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SUMMARY

We present a parameter-free domain sewing approach fordewvell as high-order finite elements. Its
final form contains only primal unknowns, i.e., the approddes not introduce additional unknowns at
the interface. Additionally, it does not involve problempeéadent parameters which require an estimation.
The presented approach is symmetry-preserving, i.e. thdtirey discrete form of an elliptic equation
will remain symmetric and positive definite. It preserves tiider of the underlying discretization and we
demonstrate high order accuracy for problems of non-madctiscretizations concerning the mesh gize
as well as the polynomial degree of the order of discretirati We also demonstrate how the method may
be used to model material interfaces which may be curved andliich the interface does not coincide
with the underlying mesh. This novel approach is presemtéioe context of the p- and B-spline versions of
the finite cell method, an embedded domain method of highrpate compared to more classical methods
such as the penalty method or Nitsche’s method. Copy@B000 John Wiley & Sons, Ltd.
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1. INTRODUCTION

We reconsider the imposition of Dirichlet boundary conditions in the contiettteofinite element
method. We focus on the case, where the Dirichlet boundary conditierisposed independent of
the underlying discretization, i.e., they do not coincide with nodes, edgieses of the mesh but
may cut elements in an arbitrary fashion.
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2 S. KOLLMANNSBERGER ET. AL

Whereas this problem has been investigated for decades, it has gairessied attention recently,
for example in the context of Isogeometric Analysis (IGA)2]. The main motivation in IGA is to
facilitate the transition from geometric models to computational analysis and yhenedler mesh-
generation unnecessary. This is achieved by an isoparametric appbaaged on applying typical
functions (e.g., B-Splines and NURBS) from Computer Aided Design (CaBjems directly in
order to discretize the differential equations that describe the undenbhiggics. The Dirichlet
boundary conditions, however, are not always associated with threlbogiof the geometric model.

Another problem class in which the need for a mesh independent imposittiriaflet boundary
conditions arises are embedded domain methods. By definition, they dpregeat the underlying
physical domain with a boundary conforming mesh. In this contribution, wsider the finite cell
method B, 4], an embedded domain method of high-order which is also applicable to3GA [

Numerous approaches and a vast body of literature exist for the impasitidinchlet boundary
conditions, each of them with different properties, advantages andvdistages. None of them is
perfect for all applications. Our wish-list for an ideal imposition of Diri¢ddeundary conditions
would require the method

e to be independent of the underlying discretization not only geometricallgumh that, for
example, a change of the approximation basis does not require a modifioitienmethod;

¢ to be numerically stable and variationally consistent;

o to preserve a symmetric, positive definite system matrices for elliptic problems;

¢ to be applicable to hyperbolic and parabolic problems;

¢ not to introduce additional degrees of freedom;

e not to deteriorate the order of approximation of the underlying discretization

e to be suitable for high-order accuracy;

¢ to be free from problem-dependent parameters.

We will first provide a quick and non-exhaustive review of some methdushwcomply with at
least some of the properties mentioned above. For a more general regetisexample,q, 7].
In the contribution at hand we are only interested in methods which werenstwbe suitable for
high-order discretizations and/or set the stage for the approach tesenped.

In principle, there are two choices for the imposition of Dirichlet boundamyddions. First,
the Dirichlet boundary conditions may be directly built into the basis functignmbdification,
extrapolation or augmentation of the basis. Methods belonging to the firsp dnelude web-
splines B], i-splines P, 10], max-ent interpolation]1], the extended finite element method (X-
FEM), the generalized finite element method (GFEM) and level-set like appes 12, 13, 14].
Second, one may enforce Dirichlet boundary conditions by augmentingoerning equations
with suitable constraint conditions. This second group emanates fronmmcenfoconstraints in
variational problems and is, thus, very general. The most commonly usedpsialty methodlf,
16], which is easy to implement and which produces a positive definite systenx fwatelliptic
problems. However, it is not a variationally consistent method which rentier results to be
strongly dependent on the choice of the penalty parameter. Additionallpett to select a high
penalty value results in an ill-conditioned system of equations.

A classic alternative to the penalty method is to enforce the constraints thicamjange
multipliers [17]. This produces a variationally consistent method with additional degrées o
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WEAK COUPLING OF TRIMMED PATCHES 3

freedom. However, the Lagrange multiplier space must satisfy the infesgiiton [17, 18]. Thus,
the choice of the discretization of the Lagrange multiplier is not always obvibdepends on the
discretization including the mesh, which turns out to be quite restrictive. &steigtions can be
circumvented by means of especially developed stabilized Lagrange multiplieodse They can
be interpreted as an attempt to combine penalty and Lagrange multiplier methblisva@become
a popular choice in the context of embedded domain modeliag?D, 21, 22, 23].

Another attractive and very general alternative is Nitsche’s metdid It can be interpreted as
a stabilized Lagrange multiplier technique in which the Lagrange multiplier is dirateiytified
to be the flux normal to the Dirichlet boundary. The close relation of Nitschethod to the
Lagrange multipliers method was first analyzed by Stenb@®y Even though Nitsche’s method
eliminates the need to discretize the Lagrange multipliers with additional variftidestabilization
term remains in the formulation and continues to contain a problem-deperatanigter. Nitsche’s
method is much less sensitive to the choice of a stabilization parameter than the penalty
method. However, for optimal performance, such a parameter still neégdssstimated. A suitable
estimation for a lower bound is, for example, given by Griebel and Schevgi28] who propose
to solve an auxiliary generalized eigenvalue problem. Beyond the Paseqgoation originally
investigated by Nitsche, his idea has been extended to other problemsclabksepotential of
Nitsche’s method is nicely laid out in a review article by Hans8lo It has been further extended,
for example, to thin plate problem&7], three-dimensional elasticity2f], thermo-elasticity 29,
and fluid dynamics3q].

Recently, different schemes have been proposed that are neitlegrdgew on additional degrees
of freedom nor on the solution of auxiliary problems to estimate the stabilizatiomstekmong
these are schemes using degrees of freedom of certain nodes oftthel@ment mesh to minimize
the difference between the exact and the approximated boundary can@itio They are robust
but yield a non-symmetric equation, also for symmetric problems. In the cotidrbat hand, we
follow a different approach, namely to use Discontinuous Galerkin teaksicHerein, the material
law is discretized with functions being discontinuous across element boesd&he additional
degrees of freedom can then be condensed out at the discrete fieveiopthe solution of the
system matrix, so they will not appear in the final formulation. These aphasacan yield automatic
stabilization terms, i.e., terms that add stability without the need to compute auxiliamnyvelge
problems, see e.g7]. The method proposed i8] is a recently proposed variant but again leads to
unsymmetric systems for symmetric problems. However, the formulation was syaedetr [33].
This formulation will mark the point of departure in the paper at hand in whiehm¥l start by
investigating its suitability for high-order embedded domain discretizations.

Imposing Dirichlet boundary conditions is also of importance for weak lbogf different
discretizations. Geometric models in CAD systems, for example, are usuallyrisechpf many
trimmed patches of splines of all types, such as B-Splines, NURBS, T-Spéte These trimmed
patches should serve as the geometric model in IGA. If this model is to belgitensferred
to computational analysis without mesh generation, the trimmed patches havgltetet their
common and usually non-matching interface by means of enforcing contirfuibeainknowns
and/or their derivatives to yield a consistent computational model.

The same task needs to be addressed in embedded domain analysis. 8 tmpaar for
geometries which are difficult to mesh or for cases in case a geometry dogdédogy changes
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4 S. KOLLMANNSBERGER ET. AL

over time. Chimera approaches, for example, resolve the domain with ondtgrlenoverlapping
meshes each of which represents a different physical domain. Thiwon at their common
boundary is then enforced either iteratively or monolithically. Throughbist treatise, we only
consider monolithic coupling, i.e., the coupling terms will directly appear in thaltieg system
matrix and the solution of the coupled system is obtained in one step only.

Monolithic approaches using Lagrange multipliers to satisfy continuity canttralong the
domain interfaces are mostly named Mortar methods. Many variants of thisgaehmave been
proposed 34, 35, 36, 37, 39], to list just a few. As in the case of the weak imposition of Dirichlet
boundary conditions with Lagrange multipliers, its straightforward applicatésults in rather
restrictive stability conditions, which is why stabilized versions are advdcAfgain, an alternative
for monolithic coupling is to use Nitsche’s method to impose the constraints. Ehef ditsche’s
method to couple subdomains was extensively analyse®9jd{)]. Hansbo et al.41] extended this
concept to overlapping domains. It was also used to represent stndngesk singularities4?).
The concept of using Nitsche’s method for coupling domains has bediedppa variety of fields
such as linear elasticityB, 44, contact B5] and fluid-structure interactiortp]. As in the case of
imposing Dirichlet boundary conditions, using Nitsche’s idea for couplamyires the solution of
an auxiliary generalized eigenvalue problem for an estimation of the optinbélzation parameter.

In this contribution, we derive a method which sets out to eliminate the needlfong auxiliary
equations to estimate stabilization parameters and, at the same time, leads to synystetnc s
matrices for elliptic problems.

In order to set up our main field of application of our proposed techniggdegin with the
introduction of the finite cell method in sectiéghbefore continuing with the weak imposition of
Dirichlet boundary conditions in sectid}) embarking from classical Nitsche’s formulation. Next,
we recall the recently introduced boundary conditions for PoissooBl@m as presented ii3J]
but put them in the context of the finite cell method. We show that the coned33] can be
straightforwardly utilized in the framework of high-order finite elements inegah We investigate
the performance of the boundary conditions and compare their resultsgerthty method as well
as to Nitsche's method for Poisson’s equation in one and two dimensiondwdhdimensional
examples are computed by discretizing the continuous problems with the digssiesion of
the finite element method utilizing the hierarchical integrated Legendre polytwasiantroduced
in [47]. Additionally, we evaluate the performance of this new type of boundangitions in the
context of patches of B-Splines which form the basis for IsogeometradyAis.

Section4 is devoted to the new, parameter-free and symmetry-preserving weakncpof
domains. Again, we start by recalling the more classical Nitsche’s methatidgeroblem under
consideration. The derivation of the new scheme is carried out in sectiB@smd4.4. We prove
the scheme to be stable in secti®b and show that in all tested cases the resulting discrete system
is positive definite. Utilizing the presented methodology, we demonstrate higleience rates
in all cases. Specifically, we first evaluate the new method’s capabilitieBdimson’s equation
with non-conform discretizations ih and p and constant coefficients in a boundary-conform
setting (sectiont.6.1) before we move to an overlapping discretization with an inclined coupling
boundary (sectiont.6.9. We then demonstrate the method for a bimetal strip. Naturally, this
example possesses discontinuous coefficients and we apply nomroorgdiscretizations i and
p (section4.6.3. The last example is an inclusion problem. It has discontinuous coeffcéam
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WEAK COUPLING OF TRIMMED PATCHES 5

we discretize it in a Chimera-like fashion by using an overlapping discretimtigectiord.6.4).
All examples are computed by using B-Spline patches and clagsiEBM and are compared to
Nitsche’s method. Finally, we draw conclusions in section

2. FINITE CELL METHOD

2.1. Applications of the finite cell method

The finite cell method was first introduced i3, [4], where its potential was demonstrated
for linear-elastic examples in two and three dimensions. Various extensibribeoFCM
confirm its versatility in the context of topology optimizatiod8], geometrically nonlinear
continuum mechanics4p], adaptive mesh-refinemens(, 51, 52], computational steeringsp,
54], biomedical engineering5p], numerical homogenization5f], elastoplasticity $7], wave
propagation in heterogeneous materiafs][ local enrichment for material interfaced4],
convection-diffusion problemsbp, 60], thin-walled structuresdl], design-through-analysis and
isogeometric analysi$[, 52, 5], and multi-physical application28].

A free FCM-MATLAB-toolbox is provided aht t p: / / f cnl ab. ci e. bgu. t um de/ under
the GNU Licence along with extensive online documentati&#) §s well as numerous examples.
It serves as a library to solve one-, two-, and three-dimensional edéstio-and elasto-dynamic
problems. It utilizes advanced software development techniques subbsign Patterns63] to
provide maximum flexibility to users as well as Unit Testing to ensure codestensy throughout
the development process.

2.2. Formulation

The finite cell method is an embedded domain method based on higher orger fsinations.
The primary goal of the method is to avoid the generation of boundarpeooitig meshes.
Nevertheless, it provides high-order convergence rates. For thgogel it assumes a three-
dimensional physical domaift and an embedding domain. such thatQ. > Q wherebyQ. is
of a simpler, typically rectangular shape. Their boundaries are defg@d & I" ando2, = T'..

Let us consider the following bilinear forin, -), defined orf2,:

(u,v), = / [Lv]" C% [Lu] dQ 1)
Q.
in whichw is a scalar- or vector-valued functiowmijs a test function, and is a differential operator.
The material matrix of the embedding domain is definedCgs= a«C whereC is the material
matrix of the physical domaif? and« is an indicator function defined as:

1 Vee
a(z) = (2
0 VeeQ.\Q

The finite cell method is depicted in fig- It is important to note that eq2) implies « () =
1.0 Vx €T as, otherwise, it would not be possible to apply non homogeneous bhywaialitions
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6 S. KOLLMANNSBERGER ET. AL

a=0

Figure 1. The finite cell method: Physical dom&mand embedding domain..

onT. Furthermore, the definition ef (x) in eq. @) ensures that the bilinear forms defined on the
embedding domaif. and on the physical domain are equivalent:

(u,v), = /Q [Lv]" aC [Lu] dQ (3)
= / [Lv]" C [Lu] dQ + / [Lv]" 0 [Lu] dQ (4)
Q Q.\Q
_ / [Lv]” C [Lu] d© (5)
Q
= (’U,,’U)Q (6)

The linear functionalF

(.7:,1;):/ vT (af) dQ—i—/ vTtdl = (F,v) ()
Q. T,
is identical for the extended and the physical domain and also takes the vetumesf inside(2
and prescribed fluxels= o - n on the Neumann part of the boundary of the physical domairio
account. The solution of

(u,v)g, = (F,v)¢ (8)

is equivalent to solvingu, v), = (F, v). Inthe sequel we will, therefore, drop the subindexless
we want to specifically stress one viewpoint or the other.

A discretized view of the finite cell method is depicted in figFor the numerical approximation
of eq. @) it is convenient to define a computational grid on the extended dofaihis grid
forms the support of the basis functions. In principle, we can use aroniftartesian grid, as was
applied in the first implementations of the FCB| f]. Hierarchically refined grids can be defined
alike [64, 65, 66), if local features of the solution are to be resolved in more detail. Note tkat th
boundary of the physical domain is not resolved or even approximatéukebyrid. In order not to
change the problem, the geometry needs to be recovered at the integnagioi leatural strategy
is the following:

Let us denote elements of the computational grid such as Qellso distinguish them from
classical finite elements. It is convenient to categorize cells into threeadifféypes which are
depicted in fig2:

Copyright@© 0000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engn(000)
Prepared usingimeauth.cls DOI: 10.1002/nme



WEAK COUPLING OF TRIMMED PATCHES 7

Qe o (x) = 0 — not computed
Qco: a(x) =1 — treated as regular FEM
Qes: a(x) = 0 or 1 — adaptive integration

— and 2-field problem, iffT"p

I‘D QF

Figure 2. The discrete point of view of the finite cell methdde cellsQ provide the support of the shape

functions much like finite elements do. The important cas@g In addition to an adaptive integration

we advocate solving the 2-field problem 0@ if and only if a Dirichlet boundary condition is imposed

on T parts of it (see sectiofi.2). The part ofl* on which Dirichlet boundary conditions are imposed is
labeledl" p.

1. Q¢ Cells wheren(x) =0 Va € Q., which are not computed.

2. Q¢o: Cells wherea(xz) =1 Va € Q., which are computed as if they were regular finite
elements.

3. Q¢3: Cells cut by the boundary, which receive special treatment as described in the
following.

Cells of typeQcs are decomposed into two pats-, in which a(x) = 1, andQr,_,, in which
a(x) = 0. In practical computations, we assume the paramsetey not to be exactly zero. Instead,
we chosec <« 1 to ease numerical round-off issues in the solution process. Thus, plieit
accept a modeling error of the ordewhich is controllable as it tends to zerocibpproaches zero.
We usually choose to have very small magnitude, typically abawt® smaller than the material
constant.

The numerical integration of the bilinear form must be carried out acdyrat@ugh on the cut
cells as to recover the bilinear form of e) &t the discrete level. For this purpose, the integration
of the bilinear form is ideally only carried out @y, . One way to perform the domain-integration
numerically is to approximat@r, adaptively by recursive bisection, allowing for a simple and
efficient refinement towards the bounda6y[5, 67]. Geometrically more involved, but also more
efficient schemes utilize straight sided triangles, —see, e2fj]. Precise numerical integration
schemes for complex geometries based on the blending function mé@jai¢ also possible.

Homogeneous Neumann boundary conditions are easy to deal with. Theggaivalent to
assuming material with zero stiffness in the donfain, 2 and, therefore, need no special treatment
in the framework of the finite cell method. Inhomogeneous Neumann boymdeaditions are
realized by including the second term in ed), (.e., by directly integrating over. The integrand
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8 S. KOLLMANNSBERGER ET. AL

is simply a product of a function living on the surface (the load) and thpeshanctionsu defined
over the cells, yet evaluated at the surfiice

The imposition of Dirichlet type boundary conditions Bror on parts of it, i.e.I'p cutsQe¢s, is
a central topic of this paper and is discussed in se@ion

3. WEAK IMPOSITION OF DIRICHLET BOUNDARY CONDITIONS

3.1. Nitsche’s method

We consider the following scalar-valued single field problem:

—kAu=f inQ 9
u=u onl=0Q (10)

For simplicity, we assume a pure Dirichlet-problem,T.g. = T'. If Dirichlet conditions are imposed
only on parts of the boundary, corresponding integrals in the followingditations have to be taken
only over these parts. If the boundary conditions &6) &re imposed by Nitsche’s metha2¥], the
potential corresponding to eq®) @nd (L0) reads:

H(u,a’):/sz (;k(Vu)z—fu> dQ—/Fn~a(u—u)dF+;ﬂ/r(u—u)QdF (11)

The first term in eq.X1) is clearly the potential associated to e@). (The second term enforces
the boundary conditions of eql@ by means of a Lagrange multiplier which has already been
identified to be equal to the fluxes at the boundart —n - o. This allows a formulation in primal
variables, i.e., no additional degrees of freedom are needed to appteXx. However, the negative
sign of the Lagrange multiplier may lead to a loss of coercivity which is restoydtie third term

in the potential of eq.1(1) which again enforces to be equal ta: atT" by means of a penalization.
Coercivity is only restored for a sufficiently high choicemfUnfortunately, a closer look reveals
that the penalty parametgris problem-dependent. Fortunately, it has turned out that the precise
choice of does not have a large influence on the solution above a certain threllogldver, an
optimal value fors is not easily obtained and the threshold above which its influence on tHe resu
is of only minor importance is unknown a priori.

The weak form of the imposition of the boundary conditions by Nitsche’s noethay either be
obtained by multiplication of eqs9) and (LO) by a suitable test function and integration by parts,
or by variation of the potential given in edL1). In any case, both approaches lead to the following
weak form R4

k(Vu,Vv)g —k(n-Vu,v)p —k(u,n - Vo) + kB (u,v)r = (f,v)o — k(@,n - Vo)r + kB4, v)r
(12)

where we used the common short hand notation offth@roduct(-,-) and< -,- > denotes the
integral of two functions over a domain.
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WEAK COUPLING OF TRIMMED PATCHES 9

A lower bound to estimate the parametein eq. (L2) to ensure coercivity may be obtained by
solving the following auxiliary eigenvalue problem as, for example, sugdes [69, 28]:

Az = ABx (13)

A= [ (Vu-n)(Vv-n)dl'

r
B = /(Vu - Vu)dQ
Q

3.2. Alternative to Nitsche’s method

The symmetric form of the imposition of boundary conditions presented in tlttoseclosely
follows the work of Baiges et al3[] but puts the methodology into the context of the finite cell
method. Even though the presentation starts from a mixed-field formulatiomat$drm contains
only the primal unknowns.

3.2.1. Weak formEquations @) and (L0) can be recast into the following two-field problem:

—kAu=f inQ (14)
%o’ =Vu in Qp, (15)
u="u onT (16)

As usual for mixed-field formulations, ando in egs. (4) to (16) are discretized independently.
The associated potential to egs4)to (16) is

1 2 _ 1 2
II(u,0)= /Q (2k (Vu)” — fu) aQ — /Fn co(u—u)dl — Ik o (o — kVu) dQr,,
(17)

wheren is any real number greater than two. The only difference betweeri 8gatid eq. {7) is
that the latter enforces the boundary condition with the help of the materiafflag ¢L5) which is
imposed weakly o2, . In essence, the potential e.7f enforces the Lagrange multiplier to be
the trace of the unknown in a least squares sense.

The variation of the potential given in edL®) leads to the following weak form of eqsl4)
to (16):

1
k(Vu,Vv), — (n-o,v)r + - (Vu, o)

1
_% (7-7 U)Qp

_ %kz (Vv,Vu)Qrm = (f,v)a (18)

Qr,,

+ % (1, Vu)g, — (T -nu)r =—(1-n,a)r (19)

in in

This formulation still contains the primal unknownand the flux variabler. However, as we shall
see laterpg can be condensed out at the discrete level in such a way that no additimewns
will be necessary to impose the boundary conditions.
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10 S. KOLLMANNSBERGER ET. AL

3.2.2. Discretization in the context of the finite cell methdde finite element subspaces are
constructed to ensure thdg, c H! (Qh)d, so V;, consists of continuous functions. Further, we
constructS;, c L? (Qh)d. Functions inS;, are considered to be discontinuous only within the
elements cut by and are zero elsewhere. The discretized weak form given in &gsafd (L9)
now reads:

k (Vuh, V’Uh>ﬂ — (n . O'h,vh>r + % (V’Uh, Uh)ﬂrm — %k (Vv;“ vuh)Qrm = <f, ’Uh>Q Yup, € V,
(20)
1 1 _
- (Th,O'h)QFm + - (Th,Vuh)QFm —(mh nyup)r = — (1 - n,u)r V1, € Sh
(21)

At this point it is worthwhile to discuss the meaning of discontinuity in the contetiefinite cell
method. The primary goal is to simplify the implementation process as far as lgdsgibeusing
the shape functions froij, for S,. In the context of the finite cell method, the first term in &tf))(
reads

(VU}“ Vvh)gc = Zp/g; [L’Uh]T aC [L’U,h] dQ) (22)

The following, alternative view is naturally possible:

(Vun, Vo)g, = Z /Q [Lopva]” C [Luyy/al A0 (23)

Hereby, the shape and the weighting functianandv are both multiplied by the square root of
the indicator functionx defined in eq.%). We now have two views on the discontinuity@findv:

(a) we may view them temoothly extendcrosd" into the embedding domain under the condition
that this extension does not contribute to the energy described by the bilanea Clearly, this
view is expressed in eq2®). (b) we might view the shape functiong andwv;, to exhibit a jump to
zero from whatever value that satisfies the conditionk arternal toQ25. This view is represented
in eq. 3). From the implementational point of view there is, thus, no need to defines seteof
discontinuous shape functions for the discretization of eithgor 7. Instead, one may simply
reuse the shape functions from the discretization;p&ndv,, for the discretization o&; andry,.
Thus, we discretize,;, andv;, in a Bubnov-Galerkin sense as follows:

o
up = NU = { Niey ... Ni, } : (24)
L ,&7’:”

o
on =NV = [ Niet ... Nin } : (25)
Vi=n

N N Oi=1z Oi=1y
o), = NS — =1 .- i=n . . (26)
Ni:l NN Ni:n . .
Oi=nx Oi=ny
Copyright@© 0000 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engn(000)
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WEAK COUPLING OF TRIMMED PATCHES 11

variational eqn.|| & (Vun, Vun)g guin | —ng (Ths@)ay, | # (Th, Vulor w (Von,on)g,.
algebraic form K, U K, 2 K, U K, %
variational eqn.||  —(o, - m,vp)r — (T, - M, u)r -(n - Ty, U)r (fivn)a
algebraic form GuoX G, U Gou f

Table I. Terms concerned with the internal part of each doragihe discrete variational and algebraic form
of egs. £0) and @1).

Timlz Ti=ly
n
! ] [ Ni—1 ... Ny : : (27)

Ti=nx Ti=ny

T =nNT =

for scalar-valued Poisson’s problem. In eq84)(to (27) N; denote thei?” shape function
andn = (p+1)? for a tensor product space ih dimensions. The corresponding coefficients
Ui, 04, Oi, Giy» Tim» Tiyy @Y€ Organized in the respective matridés V', 3, andT. We would like

to emphasize that, in the following, we will use an equal order discretizatioallfields and that,
therefore, allN’s given in eqgs. 24) to (27) are completely identical.

Note that the definition of;, includes the multiplication by the normal vectar We apply the
following definition forn: n atT'p is the outward pointing normal vector. Logically, then, inside
Qr,. , nis defined to deliver a smooth extensiorionto 2, which is obtained by taking to be
the normal vector towards from the considered point ifty, .

3.2.3. Static condensation and final formulatidnith the definitions given in table the system
given by egs.Z0) and £1) can be written in compact form as:

(1 - %) Kuu KuU + Guo U f
= (28)
Kau + Gau KUU b 9ou
The fluxes may be computed as follows:
S =K, (— (Kou+Gou) U + goa) (29)

K, is always positive definite and, therefore, invertible. Additionaky,, must only be computed
on the elements cut dy. The fluxes may, thus, be condensed out of 2§). énalytically on element
level prior to computation. Equatio2), therefore, simplifies to:

|:<]- - ;) Kuu - (Gua' + Kua') K;} (Kau + Ga’u) U - [f - (Gua + Kud) Kz;glga’ﬁ] (30)

TThis definition is applied, for example, in the evaluationfof,, in egs. 85), (53) and 64).
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12 S. KOLLMANNSBERGER ET. AL

variational eqn.|| —k (n - Vu,v)p | 25 (v, up)p | —k (nVon, @)p | BE (vp, @)

algebraic form G..U GE U Gua g’
Table II. Nitsche’s method: Linear and bilinear forms useéq. 36).

The system given in eq3(0) can be written in a simpler way with the help of the following identities:

1

—K,U = - [Kuo K, Kqu|U (31)
GLU=-K.K,}G,,|U (32)
guﬂU = - [KuaKg_glgaﬁ} (33)
GuU = - [GuK; K,,|U (34)
to give:
[Kuu + Guu + G;fu - GUUK;;GG‘U} U= [.f + 9ou — GﬂaKg_glga'ﬂ:I (35)

Equation 85) is the final formulation of the method presented 33][ For means of comparison,
the discrete form of Nitsche’s method is given in e2p)(

K+ Guu + Gl + GLIU = |f + g+ 9l (36)

where the linear forms af,; andg”, and the bilinear forms of?Z, andG?, are given in tablél.
Now it can be clearly seen that eG5j and eq. 86) only differ in the last terms in the brackets. The
new termsG,, K, !G,., andG;, K g, are now responsible for counterbalancing the Nitsche
terms resulting from the identified Lagrange multipk&r,,, and its transpose. Stability of e5)
was proven in the sense of an inf-sup conditior3g for low order discretizations. We will provide
examples to show that the system given by 8§) éven remained positive definite.

It is interesting to note how the method given by &8p)(avoids the estimation of a problem-
dependent parameter. Let us consider the simple case in Rhighs small. Then, the magnitude
of K ! is large and the ternt?,, K, G, automatically adds the needed stabilization. In this
process, the dependency of the penalty term on a characteristic mesh aigka specifip is
respected quite naturally.

3.3. Two-dimensional Poisson’s problem

In this section, we investigate the 2D Poisson’s problem proposetjnThe same example was
studied in the context of the finite cell method B[ as well, and is depicted in fig. It consists

of a square domain with edge= 1 andk = 1. Homogeneous Dirichlet boundary conditions are
imposed on the left, right and upper boundary of the domain while0) = sin(7z) is imposed on

the lower boundary. We discretize the domain&y 8 elements using both theversion and the
B-Spline version of the finite cell method and study ppteefinements, keeping the discretization
grid as it is. All boundary conditions are imposed weakly as presenteataiiher by the Nitsche’s
method or by eq.35). For Nitsche’s method, we estimate the penalty parameter for each polynomial
degree as suggested 69 and multiply it by two. We expect the solution to converge to the
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WEAK COUPLING OF TRIMMED PATCHES 13

Qe
Aqg=1.0
u(z,0) = sin(nz)
u(z,1) = 0.0
Q u(z,1) = 0.0
u(y,0) = 0.0
I u(y,1) =0.0
>
H—
Aa a=1 Aa

Figure 3. two-dimensional Poisson’s problem as propos¢ddn

analytical one given in eq3{) which has the strain energy given by egg)

Uex(x,y) = (cosh(my) — coth(n) sinh(my)) sin(nx) (37)

Uer = gw coth(m) (38)

With no singularities in the solution, we expect an exponential convergentte energy norm
under purep-refinement.

We begin by studying the case where the discretization of the domain confmati®¥oundaries.
A first overall impression of the solution is given in figa, where the casg = 3 is considered. The
exact solution is not depicted as the approximation is already so close to & ikkight is only
gained by looking at the convergence of its energy, as depicted idligAll methods converge
exponentially as expected. With no even-odd behavior present, aimakffe@nce in thep- or
B-Spline version of the finite cell method is observable. This is not surgresinve are performing
a purep-extension on both meshes starting withl and, therefore, stag® continuous at inter-
element level for both discretization schemes. It is explicitly pointed out that@&the example is
computed to numerical accuracy for all methods. Figliréepicts the error in the energy norm in
per cent. The absolute difference of the analytic strain energy to its nuapioximation is in the
order of 10712, Figure4c depicts the condition number of the stiffness matrix. It is of no surprise
that thep-version has a clear advantage over B-Splines in terms of conditioninbisoboundary
conforming example. The minimum eigenvalues of the overall stiffness matiixdimg its weak
boundary conditions are depicted in figl. They decrease to small values but always stay positive.

We now look at the performance of the boundary conditions for an engolguidblem which we
solve using the finite cell method. We use the same mesh consisting of a singleyifté x 8
elements for the B-Spline version &rx 8 p-elements. The discretization is plotted along with the
integration mesh and the solution in figa Note that there are now all three types of célls,,
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14 S. KOLLMANNSBERGER ET. AL
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(c) condition number of left hand side of eG5) (d) smallest eigenvalue

Figure 4. 2DAa = 0 (conforming boundary conditions).

Qc2, andQe3 and that the computations are carried out as described in séctiba cells inQ2¢;

are located completely outside the physical domain and are neither computassembled. The
cells inQ ¢ are computed as regular finite elements of high order. The cellginare adaptively
integrated. As we chose a very favorable situation — namely that the bguliidauts the cells in
Qc3 exactly in half — an adaptive integration on a quadtree is chosen, leadingi@at integration
already at the first level of refinement. Figir@explicitly depicts the entire solution, including the
integration tree and the unphysical solution in the fictitious donfgin, outside the boundary
depicted by a thick black line. The physical solution is similar to the non-emidecizie, only the
color-scale is shifted due to the smooth extension. The convergencddredspercent error in the
energy norm is depicted in fighb, whereby the reference solution is the strain energy computed
analytically from the solution given in ed37). The convergence is of higher order uptil6, where

it levels off and, in case of the method given by eg8p)(version, increases. The increase is non-
physical and clearly shows the limits of the numerics to compute this situation. Aletkgk the
condition number depicted in figc rises abovel0*® which imposes difficulties for the solver
used. This deserves a closer look. Apart from the inversion of theessf matrixk, there are
more places where matrices have to be inverted. For the Nitsche's vefsimpasing boundary
conditions, one must solve the eigenvalue problem given inl&d.as accurately as possible. The
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1.3
1.1
1
S
> D\
) .
2
> 0.5 )
2 100
I
5
o £
S 1072} —o—PFEM:eq.85 \
—0.1 o -0 — PFEM: Nitsche
s g —O— BSpline: eq. §9)
~0.3 0.1 0.5 11 1.3 ® —O — BSpline: Nitsche
0 104
X = 10
102 103
DOF
(a) solution, discretization and integration cells (b) convergence behaviour
20 0
e © —o— PFEM: eq. 85)
3 3 -0 — PFEM: Nitsche
€ 15} g 5 —O— BSpline: eq. §5)
3 s - -o — BSpline: Nitsche
c D
o @
5 10} 2 _jp
c ©
3 £
S —o— PFEM: eq. 85) K
2 O -0 — PFEM: Nitsche a-15
i) —0— BSpline: eq. 85) 8
—o — BSpline: Nitsche
0 —20
1 2 3 4 5 6 7 8 2 4 6 8
polynomial degree polynomial degree
(c) condition number of left hand side of eG5) (d) smallest eigenvalue

Figure 5.non-conforming boundary

eigenvalue problem is defined on the cut cells and therefore sufterstfre conditioning problems
as well.

The crucial point for the method given in e@5 is the inversion ofK,,, also defined on the
cut cells. It constitutes the core part of the lower bound for the stability terithe current Matlab
implementation of the method, the inversionk,, is most stable using the pseudo inverse instead
of the inverse but it is still less accurate than the solution of the correspprijenvalue problem
necessary for Nitsche’'s method. It is worthwhile noting that, is similar to a mass matrix and,
therefore, neither basis is optimized to render optimal conditioning herg=Atthe condition of
K, reachesl0'® and a correct solution is no longer guaranteed. However, all eigesalithe
overall stiffness matrix of the discrete system are very small but alveayain positive as depicted
in fig. 5d.
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16 S. KOLLMANNSBERGER ET. AL

3.4. Curved boundary

We compute the example depicted in figlt consists of a Poisson problem solved on a quarter of
an annulus, embedded in a Cartesian mesh. Two Dirichlet boundary cosditie® set weakly at the
inner and outer ring td and3, respectively. The analytical solution in polar coordinates is given by

Y
E=1.0
o = 1.0

u(z,y) =3onT;
u(z,y) =1onT,

(39)
wherer denotes the radial distance. It possesses a strain energy of

™
Uy = In(D) ~ 2.266180071.

The results are plotted in fig. In addition to the Cartesian mesh spanning the shape functions,
we plot the integration mesh in figSa to 7c. Note that, instead of the adaptive sub-cells we
use sub-triangles here to integrate the cut-cells. This increases tha@cofithe integration and
the solution, see e.@8]. The results are snapshots foe= 3 whereby we do not plot the smooth
extension for the sake of clarity.

The error in the energy norm, the condition number and the smallest eiges\atiel depicted
in figs. 7d to 7f, respectively. The new method practically delivers results of comparilaeracy
and conditioning for non-conforming, curved boundaries.
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(&) Numerical solution forp =3, discretization, and (b) Numerical flux forp = 3 in x-direction
integration domains
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Figure 7. Example: Quarter ring, results.

4. PARAMETER-FREE, WEAK COUPLING OF TWO DOMAINS

4.1. General setting

In the following, we consider two domair@’ and Q/7, which are sewed together along the
common boundary' = I'Y = '/, On this common boundary, we will demand the continuity of
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18 S. KOLLMANNSBERGER ET. AL

the displacements as well as the continuity of the fluxes in a weak from. Thieawous view of this
general setting is depicted in fi§. The coupling conditions db’ and!! at the common boundary

Figure 8. Two physical domairs’ and// weakly coupled ar.

I in strong form are:

ul —ul! = onT (40)

ol -n' —a!’.n'"=0 onI (41)

4.2. Weak coupling using Nitsche’s method

Nitsche’s method applied to the coupled Poisson’s system is given by:

o (VUI’V,UI)QI _ (nl kvl — pll. k”Vu”,vI) _ % ( Il kvl —pll. k”Vv”)

+ /8 (uI - ullva)F = <f7 UI>QI

T r

N | =

(42)
kII (VUII,V’UII)Q” o % (nII . kIIVUII _nI . kIV’U,I,UII)F _ % (UII,TLII . kIIvaI _nI . kIV’UI)F
+8 (T =l ') = (o
(43)

where the weak boundary conditionsion,; = (99 U 9Q!!) \ T are not written down for the sake
of simplicity. The use of Nitsche’s method for coupling domains weakly hasdjrextensively
been studied, for example i839]. We refer to p], for an overview of its properties and to the
introduction for further references. Again, an estimatorf@s needed and we use the one provided
by eq. (L3), wherein now

Al o

A= (44)
0 AII

and likewise forB.
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variational eqgn.

k (Vup, V”h)sz,szrm

—r (Th, o )me

o (Th, Vu)gr

in

% (Vop, Uh)szpm

algebraic form K,,U K,.% K,,U K, %
variational eqgn. —(oh - n,vp)T —{Th - m,u)r (fivn)a
algebraic form G2 G, U f

Table Ill. Terms concerned with the internal part of each donof the discrete variational and algebraic
form of egs. {5) to (48).

4.3. New formulation for parameter-free, symmetry-preserving wealicg

We first reconsider the weak form given in eq&0)(and Q1) and note that the parts of the
equations o2 and Qr, only concern the interiof2. They may thus be written independently
of each other for each subdomaiti and 7. On the contrary, the coupling conditions &t
i.e., egs. 40) and @1), are concerned with both domains. For reasons of consistency, wedlyeq
distribute their contribution between both subdomains. Let us define thpaséfor the unknowns
in each subdomain ds’ ¢ H'(Q}) andV;/! ¢ H'(QIT). Similarly, we defineS! c L?(©!) and
ST c L2(Q41). Utilizing egs. €0) and @1), the variational form of the problem consists of finding
ul € Vi, ol € I ull € VI, !l € I such that:

1
k (Vu,fl,Vv,Il) ;= (a,[ll n! —|—0'h nI7v,IL>p + = (VU,IZ,U{L) ; +
Q 9 n ol (45)
1
- ;k (W{“v“’[z)%n = (f,vn)qz Yol € V!
1 1 1
o (Tho)oy 45 (i Vud)gy = glmnt ol —uif)e =0 vri € 5
(46)
k (VU}ILI,VU’IZI)QH _ 5(”}11 .nt! +O_£I . n“,U,IlI> (Vvh ,ah )Q” +

e (47)

- fk (Voi!, vurl) o1 voil e ViH
1 1
— % (Th’ah)ﬂf‘ﬁn + E

<f7 UiILI>Q”

Tin

(Th,Vuh)an — %<T}{I -l uwll —ulyp =0 vril e I (48)
where the coupling terms from the respective other domain are marked in Titeefirst two
equations correspond to the first subdomain, while the last two equatimesgond to the second
subdomain.

Let U and X be the vectors of the unknown coefficients«gf and o}, respectively. For the
algebraic version of eqs49) to (48) we utilize the notation given in tablél for the terms
only concerned with one domain. The new terms concerned with the sewithg afomains are
collected in tableV/, where we have used the fact thet = —n/’. Further, we utilize the fact that

GLIT = GILI" andG1! = GLII" . The coupled problem written in matrix form then reads:
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20 S. KOLLMANNSBERGER ET. AL

Discrete variational eqn| —(a!’ - n!,v})r | —(a! - n!! v[T)p
Algebraic form GLIIxH GlLIx!
Discrete variational eqn| — (7 - n!/ !l | —(rH - nl u!)p
Algebraic form GLIyl GlLiy!

Table IV. Coupling terms of the discrete variational ancehlgic form eqs.45) to (48).

(1 - %) Kviu Kicr + %G{m' : 0 %Gibll UI .fI
|
Kl +3GL, Kl | iahl! 0 ! 0
77777777777777777 i I R B (49)
1 II
0 el DKL Kbl | ot ||
sGL N R . = s 0
4.4. Static condensation
We may compute the fluxes in eq.9) as:
_ 1 1
> = (Kkl,)™ <— (Kgu + 2G{,U> U’ - 2G{;§U”> (50)
= (i) (- (&t jot ) ot - Jetti) (51)

and condens&! andX!! out of the system eg4@). The equation for subdomain | reads:

. l I 1 I I 1 \1 I 1 I\ 1 III I\~ 1 ~i11 I
((1 n) Kuu <2Gua' + Kua’) (Kaa') Kau + QGau 4Gua (Kov) Gau U
_ I 1 I 1\~ } III 1 III 1ry~—1 II 1 II II
K’ua + 2Gua (Koa) 2Ga'u 2Guo (Kaa) Kau + 2G0u U
(52)

We then use the definitions given in eq3l), (32) and @34) to simplify the terms only concerned
with domain I. Equationg2) then reduces to:

1 T 1 -1 1 -1
I I I I I I IIT II II,1 I
<Kuu + 5 (Guu + (Guu) ) - ZGua’ (KUO‘) Go‘u - ZGua (Kaa) G(T’LL > U
1 I L RPN PR ry\—1 i, L II
75 Kuo + §Gu0 (KO'O') Go’u - iGuo (Koa) Kau + §G0u U (53)
Likewise, for subdomain Il we have:

(pets (k) (i pat) - 5 (ki + Jett ) (ki)™ 6ttt v

(Kii LG (K Gl v (Gl (@) - et (kL) G{,ﬁjl) Ul (54)
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variational eqn.|| —k"(Vu,’ - n! ol | =k (Vup!' - nd vl

i I1,Iy7l IIIyrlI
algebraic form G.'U G, U

variational eqn.| —k/(Vu,! - n!f Iy | =k (Vo - nl ul)r
algebraic form (GLLOTy!! (GLINTy!
Table V. Coupling terms from Nitsche’s method.

Further, we introduce the following identities:

KUK GLUT (G £
~GIL (KL, KLU = GIET 50)
KL (L) LI — (GO S
G KA - Gl 8)

which arise from Nitsche’'s method as defined in tableEquation 52) then reads (terms in blue
now mark the terms which differ from Nitsche's method, that is, the stabilizatroms)e

(Kt 5 (6Lt (@L)7) 6L (kL) Gl Gl (k22 Gttt U
1 1,11 11,1\T 1 IR PN R PN II\—L ~I1 Ir
<2 (Gu’u + (Guu7 ) )71Gua (Kacr) Ga’u - ZGua (Kcn7> Gau> U (59&)
Likewise, for subdomain Il we have:
(5 (Gt + (GLNT) Gl (L) 6L - (6t (2h) Gttt U

uo

(rit g (G4 (G1)") - (Gt (K2) ™ Gl G (L) Gl U™t (5o)

It is interesting to note that the penalty terms have a contribution which ar@essitbdomain |
and a contribution from subdomain Il. They ensure the stability of the methizghendently of the
geometry of the meshes in subdomain | and II, as proven in settion

4.5. Stability Analysis

In this subsection we prove that the formulation for weak coupling giveadsy 699 and 69h)

is stable. To do so, we follow a strategy similar to the one presente83jnIp order to show
the stability of the method for weak coupling, we will consider the unknowhso vanish on

the external boundary*** of subdomainZ, and the normal component of the stressés to be

null in the external boundary in subdomdih Further, to keep the proof as concise as possible, we
consider only the case in which the material constamtie the same for both domains. Additionally,
we assume the common bound@¥f! to be a straight line.
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=0 onre! (60)
oll.n!f =0 onIe! (61)

In this setting, we redefin€! c H}(}), where the zero subscript denotes functions vanishing
in the external boundary***. We define the norm:

', o u!t, e ]2 =

k 1 1
k||VUI||2L2(QI) + k;||Vu”||%2(Q”) + EHUI —u[ary + EHUIHQB(QgM) + EHO’HH%z(ng)

(62)

whereh is the cell size. The bilinear form for the global problem defined on bdbld@mnains is:

B ([u#ai,u{f,a,?] [U{L,T}{,U}ILI,T}{I]) =

1 1
k (Vu£7Vv£)Sz, - 2(0',? n! + 0',11 .nI7v,IL>r + -~ (Vv,{,ai)sz% — Ek (Vv{qui)Qé +

1 1
_ % (T}{’U{L)Q{‘in + E (T}{’vui)ﬂém — §<T}{ . n17u£ U£I>F+
. 1
R R N S T L) M AL A

1 1 1
—E (T;{Iyo',?)gn + — - (’Th ,Vu )ng - 2(7;{] n!! u,lf —u;ﬁ)r (63)

We suppose thdt;, andsS), are such that

Yon € Vi 3 € S | d1llonllZery < - s on)r + Gohl|Von | (64)

ITnllzay = llvnllzay,  I7all® < d2hllvnllzzr) (65)

wheredy, 01, d> are positive non-dimensional constants which depend on the geometeyroeth.
Conditions in egs.q4) and @5) are an assumption of the formulation, but these conditions hold for
the most common interpolation spaces (S33)[

We will show the stability of eq.g3) by obtaining an inf-sup condition in the norm of eg2).
Let us take[v], 71, v}l 7] = [ul, —of — Pk7] ull, —oll — 2k7!1], where7! is the function

in S} which makes eqs6€) and €5) hold foru}’ — u/, and7! is the function inS}! which makes
eqs. 64) and @5) hold foru!! — u!. 8 is a dimensionless constant to be defined. We have:

B ([uh o, uﬁ“ﬁl,a,ﬂl] 7 {ui —ol Ek‘ri SE %k;}{l]> _
I I II I 1 I I 1 I ;
k(Vuh»Vuh)QI <0';I .nf +crh<n ,uh)r+; (Vuh’ah)ﬂ%‘ ,;k <vuh’v“h)0§‘ "
in in
! I oI LI 1 I 1T 1
+E Ghyo'h,)nllﬂv —;(ah,Vuh)Q{ﬂ‘ 5<°'h,‘n Jup —up’)p n
in in
B -1 1 Bk (.1 I Bk _; 1
+E(Th’ah)9{u 7%(”’%"1)91@ +2h<'rh n “h*uh >F 4
in
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1 1 1
1T 1T 1 11 Ir 1 _Ir1 1 1
k (Vuh Vi )sz” - §<ah’ n' +ah mup e n (Vuh " Th )SZILI_ a ;k (vuh Vi )QII +
mn L"'L
+i 111 _ L (0T g IT +E< I IT IT Ty n
e Th +Th ol n Th s VUp ol 2 Tp T 5 Up Up)T
in in
B (11 11) Bk Bk _rr 11 1
z ; v ) o - >
Ton o oLl h< Up, aft + 2h< h Ko ounR) >
m mn
1 1,2 1 1,2
(1= 2 ) mvuti + el +
1/2 1/2
35/ I I Bkéz/ I I BkdL  rr 1,2 BkSo Iy2
whi/2 H“h - uh“L?(p)H"hH - W”uh - “h||L2(p)HvuhH + oh llup,” — ”hHL2<F) - THV(uh —up)ll +
1 11,2
(1= 2 ) mivadhiz + Ziiafh +
55;/2 . E 1 Bké 5k51 II 1,2 5’“60 Iy2
iz lug, *uh“Lz(p)Hﬂh = s ”uh *uh||L2(p)HVuh I+ ——llup —upllpe @y = v =l >
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202 i1 I
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where~ is an arbitrary dimensionless constant. We now take

1
209 1-= 2
n>1, 7>5 , 8 < min ﬁ,f , (66)
mn (55 +60) v
and we take into account that:
i [ul, —of — Zasl,ull, —off - Zazlr| 2 -
h h
k 1 B 1 B -
kHV“{,,HiZ(QI) + kHVU{LIHi%QH) + ;HH{L - “{,,IHZLQ(F) + ;Hafi - gk"'éHQ + 7”0-1’1 _ Ek"'}{IHQ <
k 2 . ~
FIVupllG 2 ory + MIVar 122 qrry + 2 llur, = wil 120y + 1ol e Hr,{n"‘ 2 <
k 2
FIVurlG qry + MV 122 qrry + 4 (0 + 48202 lug, —wi 11720y + © Hahl\2 + ;Hai’HQ <
max(1 + 48282, 2)[[uf, o, up’, o117

which gives us the following theorem:

Theorem. Suppose that eqs4) and 65) hold andr > 1. Then, the bilinear form eq60) satisfies
that for all[u},, o}, ui’, o} there exis{v}, 7}, v}, /'] anda > 0 such that

B([U}II,O‘}IL,U}ILI,U;’II] ['UfIwTifvviilvTh D > am [uhao-llwuilaah ] H|||| [Uhv'rh’vh 7Th ] H\

4.6. Examples

In this section we present various examples, where the performancemdéthmethod is compared
to Nitsche’s method in the framework of bgthand B-spline version of the FCM.
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4.6.1. Constant coefficients, non-conform discretizatiorisdnd p. This introductory example is
to provide a first insight into the performance of the weak coupling methashdiy egs. 99
and 69b). The starting point is the 2D Poisson’s problem with a smooth solution ali@adgnted
in section3.3. This time, however, the problem is split into two domai’sand Q! which are
weakly coupled. The continuous situation is depicted inJig.We choose to discretiz@’ with

- u(z,0) = sin(nx) 08 0.8
I~ —
B II U(ZC, 1) =0.0
= @ u(z,1) = 0.0 R 06
u(y,0) = 0.0 2 ik
. u(y,1) = 0.0 ' =
i 1
S Q 0.2 0.2
L=l
0 L |
L 0 05 1 0
I 1.0 .| X
\ \
(a) Continuous view (b) Numerical solution with the BSpline version

and anon-conforming discretization ih andp
(@ with p=3 and Q! with p=2) computed with
egs. 699 and E9h)

Figure 9. 2D Poisson’s problem as in figjbut consisting of two domair@’ and!, weakly coupled aF.

8 x 4 elements while2!/ is discretized by x 4 elements. The discretization is depicted in fig.
among with a snapshot of the solution. Tien-conformity of the discretization ot manifests
itself not only in the appearance of hanging nodes. Additionally, we dizer@’ with p and /!
with p — 1. The discretizations are, thuspn-conforming inh andp across the interface. However,
in a first step, the domains do not overlap, i.e., they are coupled dlofitne coupled solution
depicted in fig.9b does not show any (visible) kinks or jumps acr@ssThis demonstrates that
eq. @0) is satisfied.

The corresponding fluxes depicted for both directiorendy are depicted in figl0. They are
smooth acrosE which demonstrates that ed.1j is also satisfied.

Figure 11adepicts the convergence in the energy norm as we incredisem 2 to 9 for Qf
and from1 to 8 for Q//. We consider the- and B-spline version of FCM, using both standard
Nitsche and the method proposed here for patch coupling. The rate @rgence is exponential
until numerical accuracy is reached and the curves for all methodsaataally congruent to one
another. The condition numbers are depicted infio. They remain quite low for the-version
and are once again higher for the B-Spline version due to the sub-optimithe 8Spline basis
with respect to the condition numbers. The plot of the smallest eigenvalue atiffness matrix
fig. 11cagain shows that all discrete eigenvalues remain positive.

4.6.2. Constant coefficients, overlapping discretizatioie. now change the discretization of the
example given in section.6.], (fig. 98) such that the domair@’ andQ!! are overlapping in the
region(0 < z < 1.0) A (0.45 < y < 0.55). We weakly enforce the continuity (eqg0j and @1)) at
the boundanyt® and explicitly note that™ is now inclined and internal to the discretization of both
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(a) Numerical flux inz-direction (b) Numerical flux iny-direction

Figure 10. Flux corresponding to figb.
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(b) condition number of system stiffness matrix (c) smallest eigenvalue

Figure 11. analysis corresponding to fip

domains. The continuous situation is depicted infiga The solution is depicted in fig.2balong
with its Cartesian discretization and the triangular integration mesh. The integisatiarried out on
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(a) Continuous view (b) Numerical solution with the B-Spline versioft{ with

p=3AQM withp =2)

Figure 12. Constant coefficients, overlapping discretimat Both computational domaitis’ andQ!! have
an extension of x y = 1.0 x 0.55. They overlap or{0 < z < 1.0) A (0.45 < y < 0.55).

Qr,, only. Note thatQr,, € Q! lies belowl’ andQr,, € Q! lies abovel". The obtained numerical
solution is smooth, already at low polynomial orders. This is particularly erhmethe plot of the
flux in y-direction in fig.13a The plot of the fluxes in x-direction is omitted as it provides no further
insight. Again, we note an exponential convergence inf&h before it levels off at a low strain
energy due to the bad conditioning depicted in figc The corresponding lowest eigenvalues are
depicted in fig13d

4.6.3. Bimetal strip: discontinuous coefficiem®n-conforming discretizations ih and p. This
example serves to show that the proposed method has no difficulties iseapng discontinuities
in the derivatives of the solution across material interfaces which arise iintiterial coefficients
jump as well. The first example with jumping coefficients is a bimetal strip on whichaipéace
problem is solved. Its solution is depicted in fida Dirichlet boundary conditions are applied
at the lower end:(x,0) = 0 and on the upper end(x, 1) = 1. We split the domain into a lower
part Q; in which the material coefficient i/ = 1Vz,y € Qf and an upper pa®’! in which
kT =2V, y € Q1. The interface between the two domaihsy = 0.5 is a straight line, parallel
to the x-axis. We discretiz@’ with 5 x 4 elements witlp = 1 organized in one patch covering all
of Q! and likewiseQ!! with 3 x 3 elements withp = 1. This results in hanging nodesat

We expect a linear solution ip and a constant solution im with a kink at the interfacd.
Since the solution is already represented exactly-atl, convergence-studies are not carried out.
Figure 14adepicts the numerical solution along with the discretization. The fluxes ascgto
exhibit a jump af” and should remain constant within the domains. Fidutedepicts a view of
the fluxes iny-direction along with the chosen discretization. The exact solution is matghéa u
machine-precision, as expected.

4.6.4. Inclusion problem: discontinuous coefficients and embeddedidoithe last example aims
at demonstrating the performance of the method given by &§s) and 69b) in an embedded
domain situation. The problem consists of an infinite medium, where the mateeiicEmnt is

k! =1, with a circular inclusion, where the material coefficientid = 0.2. A constant flux is
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Figure 13. Analysis corresponding to fitRa
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Figure 14. Bimetal strip: solution(z, y) and derivative of.(z, y) in y along with discretization

applied along the x-direction at large distances from the inclusion. THegteaésolution is given
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Y T'h,
k1 =1.0
w
I'p, I'p) ko = 0.2
r=1.0
w=3.0
QQ w
Q z
1 I FD] : U(Jj,’y) = kf.]f_llw T
2
FDl T FDQ : 'LL(iB,y) = (1 - %JW)%
I'p, I'p, r
Figure 15. Example: circular inclusion
by
2k if 22 442 < r?
ulayy) = B ’ (67)

(1- bk )2 if a2 442 > 2
wherer denotes the radius of the inclusion. Due to its symmetry, only a quarter of thaidas
modeled and the Dirichlet boundary conditions are applied to the boun@lgriesndI" p, according

to the analytical solution. The continuous view of the example is depicted ihSidhe results are
depicted in figsl6ato 16f. The performance of the new method carries over from the rest of the
examples provided in this section. This example shows how well discontinuittes iderivatives

are approximated, also in an embedded domain situation (seé®igand16¢). To clear the view,

we omit depicting the integration mesh and only show the Cartesian discretizatisioh the
shape functions are spanned.

5. SUMMARY, CONCLUSIONS AND SUGGESTIONS FOR FURTHER RESEGR

Starting point of this paper was the formulation given 88][for the application of boundary
conditions which must not necessarily conform to the finite element meshattréctive in the

sense that there is no need to compute a stabilization parameter. We demanitaathis method
is able to provide results of similar accuracy as the more classical Nitscheislifation which calls

for the computation of stabilization parameters.

We have then used the fundamental ideas provide8dfdr the derivation of a new formulation
for the weak coupling of domains. It is, as well, free from problem-ddpeh stabilization
parameters which need estimation. The new, coupled formulation worksarelistretizations of
high order, too. It is not specific to the underlying discretization andgpves symmetry. It is thus
well suited for the weak coupling of trimmed B-Spline patches and high-auhredded domain
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(a) solution, discretization and integration

(c) derivative ofu(z, y) in y along
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(b) derivative ofu(z,y) in x along
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(e) condition number of left hand side of eqd0(and @1) (f) smallest eigenvalue of left hand side of ed¥)(and 1)

Figure 16. Circular inclusion, results.

situations. We are able to prove stability and clearly point out the differenblitsche’s method.
While this are very nice features, we see some room for improvement as well.

The formulation carries the material matrix in the Nitsche terms as well as in the gidoma
stabilization terms. This poses no extra effort as long as geometric noitieeare not considered.
In this case one would need the directional derivative of practically athdeinvolved in the
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entire formulation. If one sets out to perform these analytically, this willltésua complicated
formulation. Automatic differentiation would probably be the best way to go inddse, especially
if one intends to avoid redoing the derivatives for each material law emgldylee same is true,
of course, for Nitsche’s method but we would like to point out that the rewfilation does not
alleviate this burden.

The most important advantage compared to Nitsche’'s method is the avoidattiee swlution
of auxiliary eigenvalue problems for the estimation of the stability parameteisisteplaced by
computing the inverse of a matrix similar to a mass matrix defined on the remainingf plaetcut
element. However, it is to be remarked that both problems are formulated onttbéiements and
this leads to badly conditioned problems. Throughout the computations wedativery close
correspondence between the results of Nitsche’s method and the newdnirettitee computed
examples.
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