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Abstract. In this work, we present an application of modern deep learning methodologies to
the numerical solution of two dimensional hyperbolic partial differential equations in transport
models. More specifically, we employ a supervised deep neural network that takes into account
of initial-boundary value problems for a scalar, 2D inviscid Burgers model including the case
with Riemann data, whose solutions develop discontinuity, containing both shock wave and
rarefaction wave. We also apply the proposed PINN approach to the linear advection equation
with periodic sinusoidal initial condition. Our results suggest that a relatively simple deep
learning model was capable of achieving promising results in the linear advection and inviscid
Burgers equation with rarefaction, providing numerical evidence of good approximation of weak-
entropy solutions to the case of nonlinear 2D inviscid Burgers model. For the Riemann problems,
the neural network performed better when rarefaction wave is predominant. The premises
underlying these preliminary results as an integrated physics-informed deep learning approach
are promising. However, there are hints of evidence suggesting specific fine tuning on the PINN
methodology for solving hyperbolic-transport problems in the presence of shock formation in
the solutions.

1 INTRODUCTION

The recent popularity of physics-informed techniques [12, 25, 31, 32] as a approximation
method to numerically solve certain classes of models of partial differential equations (PDEs)
(e.g., [7, 11, 16, 22, 29]) represents an astonishing advance in scientific computing [28, 20],
especially considering the relatively simple neural networks employed for this purpose [4].

To the best of our knowledge, an important and distinct step in the numerical treatment
of models involving PDEs was given in [25] (2019) for forward problems (directly solving a
differential equation with boundary and/or initial condition) and inverse problems (approximate
a parametric PDE based on an experimental data set), by combining PDE modeling and data-
driven approach; see also [7, 11]. Since then, only a few more approaches have been developed
with rigorous mathematical and numerical analysis; see [7, 26, 27] and the references cited
therein.
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For the specific purpose of the current work, we consider essential to highlight some recent
advances from which we gain additional insights, namely, the proof of the consistency for linear
second-order elliptic and parabolic PDEs [5]; extending this strategy, the generalized proof of
consistency for linear equations [6], including the linear advection equation, which is a linear
hyperbolic PDE; and the estimate of error bounds for direct and inverse problems [7].

The hyperbolic-transport PDE models treated in this work are related to the scalar 2D con-
servation law ut + Hx(u) + Hy(u) = 0 and the corresponding augmented hyperbolic-parabolic
equation uϵt + Hx(u

ϵ) + Hy(u
ϵ) = ϵ(uϵxx + uϵyy), ϵ > 0. To put in perspective the complexity

of the current study, we mention the classical works [18, 19] regarding rigorous mathematical
and numerical analysis results via classical and well-established techniques for scalar and non-
linear 2D conservation laws as discussed in this work. In [19], the authors presented a study
via viscosity approximations to multidimensional scalar conservation laws related to the model
problem uϵt + Hx(u

ϵ) + Hy(u
ϵ) = ϵ(uϵxx + uϵyy), ϵ > 0, in the context of the spectral viscosity

method. The authors proved that the spectral viscosity is large enough to enforce the correct
amount of entropy dissipation satisfying the entropy condition, that is, converges to the unique
entropy solution. In [18], the authors introduced a new framework for studying two-dimensional
conservation laws ut + Hx(u) + Hy(u) = 0 via compensated compactness arguments. More-
over, the authors demonstrated convergence results in the context of vanishing viscosity, kinetic
Bhatnagar-Gross-Krook (BGK) schemes and finite volume approximations. Roughly speaking
in this above mentioned context, such authors proved that if uϵ is a family of uniformly bounded
approximate solutions of such equations with H−1 - compact entropy production and with uni-
form time regularity, then a subsequence of uϵ strongly converges to a weak solution u linked
to the purely hyperbolic 2D conservation laws ut + Hx(u) + Hy(u) = 0. Therefore, indepen-
dently of the approach chosen, the literature of approximation methods for hyperbolic problems
primarily concern in the fundamental issues of conservation and the ability of the scheme to
compute the correct entropy solution to the underlying nonlinear conservation laws (see, e.g.,
[14, 21, 23, 24, 30]), when computing shock fronts, in transporting discontinuities at the correct
speed, and in giving the correct shape of continuous waves. This is of utmost importance among
computational practitioners, theoretical mathematicians and numerical analysts.

Despite the recent success of learning-based approaches to solve PDEs in relatively “well-
behaved” configurations, we still have points in these methodologies and applications that de-
serve more profound discussion, both in theoretical and practical terms. Furthermore, with re-
spect to learning-based schemes to solve PDEs in physical models, we have seen little discussion
about such procedures on more challenging problems such as multidimensional equations, frac-
tional conservation laws [8], compressible turbulence and Navier-Stokes equations [13], stochastic
conservation laws [17] and simulation for Darcy flow with hyperbolic-transport in complex flows
with discontinuous coefficients [15]. We also mention the very recent review paper [11], which
discusses machine learning for fluid mechanics, but highlighting that such approach could aug-
ment existing efforts for the study, modeling and control of fluid mechanics, keeping in mind
the importance of honoring engineering principles and the governing equations [2, 3], mathe-
matical [8, 30] and physical foundations [13, 14] driven by unprecedented volumes of data from
experiments and advanced simulations at multiple spatiotemporal scales.

Thus, the motivation of our work comes also from the references mentioned above, once we
have observed that until moment, there are no PINN results based on rigorous mathematical
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and numerical analysis for scalar 2D conservation laws and related multidimensional problems
in general. Here we investigate a simple feed-forward PINN architecture, based on the physics-
informed model proposed in [25], and applied to complex problems involving PDEs in transport
models. More specifically, we extend the model initially investigated in [4] for one dimensional
hyperbolic transport problem, but now for two dimensions. This represents a class of harder
problems, since wave interaction may occur. For that, we analyze the numerical solutions of
four initial-value problems: one periodic sinusoidal solution for the two dimensional linear advec-
tion equation, and three problems on the two dimensional nonlinear inviscid Burgers equation
involving shock and rarefaction waves for distinct initial conditions.

The neural network consists of 4 hidden layers with tanh activation and geared towards min-
imizing the approximation error both for the initial values and for values of the PDE functional,
calculated by automatic differentiation. By optimizing hyper-parameters we managed to obtain
a significant reduction of the error for the two fundamental models under consideration, namely,
the linear advection equation with sinusoidal periodic initial condition and inviscid Burgers
equation for representative configurations of Riemann data, leading for solutions with rarefac-
tion wave in the presence sonic line and the interactions of elementary waves (shock waves and
centered rarefaction waves), respectively. Even though for the oblique Riemann datum case the
results were qualitatively unsatisfactory, it seems we reach the limits of the approach at some
extent, suggesting the development of an enhanced PDE informed method, but also keeping in
mind the mathematical complexity of weak-entropic solutions for nonlinear conservation laws as
briefly highlighted in the motivation as above. It also strongly suggests more in-depth studies
on deep learning models that account for the underlying equations. They seem to be a quite
promising line to be explored for challenging problems arising in physics, engineering, and many
other areas.

Three major contributions are presented in this study:

• We apply a straightforward fully connected neural network to complex problems in trans-
port models achieving promising results;

• We present an extension of [4] to two dimensions, increasing the challenge of the problem
in this way, but the encouraging performance of the model persists;

• We verify the effect of hyperparameters of the model in these problems, opening space for
further discussion on optimized models especially designed for the challenging conditions
studied here.

The paper is organized as follows. In Section 2, we introduce some basic aspects of hyperbolic
partial differential equations in transport problems, along with a benchmark numerical scheme
for qualitatively comparing the results yielded by the neural network. The mathematical setup
and proposed methodology considered in this work are presented in Section 3, aiming for stability
and entropy of the feedforward neural network approximations. In Section 4, we present the
numerical results obtained by the approach, evaluating its accuracy. Finally, in the last Section
5, we present some concluding remarks.
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2 HYPERBOLIC PROBLEMS IN TRANSPORT MODELS

Hyperbolic partial differential equations in transport models describe a wide range of
wave-propagation and transport phenomena arising from scientific and industrial engineering
areas. This is a fundamental research that is in active progress since it involves complex mul-
tiphysics and advanced simulations due to a lack of general mathematical theory for closed-
analytical solutions. For instance, see the noteworthy book by C. M. Dafermos [14] devoted to
the mathematical theory of hyperbolic conservation and balance laws and their generic relations
to continuum physics with a large bibliography list as well as some very recent work references
cited therein related to recent advances covering distinct aspects, theoretical [8], numerical [33]
and applications [13].

In addition, just to name some very recent works, see some interesting results covering distinct
aspects, such as theoretical [8] (uniqueness for scalar conservation laws with nonlocal and nonlin-
ear diffusion terms) and [21] (non-uniqueness of dissipative Euler flows), and well-posedness [30]
for multi-dimensional inviscid Burgers equation with unbounded initial data, numerical analysis
[33] and numerical computing for stochastic conservation laws [17] and applications [13] (Euler
equations for barotropic fluids) and the references cited therein for complimentary discussion
to highlight difficulties on the unavailability of universal results for finding the global explicit
solution for Cauchy problems to the relevant class of hyperbolic-transport problems involving
scalar and systems of conservation laws. Many problems in engineering and physics are modeled
by hyperbolic systems and scalar nonlinear equations [14]. As examples for these equations, just
to name a few of relevant situations, we can mention the Euler equations of compressible gas
dynamics, the Shallow water equations of hydrology, the Magnetohydrodynamics equations of
plasma physics and the Buckley-Leverett scalar equation in petroleum engineering [15].

For the sake of simplicity, we consider the scalar 2D Cauchy problem

∂u

∂t
+

∂H(u)

∂x
+

∂H(u)

∂y
= 0, (x, y) ∈ R2, t > 0, u(x, y, 0) = u0(x, y), (1)

where H ∈ C2(Ω), H : Ω → R, u0(x, y) ∈ L∞(R2) and u = u(x, y, t) : R2 × R+ −→ Ω ⊂ R.
By using arguments viscosity approximations [19] or compensated compactness [18], one can
conclude that solutions of (1) are limits of solutions uϵ(x, y, t) → u(x, y, t), where u(x, y, t) is
given by (1) and uϵ(x, y, t) is given by the augmented parabolic equation (x, y) ∈ R2,

∂uϵ

∂t
+

∂H(uϵ)

∂x
+

∂H(uϵ)

∂y
= ϵ

(
∂2uϵ

∂x2
+

∂2uϵ

∂y2

)
, t > 0, uϵ(x, y, 0) = uϵ0(x, y), (2)

with ϵ > 0 and the same initial data as in (1).
In addition, from the well-established literature in this area of conservation laws (see, e. g.,

[14, 17, 18, 19, 23, 24, 30, 33, 34] and the references cited therein), we remember some distinct
and basic facts in the classical theory for nonlinear hyperbolic conservation laws of type (1):
(a) The existence of possibly infinitely many weak solutions; (b) Despite of a given smooth
initial data, the evolution in time of the corresponding solution might lead to formation of shock
discontinuities which requires weak-entropy solutions; (c) The notion of entropy condition for
uniqueness; The notion of a viscosity limit solution as is in Eq. (2) is closely related to the
notion of an entropy solution to model problem (1).
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For concreteness, in this work we will specifically consider two hyperbolic-transport models
related to the prototype models in Eq. (1) and in Eq. (2), namely, the 2D linear advection
equation, where the flow function is H(u) = u, and the 2D inviscid Burgers scalar equation,
where the flow function is H(u) = u2/2 in Eq. (1). A nonlinear phenomenon that arises with
the inviscid Burgers equation, even for smooth initial data, is the formation of shock, which is
a discontinuity that may appear after finite time. Thus, these two models, the linear advection
equation and inviscid Burgers equation, are suitable and effective fundamental problems for test-
ing new approximation algorithms to the above mentioned properties as presented and discussed
in the current work. In this regard, a typical flux function H(u) associated to fundamental pro-
totype models (1) and (2) depends on the application under consideration, for instance, such as
modeling flow in fluid mechanics [3].

From the above discussion of basic facts of conservation laws it is noteworthy that in practice
the calibration of function H(u) for the PINN approach can be difficult to achieve, due to un-
known parameters and data assimilation. We intend to design a unified approach that combines
both PDE modeling and fine tuning machine learning techniques aiming as a first step to an
effective tool for advanced simulations related to hyperbolic problems in transport models such
as in (1) and (2). For evaluating qualitatively the results presented in this work, we define a
reference benchmark scheme [2]. That is semi-discrete Lagrangian-Eulerian scheme based on the
so-called no-flow curves applied for one-dimensional (1D) as well as for two-dimensional (2D)
scalar hyperbolic conservation laws. The scheme satisfies a maximum principle property and
a Kruzhkov entropy condition, handling discontinuous solutions with low numerical dissipation
quite well and shows a very good resolution of rarefaction waves with no spurious glitch effect
in the vicinity of the sonic points.

3 PROPOSED APPROACH

The proposed approach followed the same structure used in [4]. In that work the ca-
pability of approximating the solutions for one dimensional hyperbolic transport models was
competitive compared to the classical numerical schemes. For that reason we extend it for the
two dimensional problems. So we start with a partial differential equation

ut +D(u) = 0, (x, y) ∈ Ω, t ∈ [0, T ], (3)

where D(·) is a differential operator and u(x, y, t) is the desired solution. Let Nm : Rd0 → Rdm

be a feed-forward neural network model built to represent the solution of the problem with m
layers and dk neurons in the kth layer, where the input layer has d0 and the output dm neurons.
For any 1 ≤ k ≤ m, the kth layer output is defined as

Ck(zk) = Wkzk + bk, for Wk ∈ Rdk+1×dk , zk ∈ Rdk , bk ∈ Rdk+1 , (4)

where zk, Wk and bk are the input, weights and biases, respectively. Let Θ = {Wk, bk} ∈ V be
the collection of all trainable parameters, with V being the parameter space, then, the neural
network output can be written as

uΘ(z0) = Cm ◦ σ ◦ Cm−1... ◦ σ ◦ C2 ◦ σ ◦ C1(z0). (5)
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Here, ◦ refers to the composition of functions and σ is a non-linear activation function.
For the optimization of the neural network we should define f as the left hand side of each

PDE, i.e.,
f := ut +D(u), (6)

Two quadratic loss functions are defined over f , u and the initial condition u0:

Lf (u) =
1

Nf

Nf∑
i=1

|f(xif , yif , tif , )|2,

Lu0(u, u0) =
1

Nu

Nu∑
i=1

|u(xiu, yiu, tiu)− ui0|2,

(7)

where {xif , yif , tif}
Nf

i=1 correspond to collocation points over f , whereas {xiu, yiu, tiu, ui0}
Nu
i=1 corre-

spond to the initial values at pre-defined points.

Figure 1: Physics-informed deep learning approach illustration.

Finally, the solution u(x, y, t) is approximated by minimizing the sum of both objective
functions at the same time, i.e.,

u(x, y, t) ≈ arg min[Lf (u) + Lu0(u, u0)]. (8)

We can view a schematic illustration representing the architecture employed on Figure 1.
The PINN architecture proposed here is composed of 4 hidden layers, each one with 20

neurons and a hyperbolic tangent used as activation function. The loss function is defined in
the strong form, following the same approach originally used in [25]. In contrast, here we do not
have an explicit boundary condition and the neural network is optimized only over the initial
conditions, i.e., Cauchy problem. Here the optimization is performed by the Adam algorithm,
instead of L-BFGS-B initially used by [25]. As for the optimizer hyperparameters we use the
default values of learning rate 0.001, β1 = 0.9, β2 = 0.999, and ϵ = 10−8. These were empirically
found to be suitable values in our experiments. For the distribution of collocation points we
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employed Latin hypercube sampling, following the previous procedure adopted in [25]. In the
tests, the number of collocation points for the initial values was fixed at Nu = 256.

Regarding differences and similarities of our proposal with respect to the original PINN model
in [25], we have the following ones:

• Differences:

– We use Adam optimizer instead of the original BFGS algorithm;

– Reduced number of layers and neurons. This reduced the computational burden
whilst not impairing the precision;

– We also employ Nf = 4 × 106, which is significantly larger than the original values.
This was motivated both by the extra dimension of the problem as well as by the
identification that increasing Nf positively impacts the precision of the method;

– We have Nu = 256 to match the granularity of SDLE method;

– Our loss function does not include a boundary term considering the nature of our
problems.

• Similarities:

– A fully-connected network is also used here;

– Distribution of Nu and Nf points is the same used in [25];

– We also use the strong form of the loss function.

The “physics-informed” aspect of the method consists in taking into account the original
equation governing the physical behavior by explicitly including the PDE functional and ini-
tial and/or boundary conditions in the objective function. The derivatives take advantage of
automatic differentiation widely used in the optimization of classical neural networks.

We focus on the following problems: On the two dimensional linear advection equation

∂u

∂t
+

∂u

∂x
+

∂u

∂y
= 0, (x, y, t) ∈ [0, 1]2 × [0, 1], (9)

with periodic sinusoidal initial condition

u(x, y, 0) = sin2(πx)sin2(πy), (10)

and exact solution

u(x, y, t) = sin2(π(x− t))sin2(π(y − t)). (11)

On the inviscid nonlinear two dimensional inviscid Burgers equation

ut +

(
u2

2

)
x

+

(
u2

2

)
y

= 0, (12)

with Riemann datum, given by
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u(x, y, 0) =

{
1, x > 0,

−1, x < 0,
(13)

wherein the solution is a rarefaction wave evolving in the domain (x, y, t) ∈ [−6, 6]× [−1.5, 1.5]×
[0, 2.5], the jump is defined in such a way that the change in the sign of the wave speed occurs
when x = 0; the Riemann problem initial condition

u(x, y, 0) =


2, x < 0.25, y < 0.25,

3, x > 0.25, y > 0.25,

1, otherwise,

(14)

on the domain (x, y, t) ∈ [0, 1]2 × [0, 1/12], and the oblique Riemann initial condition

u(x, y, 0) =


−1.0, x > 0.5, y > 0.5,

−0.2, x < 0.5, y > 0.5,

+0.5, x < 0.5, y < 0.5,

+0.8 x > 0.5, y < 0.5,

(15)

on the domain (x, y, t) ∈ [0, 1]2 × [0, 0.5]. On each Riemann problem the predominance of
rarefaction or shock waves is given by the largest jumps on the initial condition. That means
that for the initial condition given by Equation (14) rarefaction is predominant. In contrast, for
the oblique case, given by Equation (15), shock is the predominant phenomenon.

In our problem we have

D(u) = ux + uy, (16)

in the linear advection, and

D(u) =

(
u2

2

)
x

+

(
u2

2

)
y

, (17)

in the inviscid Burgers equation. Here we also have an important novelty which is the introduc-
tion of a derivative (w.r.t. x, y) in D(u), which was not present in [25].

The function f is mainly responsible for capturing the physical structure (i.e., selecting the
qualitatively correct entropy solution) of the problem and inputting that structure as a primary
element of the machine learning problem. Nevertheless, here to ensure the correct entropy
solution, we add a small diffusion term to f (0.0025(uxx + uyy)) and (0.00025(uxx + uyy)) for
better comprehension of shock formation on hyperbolic-parabolic equations, but in view of
the modeling problems (1) and (2). It is crucial to mention at this point that the numerical
approximation of entropy solutions (with respect to the neural network) to hyperbolic-transport
problems also requires the notion of entropy-satisfying weak solution.
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4 RESULTS AND DISCUSSION

In the following we present the solutions for the investigated hyperbolic problems ob-
tained by the neural network model. We would like to point out that no comparison is made
here with the more general approach in [3] as the main focus of the current work is a PINN com-
putational study for a scalar 2D inviscid Burgers model with some specific Riemann data. We
only use the method described in [3] to produce the correct weak-entropic pertinent solutions to
the specific 2D scalar inviscid Burgers equation along with the initial data under investigation.

A thorough fine tuning process was explored for the models, achieving an optimal architecture
with 4 hidden layers, 20 neurons in each one and Nf = 4·106 collocation points for the functional.
To illustrate the effect of the hyperparameters, we show the results for inviscid Burgers equation
with a rarefaction wave in the solution as presented in the plots from Figure 3 through Figure 5,
but the same happened for all cases. We prioritized maximizing the number of training points
enforcing the PDE functional, inspired by recent results in [7]. The problem of determining the
optimal relation between the error and the values of these parameters is not trivial.

For the two dimensional linear advection case (see Figure 2) 15000 epochs were sufficient to
obtain promising results. In both models, inviscid and augmented one, the solutions are similar.
We also highlight that the models did not show spurious effects such as excessive numerical
diffusion as is the typical situation for the well-known Lax–Friedrichs scheme.

Figure 2: Neural network solution for two-dimensional linear advection equation with periodic initial
condition. The architecture employed was composed of 4 hidden layers, 20 neurons each, Nf = 4 ·106 and
15.000 epochs. Left: no viscosity. Middle: 2.5 · 10−3 viscosity. Right: SDLE solution for two-dimensional
linear advection equation with periodic initial condition.

In Figure 5 the neural network model yields qualitatively correct approximations as expected
from the classical literature. Even though inviscid Burgers equation is nonlinear, for these cases,
only 5000 epochs were necessary for a good result, in contrast with the linear advection problem.
A very important aspect to analyze in problems with a rarefaction wave is the presence of a
“sonic line” in the sense of a sonic point (glitch effect) as discussed, for instance, in the work
[9]. That is a nonphysical effect generated by the change in the sign of the wave speed, and it
is present in some numerical schemes, such as Godunov’s scheme; for more details see [9] and
Section 3.2.3 in [33]. We see that neural networks do not present such glitch effect.

On the Riemann problem in two dimensions, both shock and rarefaction waves interact during
propagation, complexifying the physics to be captured by the PINN model. It is important to
state that, in this case, the rarefaction wave is predominant over shock. For both approaches,
inviscid (ϵ = 0) and augmented (ϵ > 0), we needed to increase the number of epochs from
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Figure 3: Neural network solution for two-dimensional inviscid Burgers equation with rarefaction wave,
with Nf = 104 and 5.000 epochs. Left: 2 hidden layers, 20 neurons each. Middle: 2 hidden layers, 40
neurons each. Right: 4 hidden layers, 20 neurons each.

Figure 4: Neural network solution for two-dimensional inviscid Burgers equation with rarefaction wave,
with Nf = 104, 2.5 · 10−3 viscosity and 5.000 epochs. Left: 2 hidden layers, 20 neurons each. Middle: 2
hidden layers, 40 neurons each. Right: 4 hidden layers, 20 neurons each.

Figure 5: Neural network solution for two-dimensional inviscid Burgers equation with rarefaction wave.
The architecture employed was composed of 4 hidden layers, 20 neurons each, Nf = 4 · 106 and 5.000
epochs. Left: No viscosity. Middle: 2.5 · 10−3 viscosity. Right: SDLE solution for two-dimensional
inviscid Burgers equation with rarefaction fan.
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15000 to 30000. Nevertheless, the neural network presents difficulties in approximating the part
with shock in as shown in Figure 6. Introducing the diffusive term on the PDE, at Figure 7,
reduced the height of the shock level closer to 2, which is the expected correct solution from the
literature, but, as a consequence, it “smooths” the discontinuity, also as expected.

Figure 6: Neural network solution for two-dimensional inviscid Burgers equation with Riemann con-
dition. The architecture employed was composed of 4 hidden layers, 20 neurons each, Nf = 4 · 106.
Left: 15.000 epochs. Middle: 30.000 epochs. Right: SDLE solution for two-dimensional inviscid Burgers
equation with Riemann condition.

Figure 7: Neural network solution for two-dimensional inviscid Burgers equation equation with Riemann
condition. The architecture employed was composed of 4 hidden layers, 20 neurons each, Nf = 4 · 106,
2.5 · 10−3 viscosity. Left: 15.000 epochs. Middle: 30.000 epochs. Right: SDLE solution for two-
dimensional inviscid Burgers equation with Riemann condition.

Another case of the Riemann problems is the oblique-type initial condition, also containing
shock and rarefaction waves, but shock being the predominant nonlinear phenomenon. This
problem leverages the difficulties of the model already shown for the previous Riemann problems.
We investigated for 15000 and 30000 epochs, and varied the ϵ between 2.5·10−4 and 2.5·10−3. In
particular, the augmented results (i.e., ϵ > 0) loosely resembles the desired solution, at Figure 9.
As the viscosity decreases we clearly see the recover of the inviscid solution, that is not entropic
for the proposed approach, see Figure 8.

In general, we observe from the results that the physics-informed model investigated here
and especially tuned for such challenging conditions provided promising results, especially on
the linear advection and inviscid Burgers equation with rarefaction wave. Further studies are
necessary for the Riemann problems, mainly when shock is predominant.
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Figure 8: Neural network solution for two-dimensional inviscid Burgers equation with oblique Riemann
condition. The architecture employed was composed of 4 hidden layers, 20 neurons each, Nf = 4 · 106.
Left: 15.000 epochs. Middle: 30.000 epochs. Right: SDLE solution for two-dimensional inviscid Burgers
equation with oblique Riemann condition.

Figure 9: Neural network solution for two-dimensional inviscid Burgers equation with oblique Riemann
condition. The architecture employed was composed of 4 hidden layers, 20 neurons each, Nf = 4 · 106
and 15.000 epochs. Left: 2.5 · 10−3 viscosity. Middle: 2.5 · 10−4 viscosity. Right: SDLE solution for
two-dimensional inviscid Burgers equation with oblique Riemann condition.
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5 CONCLUSIONS

This work presented a PINN-based computational application of a feed-forward neural
network to solve challenging hyperbolic problems in two dimensional transport models. More
specifically, we solve the linear advection equation with a periodic initial condition, as well as
the inviscid Burgers equation for several configurations within Riemann problems, which lead to
the well-known solutions that comprise discontinuities. Our network was experimentally tuned
according to each problem and interesting findings were observed, building upon the knowledge
studied in [4]. For the linear advection and the inviscid Burgers equation with rarefaction
wave, the results did not show spurious effects such as numerical diffusion and sonic point
(glitch line), providing solutions pretty similar to those from the current literature. For the
Riemann problems, the neural network performed better in the inviscid Burgers equation (with
and without the vanishing viscosity limit) when rarefaction is predominant. In contrast, when
shock is predominant, the results do not present the same effectiveness by the proposed approach.

The PINN-based approach incorporating the physical properties of the governing equa-
tions outperforms the solely data-driven type methods. We already glimpse the development
of an enhanced PDE-informed method for improving the unsatisfactory results, and applying
to improve simulation for hyperbolic problems in transport models. In summary, the obtained
results share both practical and theoretical implications. In practical terms, the results confirm
the potential of a relatively simple deep learning model in the solution of an intricate two di-
mensional numerical problem. In theoretical terms, this also opens an avenue for formal as well
as rigorous studies on these networks as mathematically valid and effective numerical methods.
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