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Abstract. We propose a new variational formulation for large deformations in dynamical
systems made of 3D-fiber-reinforced composites. The formulation emanates from the dynamic
variational approach based on the principle of virtual power. The use of higher-order gradient
theory along with multi-field mixed-finite element method enables us to model the fiber-bending
stiffness in fiber reinforced composites for numerical simulations accurately. Our proposed model
capture higher-order energy contributions exhibited by fibers that influence the fiber-bending
curvature, and consequently the fiber-bending stiffness behaviour. For this, we introduce a
higher-order gradient of the deformation mapping as an independent field in the internal en-
ergy functional formulation. Along with the energy-momentum scheme, our new time integrator
makes possible to perform long-term dynamic simulations with larger time steps and efficient
CPU-time. We demonstrate our model using transient dynamical simulations on thre geomet-
rical examples that exhibit hyperelastic, transversely isotropic, polyconvex gradient material
behaviour. In the first example, a cantilever beam is self-excited due to its body weight, in the
second, a L-shaped block tumbles free in the ambient space after an initial loading phase and
in the third a turbine rotor is rotated due to hydrodynamic pressure. It is observed that our
model conserves total momenta and total energy and preserves their time evolution in all these
examples along with spatial and temporal convergence.

1 INTRODUCTION

Fibre-reinforced composites are in high demand in many industrial applications because of the
reinforcement properties of fibres which enhance, to mention a few, the stiffness and strength-
to-weight ratio of a structure. On the simulation point of view, this creates a demand to find
efficient numerical solving methods to predict the behaviour of these kind of materials. Avoid-
ing locking behavior in finite elements was one of the challenging aspect in recent times that is
now addressed by many modern finite element codes. However, the usage of the same is less
understood in the dynamic regime which could significantly improve the accuracy and efficiency
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in dynamical simulations. In order to achieve this while computing the influence of various
geometrical and material non-linearities, necessary modificaition of the standard continuum is
inevitable. At the same time, any modification of the standard continuum has to satisfy corre-
sponding physical balance laws. Recent developments in the energy-momentum scheme provide
a better opportunity to address these problems in a dynamic regime. With this motivation,
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Figure 1: Transversely isotropic continuum with fibers oriented in direction of a0 and element-
wise independent deformation gradient.

our current work is focused on improving numerical methods to enhance the application of the
lightweight design of rotating systems made of fiber-reinforced composites. The experimental
outcome of the three-point bending test point out that the fiber induced deformation patterns
on mesoscopic level influence the macroscopic bending stiffness in fiber-reinforced composites
[2]. Based on this outcome, we set our problem statment to capture the fiber bending stiffness in
dynamical problems, which would help us reduce the unaccounted out-of-plane bending rigidity
of an arbitrary geometry. Analogous to the work of [3], where static problem has been addressed,
we begin with assuming a constitutive model to capture the fiber bending stiffness. Here the
strain energy function takes not only the strain and fiber direction into account, but also the
information of fiber-curvature(see Figure 1). A transversely isotropic continuum B0 is consid-
ered with fibers at each point of the continuum oriented in direction of vector a0 in material
configuration. In contrast to [3], we introduced a deformation gradient F̃ as an element-wise
independent field in our Hu-Washizu based internal energy functional in [6]. Similarly, Γ̃ is
introduced as an independent mixed field for ∇X [F̃ ] to capture fiber curvature effects. In this
work, we propose an additive split of strain energy function in terms of C̃ and Λ̃ as,

Ψtotal(Ii(C̃, Λ̃)) = Ψiso(I1(C̃), I2(C̃), I3(C̃)) + Ψhg(I6(Λ̃)), (1)

which is in line with the variation of [3], where I6 := k0 · k0, k0 := (Λ̃ · a0) and Λ̃ is an
independent mixed field for Λ := F̃

t
· G which is the pure referential representation of G. G

is defined as the referential gradient of the spatial fiber direction vector ∇Xat with at = λ̃
F̃

āt
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and λ̃
F̃

is the fiber stretch. Thus, Λ = F̃
t
·
[
a0 · ∇X [F̃

t
] + F̃ · ∇Xa0

]
.

I1, I2, I3 are the usual isotropic principal invariants based on the right Cauchy green tensor
C̃, which is a mixed field variable for C = [F̃ ]t · F̃ . For more details see [3].

2 WEAK FORMULATION

2.1 Principle of virtual power

In the second step, we define virtual power with respect to the deformation field ϕ as,

δ∗Pϕ :=

∫ tn+1

tn

[
δ∗Ṫkin (ϕ̇, v̇, ṗ) + δ∗Π̇ext (ϕ̇,R) + δ∗Π̇int

(
ϕ̇,

˙̃
F , P̃ ,

˙̃
C, S̃,

˙̃
Γ, B̃,

˙̃
Λ, Ã

)]
dt = 0.

(2)
As in [4], the symbol δ∗ is used in the sense of variation performed with respect to both temporally
continuous time rate fields and temporally discontinuous Lagrange multiplier fields. The virtual
inertial power with mass density ρ0, velocity v and linear momentum p is defined by,

δ∗Ṫ :=

∫
B0

[ρ0v − p] · δ∗v̇ dV −
∫
B0

[v − ϕ̇] · δ∗ṗ dV +

∫
B0

ṗ · δ∗ϕ̇ dV (3)

Equation (4) shows the virtual internal power with new independent mixed field variables F̃ and
C̃, energetically conjugated with independent first Piola-Kirchhoff stress tensor P̃ and second
Piola-Kirchhoff stress tensor S̃, respectively. Similarly, Γ̃ and Λ̃ are energetically conjugated
with independent B̃ and Λ̃, respectively.

δ∗Π̇int :=

∫
B0

[(
B̃�3

∂(∇ ˙̃
F )

∂
˙̃
F

)
+

(
Ã :

∂Λ

∂F̃

)
− P̃

]
: δ∗

˙̃
F dV −

∫
B0

[
˙̃
F −∇ϕ̇

]
: δ∗P̃ dV

+

∫
B0

[
Ã :

∂Λ

∂Γ̃
− B̃

]
�3 δ∗

˙̃
Γ dV −

∫
B0

[
˙̃
Γ−∇ ˙̃

F
]
�3 δ∗B̃ dV +

∫
B0

P̃ : ∇[δ∗ϕ̇] dV

+

∫
B0

[
∂Ψhg(Λ̃)

∂Λ̃
− Ã

]
: δ∗

˙̃
Λ dV −

∫
B0

[
˙̃
Λ− ∂Λ

∂F̃
:
˙̃
F − ∂Λ

∂Γ̃
�3

˙̃
Γ

]
: δ∗Ã dV

−
∫
B0

1

2

[
˙̃
C −

˙
F̃

t
F̃

]
: δ∗S̃ dV +

∫
B0

[
∂Ψela(C̃)

∂C̃
− S̃

2

]
: δ∗S̃ dV (4)

Here we represent triple contraction of tensors by �3. The mass-specific body load B and a
traction load T̄ on the Neumann boundary ∂TB0 are considered as external forces. Further,
algorithmic stress tensors S̄ and Ā are introduced in the external power functional to derive
energy-momentum time integration. More details on this topic can be found in [5]. ϕ̄ denotes the
prescribed boundary displacement with respect to the reaction force R as its associated Lagrange
multiplier in the Dirichlet boundary ∂ϕB0. These yield to the following virtual external power,

δ∗Π̇ext :=−
∫
B0

ρ0B · δ∗ϕ̇ dV −
∫
∂TB0

T̄ · δ∗ϕ̇ dA−
∫
∂ϕB0

R · δ∗ϕ̇ dA−
∫
∂ϕB0

[ϕ̇− ˙̄ϕ] · δ∗R dA

+

∫
B0

Ā : δ∗
˙̃
Λ dV +

∫
B0

1

2
S̄ : δ∗

˙̃
C dV (5)
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2.2 Weak forms

The resulting integrals of the weak forms of the extended Cauchy–Boltzmann continuum
with fiber curvature is expressed in their continuous form in this paper for simplicity. The weak
mechanical momentum equation is obtained as,∫ tn+1

tn

∫
B0

[ṗ− ρ0B] · δ∗ϕ̇ dV dt−
∫ tn+1

tn

∫
∂TB0

T̄ · δ∗ϕ̇ dAdt

−
∫ tn+1

tn

∫
∂ϕB0

R · δ∗ϕ̇ dAdt+

∫ tn+1

tn

∫
B0

P̃ : ∇[δ∗ϕ̇] dV dt = 0. (6)

To solve equation (6), the first Piola-Kirchhoff stress is required and determined from its
weak form,∫ tn+1

tn

∫
B0

[(
B̃�3

∂(∇ ˙̃
F )

∂
˙̃
F

)
+

(
Ã :

∂Λ

∂F̃

)
+ F̃ S̃ − P̃

]
: δ∗

˙̃
F dV dt = 0. (7)

and stress tensors from their corresponding weak stress equations:∫ tn+1

tn

∫
B0

[
2
∂Ψela

∂C̃
+ S̄ − S̃

]
: δ∗

˙̃
CdV dt = 0,

∫ tn+1

tn

∫
B0

[
∂Ψhg

∂Λ̃
+ Ā− Ã

]
: δ∗

˙̃
ΛdV dt = 0. (8)

Linear momentum needed in the weak mechanical momentum equation (6) can be obtained
by dissolving weak velocity equation into weak momentum equation,∫ tn+1

tn

∫
B0

[v − ϕ̇] · δ∗ṗ dV dt = 0,

∫ tn+1

tn

∫
B0

[ρ0v − p] · δ∗v̇ dV dt = 0. (9)

3 Space-time discretization

The weak forms are spatially and temporally discretized on the elemental level by Gaussian
quadrature using Lagrangian ansatz funtions. The time rate variable fields (•)e,ni are approx-
imated on the n-th time step by k + 1-th order Lagrange polynomials corresponding to the
normalized time α(t) on each time step [tn, tn+1] such that,

(•)h,n =

k+1∑
i=1

Mi(α)(•)e,ni , α(t) :=
t− tn
hn

∈ [0, 1], hn := tn+1 − tn, (10)

and the stress fields as well as Lagrange multiplier fields are (•̃)e,ni are approximated on the n-th
time step by k-th order Lagrange polynomials by

(•̃)h,n =

k∑
i=1

M̃i(α)(•̃)e,ni , Mi(α) =

k+1∏
j=1
j 6=i

α− αj

αi − αj
, 1 ≤ i ≤ k + 1. (11)

Similarly e-th finite element are approximated in space using standard local shape functions
NA(ξ), A = 1, · · · , nnode defined on the reference domain. The resulting tangent matrix is
condensated to pure displacement form by staggering the solution of globally discontinuous
mixed fields on the elemental level. The implementation is performed in our In-house finite
element code ’fEMcon’ and the resulting linear systems of equations are solved using PARDISO
solver.
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3.1 Algorithmic stress tensor for fiber curvature strain

Analogous to [5], we introduce algorithmic stress tensors such that it corrects the error in
the gradient theorem of the strain energy function. These stress tensors contribute to the total
potential energy balance on each timestep [tn, tn+1] by satisfying the gradient equation,

G
Λ̃
(Ā) := Ψ(Λ̃n+1)−Ψ(Λ̃n)−

∫ tn+1

tn

[
∂Ψ(Λ̃)

∂Λ̃
+ Ā

]
:
˙̃
Λ dt = 0 (12)

The stress tensor Ā is determined by means of an isoperimetric variational problem associated
with the Lagrange functional,

L
(
Ā, λ

Λ̃

)
:= F

Λ̃

(
Ā
)

+ λ
Λ̃

G
Λ̃

(
Ā
)
, where F

Λ̃

(
Ā
)
:=

1

2

∫ 1

0
Ā : Ā dα (13)

λ
Λ̃

is the lagrange multiplier which enforces the constraint G
Λ̃

with respect to the minimization
function F

Λ̃

(
Ā
)
. The algorithmic stress tensors Ā then yields the form,

Ā :=
Ψ(Λ̃n+1)−Ψ(Λ̃n)−

∫ 1
0

∂Ψ(Λ̃)

∂Λ̃
:
˙̃
Λ∫ 1

0
˙̃
Λ :

˙̃
Λ

˙̃
Λ, (14)

In the similar way S̄ is dervied with respect to C̃ and is given by

S̄ :=
Ψ(C̃n+1)−Ψ(C̃n)−

∫ 1
0

∂Ψ(C̃)

∂C̃
:
˙̃
C∫ 1

0
˙̃
C :

˙̃
C

˙̃
C. (15)

4 BALANCE LAWS

With the introduction of new independent field variables, the extended standard Cauchy
continuum has to fulfill physical balance laws. The total momentum and energy is conserved
at every discrete time step with a special numerical treatment by considering real functions as
test functions in place of virtual functions. Following the steps in [5], by performing virtual
translations along a constant vector c, choosing the test function δ∗ϕ̇ = c, the balance of total
linear momentum is obtained as

Ln+1 − Ln =

∫ tn+1

tn

∫
B0

ρ0B dV dt+

∫ tn+1

tn

∫
∂TB0

T̄ dA dt+

∫ tn+1

tn

∫
∂ϕB0

R dA dt (16)

Similarly, choosing test function δ∗ϕ̇ = c×ϕ in (6) for an arbitrary constant axial vector c and
eliminating the first Piola-Kirchhoff tensor yields a time integrator that eventually conserves
total angular momentum,

J n+1 −J n =

∫ tn+1

tn

∫
B0

[ϕ× ρ0B] dV dt+

∫ tn+1

tn

∫
∂TB0

[
ϕ× T̄

]
dAdt+

∫ tn+1

tn

∫
∂ϕB0

[ϕ×R] dAdt

+

∫ tn+1

tn

∫
B0

ε :

[(
B̃�3

∂(∇ ˙̃
F )

∂
˙̃
F

)
+

(
Ã :

∂Λ

∂F̃

)
+ F̃ S̃

]
F̃

t
dV dt (17)
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The balance law corresponding to the potential energy associated with body load B

P :=

∫
B0

[
Ψtotal

]
dV −

∫
B0

ϕ · ρ0BdV (18)

is obtained by means of the algorithmic stress tensors in (14) and (15) along with the choice of
test functions δ∗

˙̃
C =

˙̃
C, δ∗

˙̃
Λ =

˙̃
Λ and δ∗S̃ = S̃, δ∗Ã = Ã, respectively.

Pn+1 − Pn =

∫ tn+1

tn

∫
B0

[
Ã :

˙̃
Λ+

1

2
S̃ :

(
F̃

t ˙̃
F +

˙̃
F

t

F̃

)]
dV dt−

∫ tn+1

tn

∫
B0

ϕ̇ · ρ0BdV dt (19)

Furthermore, employing different choice of suitable test function for δ∗ϕ̇ = ϕ̇ and eliminating
the first Piola-Kirchhoff tensor, we derive the total kinetic energy conserving time integrator as,

Kn+1 − Kn =

∫ tn+1

tn

∫
B0

ϕ̇ · ρ0B dV dt +

∫ tn+1

tn

∫
∂TB0

ϕ̇ · T̄ dA dt +

∫ tn+1

tn

∫
∂ϕB0

ϕ̇ ·R dA dt

−
∫ tn+1

tn

∫
B0

[(
B̃�3

∂(∇ ˙̃
F )

∂
˙̃
F

)
+

(
Ã :

∂Λ

∂F̃

)
+ F̃ S̃

]
:
˙̃
F

t

dV dt (20)

And then we arrive at total energy balance as, Ḣ := K̇+ Ṗ

Hn+1 − Hn =

∫ tn+1

tn

∫
∂TB0

ϕ̇ · T̄ dA dt +

∫ tn+1

tn

∫
∂ϕB0

ϕ̇ ·R dA dt (21)

5 NUMERICAL EXAMPLES

In our numerical investigation, we apply our newly developed continuum formulation with
strains associated to fiber curvature to representative numerical examples and study the balance
laws and evolution of time dependent properties for the chosen mechanical system.

5.1 Oscillation of Cooks beam

A fiber reinforced Cook’s cantilever beam is spatially discretized by 20-noded tri-quadratic
serendipity elements and is simply supported on its left end such that the displacement of nodes
at this boundary are fixed in all three directions e1, e2, e3 . The beam is self-excited by its body
weight due to the gravitational load. Table 1 provides the data used in the simulation. For
temporal discretization a Lagrange polynomial of order k = 2 is used as explained in section
2.2 and the strain energy function as described in (1). It is to be noted that the reaction
forces R at the dirichlet boundary nodes are taken into account. We compare the results
obtained from simulations with and without the influence of the algorithmic stress tensors for
the fiber curvature strain and the tension strain in Figure 4. It can been observed that the total
linear momentum is well conserved by virtue of its definition and our new time integrator for
angular momentum in (17) consistently conserves the total angular momentum. In the case of
total energy consistence, the modified time integrator in (19) and (20) together brings in the
conservation of total energy (21) for the variant with algorithmic stress tensors (14) and (15).
On the other hand, the simulation variant without the same makes time integrators incapable
of conserving energy for the chosen time step size and the Newton Raphson tolerance Tol .
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5.2 Free flying L-block

Our second example is inspired from the work [7]. A fiber reinforced L-shaped block is
spatially discretized with 117 tri-linear finite elements. As an initial condition, two equal and
opposite traction forces are applied on the boundary surfaces as shown in Figure 5. The traction
forces are given as a hat function of time f(t) and the corresponding traction vectors are given
by

t̄a = −t̄b = f(t)

256/9512/9
768/9

Pa, f(t) =


t for 0s ≤ t ≤ 2s
4− t for 2s ≤ t ≤ 4s
0 for t ≥ 4s.

No external torque is acting on the block after the loading phase and the block tumbles constantly
as there is no gravitational force or any other external loads after the loading phase. Quadratic
of the curvature I26 is chosen with an aim to use an non-linear energy function of Ψhg in the
simulation. Due to the equal and opposite traction forces in the loading phase, the linear
momentum is equilibriated and hence the total linear momentum is a conserved quantity, which
can be observed in the momentum maps in Figure 6. With respect to the angular momentum,
the corresponding improved time integrator (17) takes into account the internal couples arising
due to the fiber curvature and conserves the total angular momentum. Consequently with the
enhanced conjugate gradient in higher-order time approximation the new energy time integrators
are capable to exactly conserve total energy consistently up to the chosen Newton Raphson
tolerance Tol for both temporal approximations k = 1 and k = 2.

5.3 Noel’s turbine rotor

In this example we simulate a slender fiber reinforced turbine rotor that undergoes large rota-
tions and here we would like to show that our new time integrators preserve the time evolutions
of the energies and momenta. For the sake of brevity, we refer to [1] for the construction of
the rotor and fiber orientation definitions and load setup are analogous to [4]. In contrast to
these references, no stator is considered and only a mechanical system without initial velocity is
considered here. The simulation has been performed using 5488 tri-linear hexahedral elements
with a temporal approximation k = 2 along with algorithmic stress tensors. The front side of
blades are loaded with a hydrodynamic pressure fp(t) = p̂| sin(ω t)| as follower loads without
any dirichlet boundary conditions. The simulation is performed according to the parametrs pro-
vided in Table 3. As expected the rotor translates in the negative z-direction with constantly
increasing velocity by the virtue of evolution of follower forces with respect to the flat blades
due to the pressure load. This can be evidently seen in the linear momentum plot in Figure
9. In the same way, increasing angular momentum about z-direction is expected as there is no
opposing dirichlet boundary and the same is reflected in the angular momentum plot. Similar
trend is observed in the energy plots where the kinetic and potential energy are increasing due
to the accelration of the rotor.
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Figure 2: Simply supported beam sub-
jected to gravitational load.

Figure 3: Current configuration of the
beam at T = 2.15s with Von-Mises stress.
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Figure 4: Comparison of energy and momentum consistence without(left) and with algorith-
mic stress tensors(right) of fiber-reinforced cantilver beam with nel = 48 quadratic hexahedral
elements for time polynomial of order k = 2 and a Newton-Raphson tolerance TOL.
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Figure 5: Free-flying L-block subjected to traction load t̄a and t̄b on red surfaces at time T =
0s(Left), current configurations at time T = 12.5s(middle) and at time T = 25s(right) indicating
Von-Mises stress.
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Figure 6: Comparison of energy consistence with algorithmic stress tensors of fiber-reinforced
L-shaped block with nel = 117 linear hexahedral elements for time polynomials of order k = 1
and k = 2.
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Figure 7: Fiber reinforced turbine rotor
subjected to hydrostatic pressure load on
blades.

Figure 8: Current configuration of turbine
at T=5s indicating Von-Mises stress.
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Figure 9: Time evolution of momenta, energies and external load for Fiber-reinforced turbine
rotor with nel = 5488 linear hexahedral elements and temporal approximation of order k = 2.
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6 SUMMARY

In this work we derive an extended continuum using a mixed finite element formulation by
introducing an independent field variable for fibre curvature strain in the continuum to capture
the fiber curvature effect. This leads to the introduction of a local bending stiffness by an
additional strain energy function based on fiber curvature. We then derive new time integrators
for the total energy and total momentum consistence and implement it with higher order time
approximation. By deriving an energy-momentum scheme from the principle of virtual power
for the proposed mixed element formulation, we have devised a method that significantly reduce
the modelling errors arising due to unaccounted fiber stiffness in numerical simulations. And
this helps in improving the strength-to-weight ratio of fiber reinforced composites in the design
process. From the evidence of the demonstrated numerical examples, we claim that our new
time integrators provides us physically consisitent dynamic behaviour which can be observed
from the preservation of balance laws and the time evolution of energies and momenta. To
further our research we intend to extend our formulation to solve dynamic thermo-mechanical
problems.
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A Simulation data

The chosen material and simulation parameters are in SI units.

Table 1: Simulation data for Cooks beam

Material Parameters
µ 0.1 · 106
λ 100 · 106
l2 5 · 10−5

ρ0 103

Neumann load -
Dirichlet load (x,y,z)-dof fixed

Fiber orientation a0 ex
Initial velocity v0 0

Newton tolerance Tol 10−5

Time step size hn 0.001
Simulation duration T 5

Standard gravity g = 9.81 with eg = −ey

Table 2: Simulation data for L-block

Material Parameters
µ 0.1 · 105
λ 100 · 105
l2 1 · 10−2

ρ0 103

Neumann load ta = −tb
Dirichlet load -

Fiber orientation a0 ex
Initial velocity v0 0

Newton tolerance Tol 10−4

Time step size hn 0.01
Simulation duration T 60

Standard gravity g = 0 with eg = −ey

Table 3: Simulation data for turbine rotor

Material Parameters Fiber orientations
µ 0.1 · 106 abla

0 along the blade profile
λ 100 · 106 asha

0 ez ×
r

||r||
l2 1 · 10−4 abak

0 ey
ρ0 103 afrt

0 ex
Neumann load fp(t) p̂| sin(ω t)| Newton tolerance Tol 10−2

p̂ 100 Time step size hn 0.001
ω 10π Standard gravity g = 0 with eg = −ez

Dirichlet load - Initial velocity v0 0
Simulation duration T 5
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