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Abstract: The logarithmic Colebrook flow friction equation is implicitly given in respect to an
unknown flow friction factor. Traditionally, an explicit approximation of the Colebrook equation
requires evaluation of computationally demanding transcendental functions, such as logarithmic,
exponential, non-integer power, Lambert W and Wright Ω functions. Conversely, we herein present
several computationally cheap explicit approximations of the Colebrook equation that require only
one logarithmic function in the initial stage, whilst for the remaining iterations the cheap Padé
approximant of the first order is used instead. Moreover, symbolic regression was used for the
development of a novel starting point, which significantly reduces the error of internal iterations
compared with the fixed value staring point. Despite the starting point using a simple rational
function, it reduces the relative error of the approximation with one internal cycle from 1.81% to
0.156% (i.e., by a factor of 11.6), whereas the relative error of the approximation with two internal
cycles is reduced from 0.317% to 0.0259% (i.e., by a factor of 12.24). This error analysis uses a sample
with 2 million quasi-Monte Carlo points and the Sobol sequence.

Keywords: approximations; iterative procedures; Colebrook equation; Colebrook-White experiment;
Darcy friction factor; flow friction; hydraulics; Padé approximants; symbolic regression

1. Introduction

The Colebrook equation, Equation (1) [1], is implicitly given in respect to the unknown flow friction
factor f , which is captured implicitly in a logarithmic expression in a way that can be expressed explicitly
only using special functions such as the Lambert W function or its cognate Wright Ω [2–9]. In the latter
instance, the Colebrook equation can be solved only numerically using iterative procedures [10] or
using specially developed explicit approximations [11–15].

1√
f
= −2· log10

2.51
Re
·

1√
f
+

ε
3.71

, (1)

where f is the Darcy flow friction factor (dimensionless), Re is the Reynolds number (dimensionless)
and ε is the relative roughness of inner pipe surface (dimensionless).

The Colebrook equation has been known since the end of the 1930s and is based on an experiment
by Colebrook and White [16] that had been performed a few years earlier using pipes with different
inner surface roughness, from smooth to very rough. As the Colebrook equation is empirical [1,16],
its accuracy can be disputed [17,18] (e.g., the new Oregon and Princeton experiment related to pipe
friction [18]); nevertheless, the equation is widely accepted as a standard and is in common use in the
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design of water and gas pipe networks [19]. It can be also adapted for special cases such as air flow
through fuel cells [20], water flow in rivers [21,22] and blood flow in blood vessels [23].

Praks and Brkić [24] recently showed a Newton–Raphson iterative solution of the Colebrook
equation based on Padé approximants [25–29]. Based on their solution, one simplified approach and a
novel starting point that significantly reduces numerical error will be offered herein.

The simplified method is based on the fixed-point method, a variant of the Newton–Raphson
method in which the first derivative of the unknown function is equalized to 1 [30]. In the worst
case, the demonstrated iterative procedures need up to seven iterations to reach the final accurate
solution [10], whereas in this study the explicit approximations derived from the iterative procedure
will have relative errors of up to 1.81% and 0.317% in the case of one internal and two internal iterative
steps, respectively. Moreover, when the novel simple rational function p0 of Equation (2) is used
as a starting point, the relative errors are significantly reduced to 0.156% and 0.0259%, respectively.
Such small values of the relative error are acceptable for engineering applications, given the empirical
nature of the Colebrook equation [17,18].

The approach with Padé approximants offers an iterative procedure in which the repetition of the
computationally expensive logarithmic function is avoided [24]. Using only one logarithmic function
together with simple rational functions and avoiding computationally expensive functions, such as
exponential functions or functions with non-integer powers, the presented method saves the processor
time [7–9,12–14], which is essential for effective simulations of large pipe networks [19].

The presented approximations are in a form suitable for computer codes and for application in
software packages for everyday engineering use.

2. A Fixed-Point Iterative Procedure Based on Padé Approximants

The logarithmic function can be accurately approximated in a certain relatively narrow domain
using Padé approximants (an approximation of the given function by a rational function of given
order) [24]. For example, log10(97) can be cheaply approximated knowing that log10(100) = 2,

and using the fact that log10(97) = log10

(
100
100
97

)
= log10(100) − log10

(
100
97

)
, where 100

97 ≈ 1.0309, which is

close to 1. Consequently, log10(1.0309) can be accurately estimated by its Padé approximant at the
expansion point x = 1. This simple idea can be used for solving the logarithmic-based Colebrook
equation. Starting from the initial point x0 = 1√

f0
→ y0 = 2.51·x0

Re + ε
3.71 , the next value can be calculated

as x1 = −2· log10(y0). The pre-computed numerical value ζ; ζ = log10(y0) should be used in all
the following iterations [24]. The next value y1 = 2.51·x1

Re + ε
3.71 and the previous value y0 should

be used as the argument of the Padé approximant z01 =
y0
y1

, where the chosen Padé approximant is

p01 =
z01·(z01+4)−5

4·z01+2 . Now, the new value log10(y1) = ζ+ 0.8686·p01 should be used for the calculation
x1 = −2·ζ+ 0.8686·p01 where 0.8686 ≈ 2

ln(10) .
To solve the Colebrook equation using a numerical fixed-point iterative procedure, the steps

shown in Figure 1 should be followed. Figure 1 includes a simplified procedure compared with [24],
where the Newton–Raphson iterative procedure is used instead of the herein presented fixed-point
iterative procedure.

The initial starting point x0 = 1√
f0

should be chosen from the domain of applicability of the

Colebrook equation, which is 0 < ε < 0.05 and 4000 < Re < 108. Every initial starting point chosen
from this domain will be suitable, but to reduce the required number of iterations, different strategies
are offered [10]. We will demonstrate the approach with the fixed-value initial starting point, but also
the approach with the starting point given by the rational function:

p0 = x0 = 1√
f0
= 2600·Re

657.7·Re+214600·Re·ε+12970000 − 13.58·ε

+ 0.0001165·Re
0.00002536·Re+Re·ε+105.5 + 4.227

(2)



Computation 2019, 7, 48 3 of 12

Equation (2) was found using the symbolic regression tool Eureqa [31,32] following the approach
of Gholamy and Kreinovich [33], in which existing absolute error minimizing software was used
to minimize the relative error (various artificial intelligence tools have been used recently for the
Colebrook equation, such as symbolic regression [34], novel artificial bee colony programming (ABCP)
methods [35], artificial neural networks [36], genetic algorithms [37], etc.). The novel starting point
given by Equation (2) has a maximal relative error of only 6.7%, whereas the previous version of
the starting point [34] had a maximal relative error of 40%. Thus, we can observe that the approach
Gholamy and Kreinovich [33] used was very useful for symbolic regression of the Colebrook equation.
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Figure 1. Algorithm for solving the Colebrook equation using a numerical fixed-point iterative method
and Padé polynomials (green letters are for one-off computations).

Calculation of log10(y0) should not be repeated in each iteration, but its numerical value ζ should
be used in a combination with the Padé approximant in every iteration (with the exception of the
first) [24].
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Instead of z01 =
y0
y1

, z02 =
y0
y2

, z03 =
y0
y3

, and so on, the adapted chain can be used as z01 =
y0
y1

,

z12 =
y1
y2

, z23 =
y2
y3

, etc. [24].

The Padé approximant z01·(z01+4)−5
4·z01+2 used is of the order /1,1/, referring to the polynomial order

in the numerator and in the denominator, respectively [24]. As the expansion point z = 1 is the root
of ln(z), the accuracy of the Padé approximant decreases. For this reason, setting the OrderMode
option in the Matlab Padé command to relative compensates for the decreased accuracy. Consequently,
the numerator of the Padé approximant of the order /1,1/ includes the polynomial of the second order.

Possible software implementation of developed algorithms is summarized in Section 4.

3. Explicit Approximations Based on Padé Approximants

Two explicit approximations of the Colebrook equation based on the algorithm from Figure 1
will be shown here. The approximation with one internal iterative cycle will be shown in Section 3.1,
while the approximation with two internal iterative cycles will be presented in Section 3.2. The iterative
procedures are sensitive, depending on the chosen initial starting point [38], and therefore carefully
conducted numerical tests are provided separately for the approximation with one and two internal
iterative cycles. In both cases, fixed numerical values for the initial starting points are chosen in such a
way as to reduce the final maximal relative error over the domain of applicability of the Colebrook
equation. Alternatively, the novel rational function, Equation (2), is used as the initial starting point.
We show that this alternative approach significantly reduces the relative error of approximations.

In order to perform a deeper analysis of the turbulent flow, the emphasis of this section is on the
Reynolds number Re between 104 and 108 (the analysis is compatible with [39]). However, the error
aggregates in the zone between 4000 and 104, where it is still possible that a laminar flow can exist.

3.1. Explicit Approximations with One Internal Iterative Cycle

3.1.1. An Explicit Approximation with One Internal Iterative Cycle and a Numerical Fix-Value
Starting Point

After numerous numerical tests, it is clear that the algorithm from Figure 1 gives the smallest
relative error in the domain of applicability of the Colebrook equation for the approximation with one
internal cycle, Equation (3), if the initial starting point is set as f0 = 0.022058→ x0 = 1√

f0
= 6.73306

(the numerical value 16.9 of the parameter c in Equation (3) is computed as 2.51× 6.73306). The maximal
relative error of Equation (3) is up to 0.79% and its distribution can be seen in Figure 2.

1√
f
≈ b + 0.8686· a·(a+4)−5

4·a+2

a = c
ε

3.71+
2.51·b

Re

b = −2· log10(c)
c = 16.9

Re + ε
3.71


, (3)

3.1.2. An Explicit Approximation with One Internal Iterative Cycle and a Starting Point Given by a
Rational Function

Using the rational function p0, Equation (2) for the initial starting point x0 and the proposed
approximation, Equation (4) has a maximal relative error of 0.101%. The distribution of its relative
error is shown in Figure 3. In comparison with the fixed point version, Equation (3)—the novel staring
point—Equation (2) reduces the maximal relative error for one internal iterative cycle by a factor of
7.82 (=0.79%/0.101%).
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1√
f
≈ b + 0.8686· a·(a+4)−5

4·a+2

a = c
ε

3.71+
2.51·b

Re

b = −2· log10(c)
c = 2.51·po

Re + ε
3.71


, (4)

where po is from Equation (2).Computation 2019, 7, x 5 of 12 

 

 
Figure 2. Distribution of the relative error for the approximation with one internal cycle and a fixed 
starting point. 

3.1.2. An Explicit Approximation with One Internal Iterative Cycle and a Starting Point Given by a 
Rational Function 

Using the rational function p , Equation (2) for the initial starting point x  and the proposed 
approximation, Equation (4) has a maximal relative error of 0.101%. The distribution of its relative 
error is shown in Figure 3. In comparison with the fixed point version, Equation (3)—the novel staring 
point—Equation (2) reduces the maximal relative error for one internal iterative cycle by a factor of 
7.82 (= 0.79%/0.101%).  

√ ≈ b+ 0.8686 · ·( )·a = cε3.71+2.51·bReb = −2 · log10(c)c = 2.51·poRe + ε3.71
, (4) 

where p  is from Equation (2). 

 
Figure 3. Distribution of the relative error for the approximation with one internal cycle and a starting 
point given by the rational function p , Equation (2). 

Figure 2. Distribution of the relative error for the approximation with one internal cycle and a fixed
starting point.

Computation 2019, 7, x 5 of 12 

 

 
Figure 2. Distribution of the relative error for the approximation with one internal cycle and a fixed 
starting point. 

3.1.2. An Explicit Approximation with One Internal Iterative Cycle and a Starting Point Given by a 
Rational Function 

Using the rational function p , Equation (2) for the initial starting point x  and the proposed 
approximation, Equation (4) has a maximal relative error of 0.101%. The distribution of its relative 
error is shown in Figure 3. In comparison with the fixed point version, Equation (3)—the novel staring 
point—Equation (2) reduces the maximal relative error for one internal iterative cycle by a factor of 
7.82 (= 0.79%/0.101%).  

√ ≈ b+ 0.8686 · ·( )·a = cε3.71+2.51·bReb = −2 · log10(c)c = 2.51·poRe + ε3.71
, (4) 

where p  is from Equation (2). 

 
Figure 3. Distribution of the relative error for the approximation with one internal cycle and a starting 
point given by the rational function p , Equation (2). 
Figure 3. Distribution of the relative error for the approximation with one internal cycle and a starting
point given by the rational function po, Equation (2).

3.2. Explicit Approximations with Two Internal Iterative Cycles

3.2.1. An Explicit Approximation with Two Internal Iterative Cycles and a Fixed Starting Point

The explicit approximation of the Colebrook formula with two internal iterative cycles is given in
Equation (5). The numerical fixed value 18.15 of the parameter c of Equation (5) depends on the initial
starting point, which is carefully chosen to reduce the maximal relative error and corresponds to the



Computation 2019, 7, 48 6 of 12

initial starting point set as f0 = 0.01912468→ x0 = 1√
f0
= 7.2310756, where 18.15 ≈ 2.51× 7.2310756.

The maximal relative error of Equation (5) is up to 0.172% and its distribution is shown in Figure 4.

1√
f
≈ b + 0.8686· d·(d+4)−5

4·d+2

a = c
ε

3.71+
2.51·b

Re

b = −2· log10(c)
c = 18.15

Re + ε
3.71

d = c
ε

3.71+
2.51
Re ·

(
b+0.8686· a·(a+4)−5

4·a+2

)


, (5)
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3.2.2. An Explicit Approximation with Two Internal Iterative Cycles and a Starting Point Given by a
Rational Function

The introduction of a starting point given by the rational function Equation (2) instead of a fixed
point significantly reduces the relative error from 0.172% in Equation (5) to no more than 0.0154% in
Equation 6 (i.e., by a factor of 11.16). Equation (6) presents the new explicit approximation with two
internal iterative cycles and a starting point given by the rational function, Equation (2), while the
distribution of its relative error is shown in Figure 5.

1√
f
≈ b + 0.8686· d·(d+4)−5

4·d+2

a = c
ε

3.71+
2.51·b

Re

b = −2· log10(c)
c = 2.51·po

Re + ε
3.71

d = c
ε

3.71+
2.51
Re ·

(
b+0.8686· a·(a+4)−5

4·a+2

)


, (6)

where po is from Equation (2).
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3.3. Further Error Analysis and Comparisons

Table 1 summarize the results of error analysis for 2 million quasi Monte-Carlo points using
the Sobol sequence [40,41] related to Equations (3)–(6). The domain for this analysis in respect to
the Reynolds number Re is from 4000 to 108, while for the sample of 740 points, which was used for
Figures 2–5, the domain is from 104 to 108.

Table 1. Comparison of maximal relative error (in %) for the first and second iteration without the Padé
approximant and with a Padé approximant of the order /1,1/ for the Reynolds number Re from 4000
to 108.

Padé Approximant No /1,1/

solution version 1 x = x1 + 0.8686*log(z) x = x1 + 0.8686*(z*(z + 4) − 5)/(4*z + 2)
Iteration 1 2 1 2

Fixed starting point 1.81% −0.317% 1.81% −0.317%
Starting point by Equation (2) −0.156% 0.0259% −0.156% 0.0259%

1 Notation from Matlab codes from Section 4; symbol log(z) of the solution update represents the natural logarithm;
both Matlab and MS Excel codes are mathematically equivalent: they use the same function, the natural logarithm.
In MS Excel, the natural logarithm is expressed by the symbol ln(x), whereas in Matlab, the natural logarithm is
expressed by the symbol log(x).

Table 1 shows that iterations using the Padé approximant of the first order /1,1/ ln11(z) = (z*(z + 4)
− 5)/(4*z + 2) have the same relative error as iterations using the natural logarithm. For the method
with one internal cycle (denoted as Iteration 1 in Table 1), the maximal relative error is approximately
1.81% or 0.156%, whereas for the method with two internal cycles (denoted as Iteration 2 in Table 1),
the maximal relative error is only 0.317% or 0.0259%. This analysis also shows that the novel starting
point given with Equation (2) is very useful.

Compared with analysis performed in MS Excel where 740 points are used, analysis with 2 million
quasi Monte-Carlo points using the Sobol sequence detected additional peaks of error, as shown in
Table 2. The same value of the maximal error is detected for even 2000 quasi Monte-Carlo points. Thus,
this analysis confirms that the Sobol sequence of 2 million quasi Monte-Carlo points sufficiently covers
the whole domain. For example, for Equation (6), the largest relative error is detected for the input
pair Re = 5263 and ε = 3.1707 × 10−7, which corresponds to the zone with lower Reynolds numbers.
Although this input pair is not shown in Figures 2–5, the figures clearly indicate a tendency towards
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higher relative errors when the Reynolds number Re and the relative roughness of the inner pipe
surface ε are smaller.

Table 2. Analysis of error performed in MS Excel with 740 points compared with analysis from Matlab
with 2 million Monte Carlo samples using the Sobol sequence.

Max. Rel. Error % 740 Test Points 1 2 Million Test Point 2

Equation (3) 0.79% 1.81%
Equation (4) 0.101% 0.156%
Equation (5) 0.172% 0.317%
Equation (6) 0.0154% 0.0259%

1 Reynolds number Re from 104 to 108. 2 Reynolds number Re from 4000 to 108.

As shown in Figure 6, additional analysis in MS Excel for the zone 4000 < Re < 104 shows very
good agreement with the results obtained in Matlab.
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4. Description of Software

The presented approximations were thoroughly tested at IT4Innovations, National
Supercomputing Center, VŠB (Technical University of Ostrava, Czech Republic). For simplicity,
the codes were expressed in MS Excel format [42] and in Matlab. The Matlab codes also work in GNU
Octave, but they can be easily translated in any programming language.

Software codes in MS Excel are given in Supplementary Materials. However, we provide Matlab
codes here, in order to support the benchmark study of the Colebrook equation [35] (in addition these
Matlab codes are also given in Supplementary Materials).

Equation (3): An explicit approximation with one internal iterative cycle and with a fixed
starting point.
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Matlab code:
x = 16.9/2.51;

y0 = 2.51*x./R + K./3.71;
x1 = −2*log10(y0);

z = y0./((K/3.71) + (2.51*x1./R));
ln11 = @(z) (z.*(z + 4) − 5)./(4*z + 2);

x = x1 + 0.8686*ln11(z);
f = 1./x.ˆ2;

In the Matlab codes, the Reynolds number Re is noted as R, while the relative roughness of the
inner pipe surface ε is K.

Equation (4): An explicit approximation with one internal iterative cycle and a rational starting
point given by Equation (2).

Matlab code:
For the rational starting point, x is given by Equation (2), as follows:

x = (2600*R)./(657.7*R + 214600*R.*K + 12970000) − 13.58*K +

(0.0001165*R)./(0.00002536*R + R.*K + 105.5) + 4.227;

The rest of the Matlab code is unchanged.
Equation (5): An explicit approximation with two internal iterative cycles and a fixed starting point.
Matlab code:

x = 16.9/2.51;
y0 = 2.51*x./R + K./3.71;

x1 = −2*log10(y0);
z = y0./((K/3.71) + (2.51*x1./R));

ln11 = @(z) (z.*(z + 4) − 5)./(4*z + 2);
x = x1 + 0.8686*ln11(z);

z = y0./((K/3.71) + (2.51*x./R));
x = x1 + 0.8686*ln11(z);

f = 1./x.ˆ2;

Equation (6): An explicit approximation with two internal iterative cycles and a rational starting
point given by Equation (2).

Matlab code:
For the rational starting point, x is given by Equation (2). The rest of the Matlab code is unchanged.

5. Conclusions

This article presents simplified, but still precise algorithms for solving the Colebrook equation
based on a fixed-point iterative procedure in which the logarithm is replaced by its Padé approximant
in all iterations except the first one [24]. Moreover, a novel simple starting point, which was found by
symbolic regression, significantly reduces the error of internal iterations. Consequently, a cheap Padé
approximant of the first order is suitable for approximations. Depending on the stopping criteria and
number of iterations, this algorithm can solve the Colebrook equation with any desired accuracy. As the
computationally expensive logarithmic function is used only in the first step, this algorithm can be
used efficiently for simulations of a complex pipe network. This is because the carefully selected Padé
approximants can save computational time. For a good balance between efficiency and accuracy [9],
two explicit approximations have been demonstrated based on a simplified iterative procedure with a
maximal relative error of no more than 1.81% and 0.156% for the variant with one internal iterative
cycle, and of no more than 0.317% and 0.0259% for two internal cycles (higher error values are for
the fixed initial starting point, while lower error values are for the initial starting point given by the
rational function, Equation (2), respectively). The value of the relative error, and also the tendency of



Computation 2019, 7, 48 10 of 12

its distribution, are confirmed by 2 million quasi Monte-Carlo points using the Sobol sequence for
4000 < Re < 108 and for 0 < ε < 0.05.

The presented approximations have an acceptable level of accuracy [43], especially in light of the
fact that the Colebrook equation is empirical and by its nature not always accurate. We can see that
iterations with the cheap Padé approximant of the first order have a nearly identical relative error
to iterations with the logarithm. Consequently, the herein presented approximations are favorable,
as they do not contain computationally demanding evaluations such as special functions, exponential
functions, or non-integer powers.

Supplementary Materials: The following are available online at http://www.mdpi.com/2079-3197/7/3/48/s1.
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38. Praks, P.; Brkić, D. Advanced iterative procedures for solving the implicit Colebrook equation for fluid flow

friction. Adv. Civ. Eng. 2018, 2018, 5451034. [CrossRef]
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