of inertia I =

∫
A
Y 2 dA are constant along the element. Axis

X is made to pass through the centroid so that
∫
A
Y dA = 0. Furthermore it is assumed that

the cross section is doubly symmetric so that
∫
A
Y 3 dA = 0.

The element displacement field, defined by u0X(X), u0Y (X) and θ(X), is interpolated with
linear shape functions:
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{
u0X

u0Y

θ

}
=

[
N1 0 0 N2 0 0
0 N1 0 0 N2 0
0 0 N1 0 0 N2

]

vx1
vy1
θ1
vx2
vy2
θ2


= Nv, (101)

where N1 = 1− (X/L0) and N2 = 1−N1 = X/L0.
Consequently

ε =
∂u0X

∂X
=
vX2 − vX1

L0

, γ =
∂u0Y

∂X
=
vX2 − vX1

L0

, κ =
∂θ

∂X
=
θ2 − θ1
L0

, (102)

are constant over the element.

Generalized Coordinates and Stress Resultants

As intermediate set of generalized coordinates we take qT = [ ε γ κ θ ]. These four
quantities are constant over each cross section and may be viewed as cross-section orientation
coordinates. Consequently when obtaining stiffness matrices and internal forces in terms of q it
is convenient to integrate over the beam cross section. The resulting quantities appear naturally
in terms of cross section stress-resultants as shown below. In terms of these generalized
coordinates the auxiliary vectors bi listed in (60) become

b1 =


1 + g1
g2
0
0

 =


1 + ε− Y κ cos θ
γ − Y κ sin θ

0
0

 , b2 =


g3

1 + g4
1 + g1
g2

 =


− sin θ
cos θ

1 + ε− Y κ cos θ
γ − Y κ sin θ

 , (103)

The well known stress resultants of beam theory are the axial force N , transverse shear force
V and bending moment M . They are obtained by integrating the PK2 stresses over the beam
cross section:

N =
∫
A0

s1 dA = EA(ε+ 1
2
(ε2 + γ2)) + 1

2
EIκ2 +N0,

V =
∫
A0

s2 dA = GAsωγ + V 0,

M =
∫
A0

s1Y dA = −EIκωε +M 0,

(104)

where ωε = (1 + ε) cos θ+ γ sin θ and ωγ = γ cos θ− (1 + ε) sin θ can be viewed as generalized
skew strains. In (104) N0, V 0 and M 0 denote initial-stress resultants (stress resultants in C0,
also called prestress forces), A ≡ A0, I =

∫
A0
Y 2 dA, and As = µA, in which µ is the usual shear

correction factor of Timoshenko beam theory. Because of the doubly-symmetric cross-section
assumption, a term containing the third-section-moment

∫
A0
Y 3 dA has been omitted from the

expression for M .
In addition to N , V and M , the following higher order moment, which is absent from the

linear theory, appears in the residual force and tangent stiffness:

C =
∫
A0

s1Y
2 dA = EI((ε+ 1

2
(ε2 + γ2)) + 1

2
EHκ2) + C0, (105)
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in which H =
∫
A0
Y 4 dA. If terms in κ2 are neglected,

C − C0 = (N −N0)(I/A) = (N −N0)r2, (106)

where r =
√
I/A is the radius of gyration of the cross section. If such terms are retained this

relation is only exact if r2 = H/I and approximate otherwise.
Remark 16. One may verify that

∫
A

s2Y dA vanishes identically. This serves as a check of the strain
distribution equations.

Transformation Matrices

The differential relations required to establish the tangent transformation are obtained from
(57) as

δg =
∂g
∂q
δq =

 1 0 −Y cos θ Y κ sin θ
0 1 −Y sin θ −Y κ cos θ
0 0 0 − cos θ
0 0 0 − sin θ



δε
δγ
δκ
δθ

 = G1 δq, (107)

δq =
∂q
∂v
δv =

1
L0

−1 0 0 1 0 0
0 −1 0 0 1 0
0 0 −1 0 0 1
0 0 L0 −X 0 0 X



δvX1

δvY 1
...
δθ2

 = G2 δv, (108)

The transformation relating δg = G δv may be obtained as the product

G = G1G2 =
1
L0

−1 0 Y (cos θ + (L0 −X)κ sin θ) 1 0 Y (− cos θ +Xκ sin θ)
0 −1 Y (sin θ − (L0 −X)κ cos θ) 0 1 Y (− sin θ −Xκ cos θ)
0 0 −(L0 −X) cos θ 0 0 −X cos θ
0 0 −(L0 −X) sin θ 0 0 −X sin θ


(109)

but it is more instructive (as well as conducive to higher efficiency in the computer implemen-
tation) to perform the transformation phase in two stages.
Observe that the first transformation (from g to q) is nonlinear and algebraic whereas the

second one (from q to v) is linear. Consequently we have to use the AGCCF for the first
transformation but the second one can be done simply through the DCCF.

Internal Force Vector

The internal force vector in terms of q, denoted by f q, is obtained from the core expression
(64) for Φ and the matrix G1 given in (107):

f q =
∫
A0

GT
1 Φ dA0 =


f qε
f qγ
f qκ
f qθ

 =


N(1 + ε)−Mκ cos θ − V sin θ
Nγ −Mκ sin θ + V cos θ

−Mωε + Cκ
−Mκωγ − V ωε

 . (110)

Finally, application of (108) and integration over the element length yields

f =
∫ L0

0

GT
2 f

q dX =



−f qε
−f qγ

−f qκ + 1
2
L0f

q
θ

f qε
f qγ

f qκ +
1
2
L0f

q
θ


. (111)

This vector satisfies translational equilibrium.
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Tangent Stiffness Matrix

Transforming to generalized coordinates q produces three components o f the tangent stiffness
matrix:

Kq =
∫
A0

(GT
1 (SM + SG)G1 +Q) dA = K

q
M +Kq

GP +K
q
GC . (112)

The entries of Kq
M , obtained through symbolic manipulation, are

Kq
M(1, 1) = EA(1 + ε)

2 +GAs sin2 θ +EIκ2 cos2 θ,

Kq
M(1, 2) = EA(1 + ε)γ −GAs sin θ cos θ + EIκ2 sin θ cos θ,
Kq
M(1, 3) = EIκ ((1 + ε)(1 + cos

2 θ) + γ sin θ cos θ),

Kq
M(1, 4) = EIκ

2ωγ cos θ +GAsωε sin θ,

Kq
M(2, 2) = EAγ

2 +GAs cos2 θ + EIκ2 sin2 θ,

Kq
M(2, 3) = EIκ ((1 + ε) sin θ cos θ + γ(1 + sin

2 θ)),

Kq
M(2, 4) = EIκ

2ωγ sin θ −GAsωε cos θ,
Kq
M(3, 3) = EIωε

2 + EHκ2,

Kq
M(3, 4) = EIκ ((1 + ε)γ(cos

2 θ − sin2 θ) + (γ2 − (1 + ε)2) sin θ cos θ),
Kq
M(4, 4) = EIκ

2φ2
g +GAsωε

2.

(113)

The principal geometric stiffness, which is readily worked out by hand, is

Kq
GP =

 N 0 −M cos θ Mκ sin θ − V cos θ
N −M sin θ −Mκ cos θ − V sin θ

C 0
symm Cκ2

 (114)

The new term contributed by the AGCCF to Kq is the complementary geometric stiffness
Kq

GC . Its source is the matrix Q introduced in Section 8.2. The entries of Q are Qij =
(∂2gk/∂qi∂qj)Φk, where the components of g and Φ = s1b1 + s2b2 may be obtained from (57)
and (103), respectively.
The entries of Q were symbolically generated by the following Mathematica module:

QmatrixOf2DTimoBeamElement[eps_,gamma_,kappa_,theta_,Em_,Gm_,Y_]:=
Module[{g,h1,h2,H1,H2,e1,e2,s1,s2,b1,b2,phi,i,j,k},
q={eps,gamma,kappa,theta}; phi={1,1,1,1};
g={eps-Y*kappa*Cos[theta],gamma-Y*kappa*Sin[theta],

-Sin[theta],Cos[theta]-1};
gg={{g[[1]]},{g[[2]]},{g[[3]]},{g[[4]]}};
h1={{1},{0},{0},{0}}; h2={{0},{1},{1},{0}};
H1={{1,0,0,0},{0,1,0,0},{0,0,0,0},{0,0,0,0}};
H2={{0,0,1,0},{0,0,0,1},{1,0,0,0},{0,1,0,0}};
e1=(Transpose[h1].gg+(1/2)*Transpose[gg].H1.gg)[[1,1]];
e2=(Transpose[h2].gg+(1/2)*Transpose[gg].H2.gg)[[1,1]];
s1=Simplify[Em*e1]; s2=Simplify[Gm*e2];
b1={1+eps-Y*kappa*Cos[theta],gamma-Y*kappa*Sin[theta],0,0};
b2={-Sin[theta],Cos[theta],1+eps-Y*kappa*Cos[theta],

gamma-Y*kappa*Sin[theta]};
phi=Simplify[s1*b1+s2*b2];
Q=Table[0,{4},{4}];
For[i=1,i<=4,i++, For[j=1,j<=4,j++, For[k=1,k<=4,k++,
Q[[i,j]]=Q[[i,j]]+(D[D[g[[k]],q[[i]]],q[[j]]])*phi[[k]] ]]];

Return[Q]
];
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The output of this module was integrated over the cross section and pattern matched with
the expression of the stress resultants (104)-(105) to produce

Kq
GC =

 0 0 0 0
0 0 0

0 −Mωγ
symm −V ωγ +Mκωε − Cκ2

 , (115)

which added to (114) yields the geometric stiffness

Kq
G =

 N 0 −M cos θ Mκ sin θ − V cos θ
N −M sin θ −Mκ cos θ − V sin θ

C −Mωγ
symm −V ωγ +Mκωε

 . (116)

Finally, the tangent stiffness in terms of q is Kq = KM +KG. Denoting the entries of Kq by
Kq
ij , i, j = 1, . . . 4 the tangent stiffness matrix K in terms of node displacements v is formed

through the DCCF transformation

K =
∫ L0

0

GT
2K

qG2 dX =



Kq
11 Kq

12 Kq
13 − 1

2
L0K

q
14

Kq
22 Kq

23 − 1
2
L0K

q
24

Kq
33 − L0K

q
34 +

1
3
L2

0K
q
44

symm

−Kq
11 −Kq

12 −Kq
13 − 1

2
L0K

q
14

−Kq
12 −Kq

22 −Kq
23 − 1

2
L0K

q
24

−Kq
13 +

1
2
L0K

q
14 −Kq

23 +
1
2
L0K

q
24 −Kq

33 +
1
6
L2

0K
q
44

Kq
11 Kq

12 Kq
13 +

1
2
L0K

q
14

Kq
22 Kq

23 +
1
2
L0K

q
24

Kq
33 + L0K

q
34 +

1
3
L2

0K
q
44


.

(117)

The above rule can be applied to KM and KG should separate formation be desirable, as
when setting up a stability eigenproblem. Using these schemes K can be formed at a cost of
approximately 300 floating-point operations per element, which is not too different from the
cost of a TL 3D bar.
If the reference configuration is not aligned with X, the preceding expressions apply to the

local system {X̄, Ȳ }. A final local-to-global transformation step, similar to that discussed for
the 3D bar in Section 7.1, is then necessary. This step can be handled by a simple DCCF
transformation, because the finite rotation θ remains the same in global coordinates.

Remark 17. The foregoing exact expressions contain curvature-squared terms typically in the combination
Iκ2. This can be shown to be of order (r/R)2 compared to other terms, where r is the radius of gyration of
the cross section and R = 1/κ the radius of curvature of the current configuration. For typical beams (r/R)2 is
10−6 or less; consequently all such tiny terms may be dropped without visible loss of accuracy. For highly-bent
extremely-thin beams, however, that ratio may go up to 0.01 in which case the κ2 terms might have a noticeable
though small effect if retained.
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Can a Secant Stiffness be Constructed ?

To attempt the construction of a secant stiffness Krq in terms of generalized coordinates q
one should obtain a secant matrix form of the relationship g = g(q). As noted in Section 8.2,
such form is far from unique. One possible choice is

g =


g1
g2
g2
g4

 =

 1 0 −Y cos θ 0
0 1 −Y sin θ 0
0 0 0 − sin θ/θ
0 0 0 (cos θ − 1)/θ



ε
γ
κ
θ

 =W1q, (118)

which has the merit of not being too dissimilar from G1. Note that some care must be taken
as regards some 0/0 limits. Then Krq =

∫
A
GT

1 S
rW1 dA, which may be easily worked out in

closed form but is unsymmetric. Because q is linear in v, the next transformation is simply
Kr =

∫ L0

0
GT

2K
rqG2 dX which can be handled through a scheme similar to (117) but with an

unsymmetric kernel matrix.

A 2-NODE 3D TIMOSHENKO BEAM ELEMENT

We continue here the development of a two-node 3D Timoshenko beam element started in
Section 5.5. As can be surmised, the development is more complex and demanding than for
its 2D counterpart. Only a summary taken from Crivelli’s thesis5 and Crivelli and Felippa7

is presented here. The transformation phase to pass from the core equations to the element
nodal degrees of freedom is carried out in three stages:
1. From particle displacement gradients g to generalized gradients w at each cross section.

An integration over the cross section area is involved.
2. From generalized gradients w to cross-section orientation coordinates q. The rotational

parametrization is introduced at this stage.
3. From cross-section orientation to finite-element nodal degrees of freedom v. An integration

over the element length, as defined by the shape functions, is involved.
These transformation stages are summarized in Tables 1 and 2, which together also serve to
define notation.

Table 1. Internal energy and its variations for 3D Timoshenko beam element

Core Section Gradients Section Orientation Physical DOF

Particle Cross-Section Cross-Section Whole Element
g w z v

U = 1
2
gT SUg+ gT Ψ0 — — —

δU = δgT (Srg+Ψ0) δUG = δwT R δUz = δzT fz δU = δvT f

δ2U = δgT S δg+ δ2gTΦ δ2UG = δwT S δw+ F δ2Uz = δzT Kz δz δ2U = δvT K δv
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Table 2. Core-to-physical-DOFs transformations for 3D beam element

Core Level Section Gradients Section Orientation Physical DOF

Particle Cross-Section Cross-Section Whole Element
g w z v

Φ R =

∫
A0

WT Φ dA fz = ZT R f =

∫ L0

0

GT
z fz dX

S S =

∫
A0

WT SW dA Kz = ZT SZ +SGCz K =

∫ L0

0

GT
z Kz Gz dX

δg = W δw δw = Z δz δz =Gz δv

Transformation to Generalized Gradients

The first set of target variables are the generalized gradients w(X) at each reference cross
section defined by the longitudinal coordinate X. The components of w are indirectly given
through their first variation:

δw =
{
d δu0

dX
dδΘ
dX

δΘ
}T

, (119)

where δΘ, defined in (68), measures the variation of angular orientation. Because this quantity
is not generally integrable for three-dimensional motions, it is not possible to express Θ as a
unique function of the displacements. The variation of g1 is

δg1 =
dδu0

dX
+RT ζ̃

T dδΘ
dX

+RT ζ̃
T
κ̃δΘ +RT δ̃Θζ̃

T
κ, (120)

where we used the relation5 δκ = dδΘ/dX + κ̃δΘ. On using the commutative law ãb = b̃
T
a

and Jacobi’s identity ˜̃ab = ãb̃− b̃ã we may rewrite (120) as

δg1 =
∂ δu0

∂X
+RT ζ̃

T ∂ δΘ
∂X

+RT κ̃T ζ̃ δΘ (121)

For the other gradient vectors we have δg2 = δR
Th2 = RT δ̃Θh2 = RT h̃

T

2 δΘ and δg3 =
RT h̃

T

3 δΘ, which can be collected in matrix form as

δg =


δg1

δg2

δg3

 =


I RT ζ̃

T
RT κ̃T ζ̃

0 0 RT h̃
T

2

0 0 RT h̃
T

3



d δu0

dX
d δΘ
dX
δΘ

 =

W1

W2

W3

 δw =W δw, (122)

where I is the 3-by-3 identity matrix andWi are 3-by-9 matrices. The second variation of g,
which is required for the complementary geometric stiffness, is

δ2g1 = R
T δ̃Θζ̃

T d δΘ
dX

+RT δ̃Θ ζ̃
T
κ̃ δΘ+RT δ̃Θ ζ̃

T d δΘ
dX

+RT δ̃Θζ̃
T
κ̃δΘ+ δ2RT ζ̃

T
κ +RT ζ̃

T
δ2κ,

δ2g2 = δ
2RT i2, δ2g3 = δ

2RT i3

(123)
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At this point it is appropriate to introduce the following section resultants:

P = Aσb + P0, sb = Eeb,
Q = µsA+Q0, τ = τ2 + τ3, τ2 = Gγ2h2, τ3 = Gγ3h3,

Mσ = E ISKe +M0
σ, IS =

∫
A0

ζζT dA, Ke = φ̃ κ,

Mτ = µtG IPκ+M0
τ , IP =

∫
A0

ζ̃ ζ̃
T
dA.

(124)

Here P, Q, Mσ andMτ are axial forces, shear forces, bending moments and torsional moments,
respectively, at the current configuration C; P0, Q0, M0

σ and M0
τ are similar quantities at the

reference configuration C0; µs and µt are transverse-shear and torsion coefficients that account
for the actual shear stress distributions, respectively; and IS and IP are the cartesian and polar
inertia tensors, respectively, of the cross section. Should the axes Y and Z be aligned with the
principal inertia axes the latter simplified to

IS =

[ 0 0 0
0 I22 0
0 0 I33

]
, IP =

[
I22 + I33 0 0

0 I33 0
0 0 I22

]
. (125)

Because the relation between g and w is of differential type the applicable transformation
rules are those the DGCCF, and no energy or secant stiffness survives. Thus only the internal
force vector R and tangent stiffness S associated with w are derived below.
Internal Force Vector. The generalized internal force vector is

R =
∫
A0

WTΦ dA =
∑
i

∫
A0

siW
Tbi dA = Rσ +Rτ , (126)

where Rσ and Rτ are the contributions of the normal and shear stresses respectively. Detailed
calculations result5 in the following exact expressions:

Rσ =

R
T (Pφ+ κ̃Mσ)

φ̃
TMσ

K̃T

e Mσ

 , Rτ =

 RTQ
Mτ

φ̃
TQ+ κ̃TMτ

 . (127)

For small deformations in which the squared curvature may be neglected, R ≈ I, φ̃ ≈ h̃1,
Ke ≈ κ and κ̃Mσ ≈ 0. If these approximations are made,

Rσ =

 Ph1

h̃
T

1 Mσ

0

 , Rτ =

 Q
Mτ

h̃
T

1 Q

 . (128)

These resemble the classic linearized theory equations. Furthermore observe that the term
PRTφ corresponds to the internal force of the TL 3D bar.
Tangent Stiffness. For the tangent stiffness we have the decomposition

S = SM + SGP + SGC . (129)

Furthermore, since w is nonlinear in downstream variables, the complementary geometric
stiffness splits into two components:

SGC = SGCw + SGCq, (130)
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where SGCw and SGCq contains terms that depend on the first and second variations, respec-
tively, of R and κ. The notation is suggested by the fact that SGCw can be merged into SGP

to yield the geometric stiffness SGw = SGP + SGCw, which is associated with the generalized
gradients w and independent of the rotational parametrization selected in the next set of tar-
get variables q. On the other hand, the kernel SGCq cannot be extracted at the w level and
must be carried forward to the q level because it is parametrization dependent. Each of the
components in (129)-(130) may be expressed as the sum of two contributions, one from the
normal stresses and one from the shear stresses:

SM = SMσ + SMτ , SGP = SGPσ + SGPτ , SGCx = SGCxσ + SGCxτ , x = w, q. (131)

Material Stiffness. The generalized core material stiffness is given by the congruential trans-
formation

SM =
∫
A0

WTSMW dA =
∑
i

∫
A0

EiW
Tbib

T
iW dA = SMσ + SMτ . (132)

Carrying out the algebraic manipulations one obtains

SMσ = E

R
T (φφT + κ̃T ISκ̃)R RT κ̃ISφ̃ RT κ̃ISK̃e

φ̃
T
ISφ̃ φ̃

T
ISK̃e

symm K̃T

e ISK̃e

 , (133)

SMτ = µG

ART I⊥R 0 ART I⊥φ̃

IP IP κ̃

symm Aφ̃
T
I⊥φ̃+ κ̃T IP κ̃

 , in which I⊥ =

[ 0 0 0
0 1 0
0 0 1

]
. (134)

The contribution RT
φφTR is the core material stiffness of a TL 3D bar.

Geometric Stiffness due to Normal Stresses. It is convenient to work out together all geometric
stiffness terms produced by the normal stresses, i.e.

SGσ = SGPσ + SGCwσ + SGCqσ = SGwσ + SGCqσ. (135)

The appropriate definitions are

SGPσ =
∫
A0

s11W
T
1HW1 dA,

SGCσ =
∫
A0

s11b1 δ
2g dA = δwTSGCwσδw+ F(δ2R, δ2κ),

(136)

where F contains SGCq as q level kernel. Carrying out the algebraic manipulations one obtains

SGwσ = SGPσ + SGCwσ =

 P I RTM̃T

σ RT
κ̃TM̃σ

0 M̃σφ̃

symm φ̃M̃σκ̃+ κ̃TM̃σφ̃

 (137)

The term P I corresponds to the core geometric stiffness of the 3D Tl bar.
The higher order term in (136) may be expressed as

Fσ(δ2R, δ2κ) = MT
σ φ̃δ2κ+ φTRδ2RT κ̃MσδqT

(
V(φ̃

TMσ) +U(κ̃Mσ;φ)
)
δq, (138)

Consequently
SGCqσ = V(φ̃

TMσ) +U(κ̃Mσ;φ). (139)
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Because the next-level target variables q include the finite rotation parametrization, matrices
V and U depend on that choice. They are the source of unsymmetries in the stiffness matrices
when certain rotational parametrizations are adopted, such as the incremental rotation vector.
If the rotational vector is chosen these matrices are symmetric.
Geometric Stiffness due to Shear Stresses. The contribution of the shear stresses to the
geometric stiffness is

SGτ = SGPτ + SGCwτ + SGCqτ = SGwτ + SGCqτ . (140)

The appropriate definitions are

SGPτ =
∫
A0

s12(W
T
1HW2 +W2HW1) + s13(W

T
1HW3 +W3HW1) dA

SGCτ =
∫
A0

(s12b2 + s13b3) δ2g dA = δwTSGCwτ δw+ Fτ (δ2R, δ2κ).
(141)

Carrying out manipulations one obtains the surprisingly simple form for SGwτ

SGwτ = SGPτ + SGCwτ =

 0 0 RT Q̃T

0 0
symm 0

 . (142)

The terms due to the second variation of g become

Fτ = QT δ2RΦ+MT
τ δ

2κ. (143)

The kernel carried forward to the q level is

SGCqτ = V(Mτ ) +U(Q ;Φ). (144)

Transformation to the Rotational Vector

The second transformation stage passes from w to z, which is a vector of generalized displace-
ments, also associated with a beam section, which embodies the parametrization of the cross
section rotation:

z =
{
du0

dX

dα

dX
α

}T

, δz =
{
d δu0

dX

d δα

dX
δα

}T

. (145)

Here α denotes the rotational vector parametrization defined by the standard formulas

α = axial (α̃), R = exp(α̃T ), (146)

and which may be extracted from R by

α̃ = logR =
arcsin(τ)
2τ

axial (RT −R), τ = 1
2
||axial (RT −R)||. (147)

Because only the variations of w are known the relation between w and z is also of differential
type:

δw = Z δz, or δw =

 I 0 0

0 Y(z) dY(z)
dX

0 0 Y(z)



d δu0

dX
d δα
dX
δα

 , (148)
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in which
Y(α) =

sin |α|
|α| I+

(
1− sin |α|

|α|
)

ααT

|α|2 − 1− cos |α|
|α|2 α̃. (149)

On applying the transformations (148) we find for the internal force and the material and
principal-geometric components of the tangent stiffness matrix:

f q = Z
T (Rσ +Rτ), KMq = Z

T (SM)Z, KGPq = Z
T (SGwZ. (150)

The materialization of the geometric stiffness terms SGCqσ and SGCqτ for the rotational vector
needs additional work. We state here only the final result:

U(τ ;Φ) =

 0 0 0
0 0

symm Uτ

 , T(Mτ ) =

 0 0 0
0 Tτ

1

symm Tτ
2

 . (151)

where

Uτ = c1τTΦI+ c2
(
τΦT +ΦTτ

)
+ c3

(
τTΦααT + τT α̃ΦI+ τ̃TΦαT + αΦT τ̃

)
+ c5

(
αTΦ

(
ταT + ατT

)
+ αTτ

(
αΦT + ΦαT

)
+ τTααTΦI

)
+ c4 τT α̃ΦααT + c6τTααTΦααT ,

Vτ
1 = c2M̃

T

τ + c3αMT
τ + c5ααTM̃τ + c7

(
Mτα

T + αTMτI
)
+ c8αTMτααT ,

Vτ
2 = −c3 dα

dX

T

Mτ I− c4 dα
dX

T

MτααT + c5

(
d̃α

dX

T

Mτα
T + α

d̃α

dX
MT

τ + αT d̃α

dX
MτI

)

+ c6αT d̃α

dX
MτααT + c7

(
dα

dX
MT

τ +Mτ

dα

dX

T)
+

+ c8
dα

dX

T

α
(
αMT

τ +Mτα
T + αTMτI

)
+ c9

dα

dX

T

ααTMτααT ,

(152)

in which
c1 = −sinα

α
,

c4 = −c1 + 3c3
α2

,

c7 =
1 + c1
α2

,

c2 =
1− cosα
α2

,

c5 = −c1 + 2c2
α2

,

c8 =
3c3 − 2c2
α2

,

c3 =
sinα− α cosα

α3
,

c6 = −c3 + 4c5
α2

,

c9 =
c5 − 5c8
α2

.

(153)

A similar approach can be taken with (148), which defines Fσ. The tangent stiffness matrix
can be obtained by superposing all contributions.

Transformation to Finite Element Freedoms

The final stage introduces a finite element representation for the degrees of freedom. The
beam or beam assembly is divided into a set of two-node finite elements. Each of these nodes has
three displacement degrees of freedom and three rotational degrees of freedom corresponding
to the three {αX , αY , αZ} components of the rotational vector α. Each element in turn has
twelve freedoms which are collected in the array vT = {un αn}T where dn collects the six
translational freedoms while αn collects the six rotations. The cross-section state vector z is
approximated inside each element by

z =

N 0
0 dN

dX
0 N

{
dn
αn

}
= Gz

{
dn
αn

}
= Gz v. (154)
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where N is a matrix of linear shape functions. Since δq = Gzδv the final internal force vector f
and tangent stiffness matrixK of each element are obtained through the DCCF transformations

f =
∫ L0

0

GT
z f z dX, K =

∫ L0

0

GT
zKzGz dX. (155)

The choice of shape functions for the rotational vector poses some subtle questions. In
small-deflection analysis it is common practice to select all Timoshenko beam shape functions
to be linear in X. This choice obviously enforces nodal compatibility while preserving constant
curvature states. But for finite deflections a linear interpolation for the rotational vector
components cannot exactly represent a constant curvature state unless the rotations are about
a single axis (plane rotations). The same is true if the rotation matrix R(X) is interpolated
linearly. On the other hand, linear interpolation of Euler parameters does preserve the constant
curvature state. This motivated the development of an interpolation scheme that starts from
the 4 Euler parameters εi(X), i = 0, 1, 2, 3,

∑
i ε

2
i = 1 that orient the normal of a cross section

at X. These are collected in the 4-vector ε = { ε0 ε1 ε2 ε3 }T . Given the eight end values
ε(0) and ε(L) the interpolation that can copy a constant curvature vector κ is found to be5

ε(ζ) = cos(ζ)
(
1− tan(ζ)

tan(ζL)

)
ε(0) +

sin(ζ)
sin(ζL)

ε(L), (156)

where ζ = 1
2
κX, ζL = 1

2
κL, κ =

√
κTκ. The constant curvature vector can be extracted from

the end values through the formula

κ =
1
β2L

[(
ε̃(L)− 2ε0(L)I

)
ε(0)−

(
ε̃(0)− 2ε0(0)I

)
ε(0)

]
, (157)

This interpolation is then transformed to the variations in terms of the rotational vector.
Details are provided in Reference5 .

APPLICATION EXAMPLES

Several application examples solved with the Timoshenko beam elements are described
below to show that they do not suffer from the restriction to moderate rotations that several
authors attribute the TL description.

Cantilevered Beam under End Moment

This is a classic validation test for geometrically nonlinear beam and shell elements. A
cantilevered beam of initial length L0 is forced into pure bending by application of an end
moment M . The beam bends into an arc of circle with curvature κ = M/(EI) and end
rotation θend = ML0/(EI). The test were run with E = 30.0 106, G = E/2, A = 1, I = 1/12,
L0 = 1000, and M = 15708.4λ, where λ is a load parameter. The {X,Y } axes are placed at
the left end of the beam. The load scaling is chosen so that for λ = 1 the beam bends to a full
circle of radius L0/(2π) = 318.31. The results for the tip deflection obtained using 10 elements
along the length are shown in Table 3. The results for the 2D elements10 and 3D elements5 were
essentially the same within solution acceptance tolerances. The average number of full-Newton
iterations per step was 4.

Cantilevered Beam under Shear Load

A cantilever beam is now subject to a vertical tip load. The results obtained with 16
2D Timoshenko TL beam elements in a term project by Abedzadeh, Mehrabi and Lofti11
are compared in Figure 3 with the analytical solution given by Mathiasson et.al.8 The 2D
Timoshenko elements follow the exact solution without appreciable error.
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Table 3 Computed solutions for plane cantilever beam under pure moment

Load level Numerical solution Analytical solution
λ Xtip Ytip θtip Xtip Ytip θtip
0.25 −362.74 637.29 1.57 −363.38 636.62 1.57
0.50 −1000.03 639.23 3.14 −1000.00 636.62 3.14
0.75 −1214.18 214.15 4.71 −1212.21 212.21 4.71
1.00 −999.18 0.00 4.71 −1000.00 0.00 6.28

Figure 3 Cantilever under end shear: exact and computed responses

Remark 18. As noted in Remark 1.1, Mathiasson et. al.8 reported fair to poor results beyond moderate
rotations in this problem using a TL-based 2D Hermitian beam element. The difficulty can be traced to their
use of an approximate expression for the curvature:

κ ≈ − u′′Y[
1 + (u′Y )

2
]3/2 , (158)

Remark 19. where primes denote derivatives with respect to X, instead of the correct small-strain TL value

κ =
dθ

dX
= θ′ = − u′′Y (1 + u

′
X)− u′′Xu′Y[

1 + (u′X)
2 + (u′Y )

2
]3/2 . (159)

Remark 20. The expression (158) rapidly losses accuracy as u′
X and u′′

X increase. Since (158) usually
overestimates the actual curvature, it tends to overstiffen the element.

Euler Buckling of Cantilever Column

This buckling example is taken from Mathisen’s thesis.12 The critical buckling load was
traversed by treating the bifurcation point as a limit point by introducing a slight geometric
imperfection. The following inputs were used in the study reported in Alexander et.al.10:
L0 = 100, A = 0.05, I = 0.20, E = 106, G = E/2 and applied load P = 49.34λ. The load
response curves using the axial displacement as control variable are shown in Figure 4. The
computed results agree well with elastica solutions up to deflections of the order of the column
length.
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Figure 4 Buckling of cantilever column: load-displacement responses

Large Displacement of a 45◦ Cantilever Bend

This 3D beam problem concerns the large displacement analysis of a 45◦ cantilever bend
initially lying on the horizontal {X,Y } plane. The bend is an arc of a circle of radius r = 100
and the beam cross-section is a square with sides of unit length. The beam has modulus
E = 107 and Poisson’s ratio ν = 0. It is subjected to an end load P = 600 normal to the
(X,Y ) plane as shown in Figure 5.

Figure 5. Curved cantilever bend under tip load: Problem definition
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This problem was treated by Bathe and Bolourchi13 with 3D brick elements, and subse-
quently by Simo and Vu-Quoc14 and Cardona15 with beam elements based on other formu-
lations. Results with the TL 3D element described in Sections 5.5 and 10 were obtained by
Crivelli5 using 8 beam elements and applying the load in 6 equal increments. The solution
method is incremental-iterative with full Newton iteration used in the corrective phase. Re-
sults for the three tip displacement components are compared with those of the aforementioned
references in Table 4. Deflected shapes for selected load levels are shown in Figure 6.

Table 4. Comparison of results for the 45◦ bend cantilever beam

Source Load P = 300 Load P = 450 Load P = 600

Bathe13 22.33, 58.84, 40.08 18.62, 53.32, 48.39 15.79, 47.23, 53.37
Simo14 22.50, 59.20, 39.50 15.90, 47.20, 53.40
Cardona15 22.14, 58.64, 40.35 18.38, 52.11, 48.59 15.55, 47.04, 53.50
Crivelli5,7 22.31, 58.85, 40.08 18.59, 53.34, 48.39 15.75, 47.25, 53.37

Figure 6. Curved cantilever bend under tip load: Deflected shapes

As can be observed the present results compare especially well with those obtained with 3D
elements in Bathe and Bolourchi13.
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Cable Hockling

The second 3D problem, cable hockling, is more challenging as regards modeling and post-
buckling response analysis. An initially straight cable, modeled with 3D Timoshenko beam
elements, is subjected to a tip torsional moment. The geometry and physical properties are
given in Figure 7. The cable is clamped at one end and supported at the other so that the
only motions allowed at that point are axial displacement and torsional rotation about the
longitudinal X axis. No rotation is allowed about Y or Z. The purpose of these restrictions
is to keep the problem conservative, because if the torque is allowed to rotate about Y or
Z, the problem becomes nonconservative and dynamical methods are required to assess its
stability.16,17

Figure 7. Cable hockling: Problem definition

This problem has received a great deal of attention from the engineering community due to
its practical importance. The main objective is to estimate the critical applied torque at which
the cable departs (bifurcates) from its straight configuration, resulting in the formation of a
loop or hockle. This has direct application to marine cables used in tasks such as lifting objects
from the ocean floor, for which structural failure could be disastrous. Under the assumptions
of infinitesimal bending deformations, Greenhill obtained an analytical formula to predict the
critical torque; see e.g. pp. 417–418 of Love.18 The post-bifurcation response analysis of this
problem, however, has not been pursued until recently, as discussed in the research conducted
by Nour-Omid and Rankin.19 This post-critical response has also been analyzed by using the
present TL formulation. The structure is discretized by twenty equally-spaced beam elements.
The deformed shapes at different load levels are shown in Figure 8, which displays the loop-

formation process previously described. The curves on the left and right side show deformed
shapes looking along the Y and Z axes, respectively.
If the torque is held under the critical value, the beam twists without lateral deflection.

Along this fundamental path the response is linear. At the critical torque a bifurcation point is
reached, at which the fundamental path becomes unstable. The beam acquires a helical shape
with the free end moving towards the clamped end. This new equilibrium branch is unstable
and the cable undergoes large displacements and rotations as the moment decreases. The
unloading process continues until reaching a sharp limit point which corresponds to a negative
value of the applied torque (it should be mentioned that Nour-Omid and Rankin,19 who use a
Hermitian beam element based on a corotational description, characterize this critical point as a
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Figure 8. Cable hockling: Deformed shapes at different load levels:

a) After bifurcation, b) Mx = 50, c) Mx = 0, d) Mx = −50,
e) At the limit point, f) Mx = 0.

secondary bifurcation; evidence for this classification is presently inconclusive). After traversing
this point, the torque reverses again until the cable reaches a circular-shaped unloaded deformed
configuration.
The computed variation of the twist angle at the moving end versus the applied torque is

given in Figure 9. Results are compared to those given by Nour-Omid and Rankin.
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Figure 9. Cable hockling: Computed response as tip twist rotation vs. applied moment.

CONCLUDING REMARKS

This article covers an alternative technique for formulating geometrically nonlinear mechani-
cal finite elements based on the Total Lagrangian kinematic description. The Core-Congruential
Formulation, or CCF, can be approached and studied at several levels of complexity. These
give rise to what are called here the Direct, Algebraic-Generalized, and Differential-Generalized
CCF.
All of these variants, however, share a basic staged approach to the derivation of discrete

finite element equations. In the innermost level, core equations are obtained at the particle level.
These physically transparent equations depend only on the strain and stress measures adopted
and the choice of terms retained in the strain energy. This is followed by a transformation
phase that ultimately ends in the element nodal degrees of freedom. For complex elements the
transformation phase is frequently carried out in stages.
For elements whose nodal degrees of freedom include 3D finite rotations, a multistage

transformation is convenient in the sense that the decision on which finite rotation measure to
use can be relegated to the next-to-last stage, while the choice of finite element interpolation
and nodal degrees of freedom is introduced in the last stage. This strategy facilitate application
of inner-level equations to sets of different but related elements and fosters programming
modularity.
At this point one may well pose general questions such as: Why use the Total Lagrangian

description? Wouldn’t a co-rotational or Updated Lagrangian formulation be preferable? The
answer is that each description has strengths and weaknesses. Here are advantages that can
be cited for the TL description:
1. If the element development can be carried out under the framework of the DCCF or

AGCCF, a symmetric tangent stiffness formulation is guaranteed. This attribute has
obvious advantages in stability analysis and traversal of bifurcation points.
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2. The choice of a fixed reference frame has advantages in nonlinear dynamic calculations
in that the mass matrix remains symmetric, with the same sparsity as in small-deflection
analysis.

3. The use of Green-Lagrange strains and conjugate PK2 stresses, linked up with careful
avoidance of hazardous kinematic approximations, automatically takes care of rigid body
motions. No special filters to eliminate self-straining at the element level are needed.

4. Extension to nonlinear constitutive equations and finite strains is straightforward although
may be laborious. In the case of the CCF, extension to small-strain material nonlinearity
would affect only the core equations because the transformation phase is entirely governed
by element kinematics.
The TL description, however, suffers from several shortcomings:

5. It makes no effective reuse of existing linear finite elements. This is the key strength of the
element-independent corotational description.19,20

6. Has difficulties with the specification and computational treatment of boundary conditions
intrinsically linked to the deformed configuration; for example pressure loads. Both the
corotational and Updated Lagrangian descriptions handle this aspect better.

7. Eventually breaks down for exceedingly large motions, for example rotations exceeding 2π.
This disadvantage can be important for certain aerospace and mechanical structures.
From this list it follows that there is no “kinematic description for all seasons.” One

intriguing research area that may merit exploration in this regard is a combination of the
TL and corotational descriptions that maintains their individual strengths while alleviating
the more serious disadvantages.

ACKNOWLEDGEMENTS

The research work surveyed in this article has been supported by the Air Force Office
of Scientific Research under Grant F49620-87-C-0074, NASA Langley Research Center under
Grant NAG1-756, NASA Lewis Research Center under Grant NAG3-1273, and the National
Science Foundation under Grant ASC-9217394.

References

1 S. Rajasekaran and D. W. Murray, “Incremental finite element matrices”, J. Str. Div. ASCE, 99,
pp. 2423–2438, 1973.

2 R. H. Mallet and P. V. Marcal, “Finite element analysis of nonlinear structures”, J.
Str. Div. ASCE, 94, pp. 2081–2105, 1968.

3 D. W. Murray, “Finite element nonlinear analysis of plates”, Ph. D. Dissertation, Dept. of Civil
Engineering, University of California, Berkeley, California, 1967.

4 C. A. Felippa, “Discussion of Reference 1”, J. Str. Div. ASCE, 100, pp. 2519–2521, 1974.

5 L. A. Crivelli, “A Total-Lagrangian beam element for analysis of nonlinear space structures”,
Ph. D. Dissertation, Dept. of Aerospace Engineering Sciences, University of Colorado, Boulder,
CO, 1990.

6 C. A. Felippa and L. A. Crivelli, “A congruential formulation of nonlinear finite elements”, in
Nonlinear Computational Mechanics - The State of the Art, ed. by P. Wriggers and W. Wagner,
Springer-Verlag, Berlin, pp. 283–302, 1991.

7 L. A. Crivelli and C. A. Felippa, “A three-dimensional non-linear Timoshenko beam element based
on the core-congruential formulation”, Int. J. Numer. Meth. Engrg., 36, pp. 3647–3673, 1993.



42 C.A. Felippa, L.A. Crivelli & B. Haugen

8 K. Mathiasson, A. Bengtsson and A. Samuelsson, “On the accuracy and efficiency of numerical
algorithms for geometrically nonlinear structural analysis”, in Finite Element Methods for Non-
linear Problems, ed. by P. G. Bergan, K. J. Bathe and W. Wunderlich, Springer-Verlag, Berlin,
pp. 3–24, 1986.

9 P. G. Bergan and K. M. Mathisen, “Large displacement analysis of highly flexible offshore struc-
tures”, in Nonlinear Computational Mechanics - The State of the Art, ed. by P. Wriggers and W.
Wagner, Springer-Verlag, Berlin, pp. 303–331.

10 S. Alexander, H. M. de la Fuente and B. Haugen, “Correspondence between CC-TL and C-TL
formulations: A 2D Timoshenko beam element using the Total-Lagrangian Core Congruential
Formulation”, in Term Projects in Nonlinear Finite Element Methods, ed. by C. A. Felippa, Report
CU-CSSC-91-12, Center for Space Structures and Controls, University of Colorado, Boulder, CO,
May 1991.

11 F. Abedzadeh Anaraki, A. Barzegar Mehrabi and H. R. Lofti, “Correspondence between CC-
TL and C-TL formulations”, in Term Projects in Nonlinear Finite Element Methods, ed. by
C. A. Felippa, Report CU-CSSC-91-12, Center for Space Structures and Controls, University of
Colorado, Boulder, CO, May 1991.

12 K. M. Mathisen, “Large displacement analysis of flexible and rigid systems considering
displacement-dependent loads and nonlinear constraints”, Dr. Ing. Thesis, Div. of Structural
Mechanics, The Norwegian Institute of Technology, Trondheim, Norway, 1990.

13 K. J. Bathe and S. Bolourchi, “Large displacement analysis of three-dimensional beam structures”,
Int. J. Numer. Meth. Engrg., 14, pp. 961–986, 1979.

14 J. C. Simo and L. Vu-Quoc, “A three-dimensional finite strain rod model. Part II: Computational
aspects”, Comp. Meths. Appl. Mech. Engrg., 58, pp. 79–116, 1986.

15 A. Cardona, “An integrated approach to mechanism analysis”, Ph. D. Dissertation, LTAS, Uni-
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APPENDIX 1

Equivalence of DCCF and Standard TL Formulation

The correspondence between the Direct Core Congruential Formulation (DCCF) and the
Standard Formulation (SF) of the Total Lagrangian (TL) kinematic description is generally
established for 3D continuum finite elements. This connection was worked out in a course term
project.11 Such elements fit within the DCCF framework because their physical DOFs (node
displacements) are of translational type.
The Standard Formulation is based on the same scheme used for linear finite elements: first

interpolate, then vary. As in the linear case, the departure point is extremization of the Total
Potential Energy functional (TPE) over the element domain:

J = U −W =
∫
V0

eT s0 dV + 1
2

∫
V0

eTEe dV −
∫
V0

uTb dV −
∫
St0

uT t dS, (A1.1)

where as usual conservative dead loading is assumed. In (A1.1), b is the prescribed body
force field, t are surface tractions prescribed over portion St0 of the boundary in C0, and other
quantities are as defined in Section 4. The weak equilibrium equations are obtained on making
(A1.1) stationary:

δJ = δU − δW =
∫
V0

δeT s0 dV +
∫
V0

δeTEe dV −
∫
V0

δuTb dV −
∫
St0

δuT t dS = 0. (A1.2)

The displacement and strain fields are interpolated in terms of the element degrees of freedom
v:

u = Nv, δu = N δv, δe = B δv, (A1.3)

where B = B(v) depends in v but N does not. Substituting these interpolations into (A1.2)
yields the residual equilibrium equations

δJ = δvTr = δvT (f − p) = 0. (A1.4)

where

f =
∫
V0

BT (s0 +Ee) dV =
∫
V0

BT s dV, p =
∫
V0

NTb dV +
∫
St0

Ns dS, (A1.5)

where f and p are the internal and external force vectors, respectively, and s = s0 + Ee are
the PK2 stresses in C. Because the variations δv are arbitrary, the residual-force nonlinear
equilibrium equation is r = f − p = 0 or f = p. The tangent stiffness matrix is given by

K =
∂r
∂v

=
∂f
∂v
, (A1.6)

because p (for conservative dead loading) does not depend on v . Splitting B = Bc +Bv(v),
where Bc is constant but Bv depends on v, gives the well known decomposition

K = K0 +KD +KG, (A1.7)
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where K0, KD and KG denote the linear, initial-displacement and geometric stiffness matrices,
respectively. These are given by

K0 =
∫
V0

BT
c EBc dV,

KD =
∫
V0

(BT
c EBv +BT

vEBc +BT
vEBv) dV,

KG δv =
∫
V0

δBT s dV.

(A1.8)

To correlate these standard forms with those produced by the DCCF, we note that the GL
strains can be also split as e = ec+ev, where ec and ev are linear and nonlinear in v, respectively.
The latter may be expressed in terms of the displacement gradients as

ev = 1
2
Ag, (A1.9)

where A is the 6× 9 matrix

A =


gT1 0 0
0 gT2 0
0 0 gT3
0 gT3 gT2
gT3 0 gT1
gT2 gT1 0

 =

g1 g2 g3 0 0 0 0 0 0
0 0 0 g4 g5 g6 0 0 0
0 0 0 0 0 0 g7 g8 g9
0 0 0 g7 g8 g9 g4 g5 g6
g7 g8 g9 0 0 0 g1 g2 g3
g4 g5 g6 g1 g2 g3 0 0 0

 , (A1.10)

in which the displacement gradients are vector-arranged as

gT = [ g1 g2 · · · g8 g9 ] =
[
∂u1

∂X1

∂u2

∂X1
· · · ∂u2

∂X3

∂u3

∂X3

]
. (A1.11)

Comparing

δev = 1
2
δAg+ 1

2
A δg = A δg, (A1.12)

to the DCCF transformation relation δg = G δv, in which G is independent of v, we see
that

Bv = AG. (A1.13)

The other expression we require is δAT s, which appears in the geometric stiffness matrix
contracted with δv:

KG δv =
∫
V0

δBT s dV =
∫
V0

GT δAT s dV. (A1.14)

It is well known — see for instance Chapter 19 of Zienkiewicz21 — that

δAT s =M δg =MG δv, with M =

[
s1I s4I s5I
s4I s2I s6I
s5I s6I s3I

]
, (A1.15)

where I is the 3×3 identity matrix and si, i = 1, . . . 6 are components of the PK2 stress tensor
ordered s1 = s11, s2 = s22, . . . s6 = s23. Using this relation, KG can be placed in the standard
form
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KG =
∫
V0

GTMG dV, (A1.16)

which by inspection is seen to be the DCCF-transformation of the core geometric stiffness
M ≡ SG = siHi, with the Hi matrices defined in (10)
To correlate other terms, write the linear part of the GL strains in terms of gradients as

ec = Dg =DG δv, with D =


1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1
0 1 0 1 0 0 0 0 0
0 0 1 0 0 0 1 0 0
0 0 0 0 0 1 0 1 0

 . (A1.17)

The numerical D matrix can be easily related to the hi vectors introduced in (10). Because
both D and G are independent of v it follows that δec = DG δv and consequently Bc = DG.
Partitioning A as [ aT1 aT2 . . . aT6 ] one easily finds that ai = Hig. Now the following
identities can be verified through simple algebra:

DTED = Eijhih
T
i = S0,

DTEA = EijhiaTj = Eijhig
THj = S1, ATED = ST1 ,

ATEA = Eijaiaj = EijHigig
T
jHj = S2 = ST2 ,

M = s0iHi +EijhigHj + 1
2
(gTHig)Hj = s0iHi + S∗

1 +
1
2
S∗

2 = siHi.

(A1.18)

Comparing these to the expressions of Section Parametrized Forms we conclude that

K0 =
∫
V0

GTDTEDGdV =
∫
V0

GTS0G dV,

KD =
∫
V0

GT (DTEA+ATED+ATEA)GdV =
∫
V0

GTSDG dV,

KG =
∫
V0

GTMG dV =
∫
V0

GTSGGdV,

(A1.19)

which displays the equivalence of both formulations when no approximations are made. This
proof may be extended without difficulty to the AGCCF in which case G is a function of
v, although as noted in the text that situation is sometimes mishandled in the Standard
Formulation through the introduction of a priori kinematic approximations. The equivalence
between DGCCF and SF is more difficult to prove because there is no TPE functional from
which the latter can be derived, and such connection should be regarded as an open problem.
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APPENDIX 2

Tangent Stiffness Subroutine for Two-Node 3D Bar

The subroutine listed below implements the expression derived in previous section (DCCF
Transformation Examples) for the global tangent stiffness of a two-noded TL 3D bar element.
The Fortran implementation is biased in favor of computational speed. Therefore, it con-
tain no loops or calls to other subroutines, as that would slow down the calculations. The
formation of the 6 × 6 tangent stiffness matrix requires 74 multiplications, 14 divisions, 64
additions/subtractions and 3 square roots, for a total of approximately 160 double precision
floating-point operations. On a 15-MFlop workstation, this results in approximately 50000
elements formed per CPU second.
One point that deserves some attention is the numerically-stable choice of the local coordi-

nate system. Axis X̄ is uniquely defined as the longitudinal bar axis that passes through the
end nodes, but axes Ȳ and Z̄ may be arbitrarily rotated about X̄ because a 3D bar has no pre-
ferred transverse directions. Although the end result, namely K, is independent of this choice
it is important to choose Ȳ and Z̄ in a stable manner that works for any element orientation.
The procedure is described in code comments below.

subroutine BAR3K (x0, v, em, area, s0, k, status)
C
C Compute tangent stiffness matrix of 2-node TL 3D bar
C
C Inputs:
C x0 Reference node coordinates
C v Global node displacements
C em Elastic modulus
C area Cross section area in reference configuration
C s0 PK stress in reference configuration
C
C Outputs:
C k Tangent stiffness of bar element
C status Blank if no error detected else error message
C

double precision x0(3,2), v(3,2), em, area, s0, k(6,6)
character*(*) status
double precision xbar(3), ybar(3), zbar(3)
double precision lxbar, lybar, lzbar, lxbar2, lx2
double precision dx(3), du(3), g(3), tt(3,3), ea, sg, s
double precision kt11, kt12, kt13, kt21, kt22, kt23
double precision kt31, kt32, kt33
double precision sbar11, sbar12, sbar13, sbar22, sbar23, sbar33
equivalence (tt(1,1),xbar(1))
equivalence (tt(1,2),ybar(1))
equivalence (tt(1,3),zbar(1))

C
status = ’ ’

C
C Form 3 x 3 global to local transformation matrix T
C Note: array tt receives T-transpose (inverse of T)
C
C Method: begin by getting dir cosines t11,t12,t13 of Xbar wrt X
C Compute sqrt(t11**2+t12**2); if gt tol set directors of Ybar
C to -t12,t11,0 and normalize; else set to 0,-t13,t12 and normalize.
C Value of tol set to .01 but any value ge 0 would do fairly well.
C Finally Zbar = Xbar x Ybar.
C

dx(1) = x0(1,2) - x0(1,1)
dx(2) = x0(2,2) - x0(2,1)
dx(3) = x0(3,2) - x0(3,1)
lxbar2 = dx(1)**2 + dx(2)**2 + dx(3)**2
lxbar = sqrt(lxbar2)
if (lxbar .eq. 0.0) then
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status = ’BAR3K: Bar has zero length’
return

end if
xbar(1) = dx(1)/lxbar
xbar(2) = dx(2)/lxbar
xbar(3) = dx(3)/lxbar
lybar = sqrt(xbar(1)**2 + xbar(2)**2)
if (lybar .gt. 0.01) then
ybar(1) = -xbar(2)/lybar
ybar(2) = xbar(1)/lybar
ybar(3) = 0.0

else
lybar = sqrt(xbar(2)**2 + xbar(3)**2)
ybar(2) = -xbar(3)/lybar
ybar(3) = xbar(2)/lybar
ybar(1) = 0.0

end if
zbar(1) = xbar(2)*ybar(3) - xbar(3)*ybar(2)
zbar(2) = xbar(3)*ybar(1) - xbar(1)*ybar(3)
zbar(3) = xbar(1)*ybar(2) - xbar(2)*ybar(1)
lzbar = sqrt(zbar(1)**2 + zbar(2)**2 + zbar(3)**2)
if (lzbar .ne. 1.0) then
status = ’BAR3K: lzbar ne 1.0: cannot happen’
return

end if
C
C Form core material and geometric stiffness in local coordinates
C Note: only six different entries of sbar need to be computed
C because
C R -R
C Kbar=
C -R R
C where
C sbar11 sbar12 sbar13
C R = sbar22 sbar23
C symm sbar33
C

ea = em*area/lxbar
du(1) = v(1,2) - v(1,1)
du(2) = v(2,2) - v(2,1)
du(3) = v(3,2) - v(3,1)
lx2 = (dx(1)+du(1))**2 + (dx(2)+du(2))**2 + (dx(3)+du(3))**2
s = s0 + em*0.5*(lx2-lxbar2)/lxbar2
sg = s*area/lxbar
g(1) = (tt(1,1)*du(1)+tt(2,1)*du(2)+tt(3,1)*du(3))/lxbar
g(2) = (tt(1,2)*du(1)+tt(2,2)*du(2)+tt(3,2)*du(3))/lxbar
g(3) = (tt(1,3)*du(1)+tt(2,3)*du(2)+tt(3,3)*du(3))/lxbar
sbar11 = ea * (1.+g(1))**2 + sg
sbar22 = ea * g(2)**2 + sg
sbar33 = ea * g(3)**2 + sg
sbar12 = ea * (1.+g(1))*g(2)
sbar13 = ea * (1.+g(1))*g(3)
sbar23 = ea * g(2)*g(3)

C
C Transform core stiffness to physical global coordinates
C

kt11 = tt(1,1)*sbar11 + tt(1,2)*sbar12 + tt(1,3)*sbar13
kt21 = tt(1,1)*sbar12 + tt(1,2)*sbar22 + tt(1,3)*sbar23
kt31 = tt(1,1)*sbar13 + tt(1,2)*sbar23 + tt(1,3)*sbar33
kt12 = tt(2,1)*sbar11 + tt(2,2)*sbar12 + tt(2,3)*sbar13
kt22 = tt(2,1)*sbar12 + tt(2,2)*sbar22 + tt(2,3)*sbar23
kt32 = tt(2,1)*sbar13 + tt(2,2)*sbar23 + tt(2,3)*sbar33
kt13 = tt(3,1)*sbar11 + tt(3,2)*sbar12 + tt(3,3)*sbar13
kt23 = tt(3,1)*sbar12 + tt(3,2)*sbar22 + tt(3,3)*sbar23
kt33 = tt(3,1)*sbar13 + tt(3,2)*sbar23 + tt(3,3)*sbar33
k(1,1) = tt(1,1)*kt11 + tt(1,2)*kt21 + tt(1,3)*kt31
k(1,2) = tt(1,1)*kt12 + tt(1,2)*kt22 + tt(1,3)*kt32
k(2,1) = k(1,2)
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k(1,3) = tt(1,1)*kt13 + tt(1,2)*kt23 + tt(1,3)*kt33
k(3,1) = k(1,3)
k(2,2) = tt(2,1)*kt12 + tt(2,2)*kt22 + tt(2,3)*kt32
k(2,3) = tt(2,1)*kt13 + tt(2,2)*kt23 + tt(2,3)*kt33
k(3,2) = k(2,3)
k(3,3) = tt(3,1)*kt13 + tt(3,2)*kt23 + tt(3,3)*kt33
k(4,1) = -k(1,1)
k(5,1) = -k(2,1)
k(6,1) = -k(3,1)
k(4,2) = -k(1,2)
k(5,2) = -k(2,2)
k(6,2) = -k(3,2)
k(4,3) = -k(1,3)
k(5,3) = -k(2,3)
k(6,3) = -k(3,3)
k(1,4) = k(4,1)
k(2,4) = k(4,2)
k(3,4) = k(4,3)
k(4,4) = k(1,1)
k(5,4) = k(2,1)
k(6,4) = k(3,1)
k(1,5) = k(5,1)
k(2,5) = k(5,2)
k(3,5) = k(5,3)
k(4,5) = k(5,4)
k(5,5) = k(2,2)
k(6,5) = k(3,2)
k(1,6) = k(6,1)
k(2,6) = k(6,2)
k(3,6) = k(6,3)
k(4,6) = k(6,4)
k(5,6) = k(6,5)
k(6,6) = k(3,3)
return
end
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