Hindawi Publishing Corporation
Research Letters in Electronics

Volume 2009, Article ID 480740, 5 pages
doi:10.1155/2009/480740

Research Letter

Token-Aware Completion Functions for

Elastic Processor Verification

Sudarshan K. Srinivasan, Koushik Sarker, and Rajendra S. Katti

Department of Electrical & Computer Engineering, North Dakota State University, Fargo, ND 58105, USA

Correspondence should be addressed to Sudarshan K. Srinivasan, sudarshan.srinivasan@ndsu.edu

Received 2 June 2009; Accepted 31 July 2009

Recommended by Massimo Poncino

We develop a formal verification procedure to check that elastic pipelined processor designs correctly implement their instruction
set architecture (ISA) specifications. The notion of correctness we use is based on refinement. Refinement proofs are based on
refinement maps, which—in the context of this problem—are functions that map elastic processor states to states of the ISA
specification model. Data flow in elastic architectures is complicated by the insertion of any number of buffers in any place in
the design, making it hard to construct refinement maps for elastic systems in a systematic manner. We introduce token-aware
completion functions, which incorporate a mechanism to track the flow of data in elastic pipelines, as a highly automated and
systematic approach to construct refinement maps. We demonstrate the efficiency of the overall verification procedure based on
token-aware completion functions using six elastic pipelined processor models based on the DLX architecture.

Copyright © 2009 Sudarshan K. Srinivasan et al. This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is

properly cited.

1. Introduction

The impact of persistent technology scaling results in a
previously ignored set of design challenges such as manu-
facturing and process variability and increasing significance
of wire delays. These challenges threaten to invalidate
the effectiveness of synchronous design paradigms at the
system level. Several alternate design paradigms to deal with
these challenges are being proposed. One popular trend is
latency-insensitive designs, which allows for variability in
data propagation delays [1]. Synchronous Elastic Networks
(SENS) [2, 3] hav been proposed as an effective approach to
design latency-insensitive systems.

One of the critical challenges for any design approach to
succeed is verification. We present a novel highly automated
formal verification solution for latency-insensitive pipelined
microprocessors developed using the SEN approach (here on
referred to as elastic processors). Note that correctness proofs
for methods to synthesize elastic designs from synchronous
designs have been provided [2], but this is not a substitute
for verification. The idea with the verification approach is
to show that the elastic processor correctly implements all
behaviors of its instruction set architecture (ISA) model,

which is used as the high-level specification for the processor.
The notion of correctness that we use is Well-Founded
Equivalence Bisimulation (WEB) refinement, a detailed
description of which can be found in [4]. It is sufficient to
prove that the elastic processor (implementation) and its ISA
(specification) satisfy the following core WEB refinement
correctness formula to establish that the elastic processor
refines (correctly implements) its ISA.

Definition 1.1 (Core WEB Refinement Correctness Formula).

(Vw € IMPL :us=r(w) A u=Sstep(s)A
v =Istep(w) Au#r(v) (1)

—s=r) Arank(v) < rank(w)).

In the formula above, IMPL denotes the set of imple-
mentation states, Istep is a step of the implementation
machine, and Sstep is a step of the specification machine. The
refinement map r is a function that maps implementation
states to specification states. In fact, the refinement map can
be thought of as an instrument to view the behaviors of the

implementation machine at the specification level, thereby
allowing verification tools to easily compare the behaviors of
the two systems. rank is used for deadlock detection. Our
focus in this work is to check safety, that is, to show that if
the implementation makes progress, then, the result of that
progress is correct as specified by the high-level specification.
We plan to address deadlock detection in future work, and we
therefore ignore rank for the present.

The specific steps involved in a refinement-based ver-
ification methodology are (a) construct models of the
specification and implementation, (b) compute the states
of the implementation model that are reachable from reset
(known as reachable states), (c) construct a refinement map,
and (d) the models and the refinement map can now be used
to state the refinement-based correctness formula (excluding
deadlock detection) for the implementation model, which
can then be automatically checked for the set of all reachable
states using a decision procedure. Modeling and verification
are performed using ACL2-SMT [5], a system developed by
combining the ACL2 theorem prover (version 3.3) with the
Yices decision procedure (version 1.0.10) [6].

The primary challenge in applying the refinement-
based approach to elastic pipelines is as follows. The very
attractive property of elastic systems is that they allow for
the insertion of buffers (known as elastic buffers) in any
place in the data path to deal with propagation delays of
long wires, without altering the functionality of the system.
The insertion of these buffers however can drastically
change the data flow patterns of the system, making it
hard to compute refinement maps for these systems. Our
primary contribution is a procedure—we call token-aware
completion functions—that computes refinement maps for
elastic pipelined systems (described in Section 3) even after
the insertion of elastic buffers in any place in the data path.
The procedure allows for highly automated and efficient
verification of elastic pipelined systems. The effectiveness of
our verification method is demonstrated using 6 DLX-based
elastic pipelined processor models. The models are described
in Section 2. Verification results are given in Section 4,
and we conclude in Section 5. Due to limited space, we
request the reader to refer to literature for background on
synchronous elastic networks [2, 3] and refinement [4].

Note that this is the first known approach that aims
to verify the correctness of elastic pipelined processors
against their high-level nonpipelined ISA specifications. In
previous work, we have developed an equivalence checking
approach that is used to verify elastic pipelines against their
synchronous parent pipelines [7].

2. Elastic Processor Models

The elastic processor models are based on the 5-stage
DLX pipeline. The elastic processor models and their
nonpipelined ISA-level specifications are described using the
ACL2 programming language and are defined at the term-
level, because term-level abstractions make the verification
problem tractable. We use the ACL2-SMT system for veri-
fication as it can be used to reason at the term-level. Note
that bit-level versions of these models were used in [7]. The

Research Letters in Electronics

models were obtained by first elasticizing a synchronous 5-
stage DLX processor using the Synchronous Elastic Flow
(SELF) protocol approach [2]. The main idea is to replace
all flip flops with elastic buffers (EBs) that are constructed
from two elastic half buffers (EHBs), namely, a master EHB
and a slave EHB. The clock network is replaced by a network
of elastic controllers, where each controller is used to control
the elastic buffers in a pipeline stage and synchronized with
the controllers of adjacent pipeline stages. The controllers are
synchronized with the clock and are connected in accordance
with connections between pipeline stages in the data path.
Each controller has three possible states, empty, half, and full,
which indicate that the corresponding elastic buffer has 0, 1,
and 2 valid data tokens, respectively.

We call the processor model obtained by elasticizing the
synchronous DLX MO0. The main advantage of the elastic
processor is that it permits the insertion of additional elastic
buffers at any place in the data path to break long wires.
We therefore inserted additional elastic buffers /1,...,15 at
various places in the model. We inserted /1 in model M0
to get model M1. We then inserted /2 in model M1 to
get M2. We derived models M3, M4, and M5 in a similar
manner. The model M5 is shown in Figure 1. The figure also
shows the positions of the additional elastic buffers and how
they are connected with the elastic buffers corresponding
to the pipeline latches (namely pc, fd,de,em, and mm).
The network of elastic controllers for the DLX processor
with five additional elastic buffers in the data path is shown
in Figure 2. These models are used to demonstrate the
effectiveness of our verification approach.

3. Token-Aware Completion Functions

Flushing [8] is one standard approach used to compute
refinement maps for pipelined processors. In this approach,
partially executed instructions in the pipeline latches are
forced to complete, without allowing the machine to fetch
any new instructions. Projecting out the programmer visible
components—which include the program counter, register
file, instruction memory, and data memory for the models
we consider—in the resulting state will give the correspond-
ing ISA state.

Completion functions [9] were proposed as a compu-
tationally efficient approach to construct flushing refine-
ment maps. One completion function for each pipeline
latch in the machine is used to compute the effect on
the programmer visible components of completing any
partially executed instruction in that latch. The comple-
tion functions are composed to form the flushing refine-
ment map. Note that older instructions in the pipeline
are completed before younger instructions. For the DLX
example, let fdc, dec, emc, and mmc be the completion
functions for the latches fd, de, em, and mm, respectively.
Let rf, im, and dm be the register file, instruction mem-
ory, and the data memory of the processor model. The
ISA state s corresponding to a synchronous DLX proces-
sor state w ((pc¥, fd",de",em”,mm",rf",im",dm")) is
(pes,rf*,ims,dm®)= fdc(dec(emc(mmc({pc”,rf",imS,dm"),
mm"),em"),de"), fd").

Research Letters in Electronics

11

F

1 ‘PC
I

M

13
fd de et
D ALU ‘
DM

3
15 2
e
[

mm

FiGURk 1: High-level organization of elastic 5-stage DLX processor with five additional elastic buffers I1,12,..., 5.

--> Valid
— Stop

FIGURE 2: Network of elastic controllers for the elastic 5-stage DLX processor shown in Figure 1. The J and F blocks denote the join and fork
circuits. Valid is used to indicate valid data in the datapath. Stop is used to indicate that EB cannot accept data at this time.

TaBLE 1: Verification times and SMT statistics.

Elastic Yices Total
Models Bool Vars Time (sec) Time (sec)
MO 887 0.22 1.07
M1 1,101 0.46 2.29
M2 1,889 1.05 5.07
M3 2,811 1.32 6.17
M4 3,096 3.29 16.65
M5 3,605 4.16 24.42

When we try to apply the completion functions approach
to elastic pipelined processors, two issues arise. First, in some
states of the elastic processor, instructions can be duplicated
in the data path; that is, an instruction can reside in two
pipeline latches. Such a situation can occur at a fork when the
instruction in a buffer before the fork has proceeded along
one path of the fork, but the other path is blocked. The latch
before the fork has to retain the instruction until both paths
are cleared. A direct application of the completion functions-
based map to such a state will result in completing the
same instruction twice leading to an erroneous refinement
map. Second, Elastic Half Buffers (EHBs) need not have
valid tokens. The contents of such EHBs should be ignored
and should not be used to update the programmer visible
components.

We introduce token-aware completion functions as a
method to compute flushing-based refinement maps for
elastic pipelined processors. The idea being that EHBs which
are either holding duplicate instructions or are in an empty
state should not be completed. This is achieved by first com-
puting the reachable states of the elastic controller network.
We use token-flow diagrams proposed in [7] to compute
the reachable states of the system. The reachability analysis
is performed by simulating how tokens flow in the elastic
architecture using a form of symbolic simulation. The output
of the token-flow diagrams is a set of token-states, one token-
state for each reachable state. In a token-state, each EHB is
assigned a numbered token, which is essentially a natural
number. A value of “0” indicates a bubble; that is, the EHB is
empty. Also, EHBs with the same instruction will be assigned
the same token numbers. Thus, using the token-state,
duplicate instructions and empty EHBs can be identified.

The token-aware completion functions approach works
by first computing a two-dimensional array; we call token-
array. Each row in the array corresponds to a reachable state
of the elastic controller network. Each element in a row is a
binary value. The number of elements in a row is 2n, where
n is the number of pipeline latches in the elastic system. If
token-array(i, j) = 1, then the contents of EHB H ; in the
reachable state S; should be completed. If token-array(i, j) =
0, then the contents of EHB H; in the reachable state S;
should be ignored when computing the refinement map.
Given the set of token-states (which are the reachable states

represented using numbered tokens) of the elastic controller
network of an elastic system, Procedure 1 computes the
token-array for the elastic system.

Procedure 3.1.

In: Sg, set of token-states of the elastic controller network
and PH, the ordered set of pipeline half buffers. The
number of token states (|Sg|) is r. The number of
pipeline half buffers (|[PH|) is 2n, where n is the
number of pipeline latches. The order of the pipeline
half buffers is determined by the position of the buffer
in the pipeline; that is, buffers closer to the end of the
pipeline have a higher index.

Out: token-array for the elastic system.

(1) Initialize i to .

(2) Initialize V; (the set of visited tokens) to {0}. The
token number “0” represents a bubble. Note that
initializing V; to {0} causes the procedure to assign
a “0” value to the empty EHBs in the token-array.

(3) Initialize j to 2n.

(4) Let t =token(S;,PH;), where token is a look-up
function that gives the token number for EHB PH;
in token-state S;.

(5) token-array(i, j) = ~(t € V)

(6) Assign V; = V; U {t}: add the token number of EHB
PH; to the visited token set.

(7) If j — 1 # 0, decrement j and go to step 4.
(8) If i — 10, decrement i and go to step 2.
Procedure 2 takes as input the token-array and computes

the flushing refinement map for the elastic system using
completion functions.

Procedure 3.2.

In: Elastic processor state w: (Pi,..., Py, Hi,...,Hay).
Py,..., P, are the programmer visible components,
and Hy,..., Hy, are the half buffers in the pipeline
latches of the elastic machine.

Out: ISA state s obtained by applying the flushing refine-
ment map to w.

(1) Let Sane1 = (Py5 ...
(2) Initialize i to 2n.

> Pp).

(3) r =reachable-state(w), gives the number of the reach-
able elastic controller network state of w, assuming
that the reachable states are numbered.

(4) One has

S — {completion(8i+1,Hi), if token-array(r,i) = 1,

Sit1s otherwise.

(2

(5) Ifi — 1#0, decrement i and go to step 3.
(6) Then, s = S;.

Research Letters in Electronics

Example 3.3. The elastic controller network of the M5
processor model has two reachable states S§; and S,.
The token-states T; and T, (given as a vector of token
numbers for the EHBs in M5 in the order (pc | fd |
de | em | mm | Il | 12| I3 | 4 | I5)) corresponding
to these reachable states S; and S,, respectively, are
(0,710,610,5/0,4]0,0]0,0]0,0]0,3]|0,0]0,3)
and (0,017,610,5/0,0/0,410,7]0,4]/0,3]0,310,0)
[7]. Note that there are two tokens in the token-states for
each EB, one corresponding to the master EHB and the
other corresponding to the slave EHB. The completion
function-based refinement map obtained using Procedures
3.1 and 3.2 for any state w of processor model M5 whose
elastic controller network is state S; is (pc’, rf*, im*, dm®) =
fdddeclemcmmc(pc”, rf", int, dm™),157), em?), del), fdY).
The completion function-based refinement map obtain-
ed using Procedures 3.1 and 3.2 for any state w of
processor model M5 whose elastic controller net-
work is state S, is (pcS,rfT,imt,dm®)=fdc (fdc(dec
(mmc({pc”, rf", im*, dm™), mmY), de¥’), fd), fdu).

4, Results

The token-aware completion functions approach was used to
verify safety for six elastic pipelined processors MO, ..., M5.
The results are shown in Table 1. Verification was performed
using the ACL2-SMT system. The ACL2-SMT system incor-
porates a translator that reduces the correctness theorem to
a decision problem in the form of a formula in a decidable
logic that Yices can handle. The decision problem is then
checked by Yices. Column “Bool Vars” gives the number of
Boolean variables in the decision problem. The experiments
were conducted on a 1.8 GHz Intel (R) Core(TM) Duo CPU,
with an L1 cache size of 2048 KB. As can be seen from the
table, each of the elastic 5-stage DLX-based processors was
verified against the high-level instruction set architecture
(ISA) within 25 seconds, thereby demonstrating the high
efficiency of our approach.

5. Conclusions

We have developed a method for checking the correctness of
elastic pipelined processors against their high-level instruc-
tion set architectures. The approach was demonstrated by
verifying 6 DLX-based elastic processor models. For future
work, we plan to further explore the scalability of the
verification method.

References

[1] L. P. Carloni, K. L. McMillan, and A. L. Sangiovanni-Vin-
centelli, “Theory of latency-insensitive design,” IEEE Trans-
actions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 20, no. 9, pp. 1059-1076, 2001.

[2] J. Cortadella, M. Kishinevsky, and B. Grundmann, “Synthesis
of synchronous elastic architectures,” in Proceedings of the 43rd
annual Design Automation Conference (DAC °06), E. Sentovich,
Ed., pp. 657-662, San Francisco, Calif, USA, July 2006.

Research Letters in Electronics

(3]

S. Kirstic, J. Cortadella, M. Kishinevsky, and J. O’Leary, “Syn-
chronous elastic networks,” in Formal Methods in Computer
Aided Design (FMCAD ’06), pp. 19-30, IEEE Computer Society,
San Jose, Calif, USA, November 2006.

P. Manolios, Mechanical Verification of Reactive Systems, Ph.D.
thesis, University of Texas, Austin, Tex, USA, August 2001,
http://www.ccs.neu.edu/home/pete/research/phd-dissertation
html.

S. K. Srinivasan, Efficient verification of bit-level pipelined
machines using refinement, Ph.D. thesis, Georgia Institute
of Technology, December 2007, http://etd.gatech.edu/theses/
available/etd-08242007-111625/.

Yices, 2007, http://fm.csl.sri.com/yices/.

S. K. Srinivasan, K. Sarker, and R. S. Katti, “Verification of
synchronous elastic processors,” to appear in IEEE Embedded
Systems Letters.

J. R. Burch and D. L. Dill, “Automatic verification of pipelined
microprocessor control,” in Proceedings of the 6th International
Conference on Computer Aided Verification (CAV 94), vol. 818
of Lecture Notes in Computer Science, pp. 68-80, Springer,
Stanford, Calif, USA, June 1994.

R. Hosabettu, M. Srivas, and G. Gopalakrishnan, “Proof of
correctness of a processor with reorder buffer using the
completion functions approach,” in Proceedings of the 11th
International Conference Computer Aided Verification (CAV °99),
N. Halbwachs and D. Peled, Eds., vol. 1633 of Lecture Notes in
Computer Science, Springer, Trento, Italy, July 1999.

- i

/> . =
= &

Advances in

Civil Engineering

Journal of

Robatics

Advances in
OptoElectronics

International Journal of

Chemical Engineering

The Scientific
WQrId Journal

International Journal of

Rotating
Machinery

Journal of

Sensors

Hindawi

Submit your manuscripts at
http://www.hindawi.com

Y :-
.

VLSI Design

‘.
.

Internatio Urna
Antennas and
Propagation

Modelling &
Simulation
in Engineering

International Journal of
Navigation and
Observation

e

Active and Passive
Electronic Components

Shock and Vibration

International Journal of

Distributed
Sensor Networks

Journal of
Control Science
and Engineering

Journal of
Electrical and Computer
Engineering

International Journal of

Aerospace
Engineering

