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a b s t r a c t

This second part of the work describes the numerical aspects of the developed contact domain method for
large deformation frictional contact problems. The theoretical basis of this contact method is detailed in
the first part of this work. Starting from this, the present contribution focuses on describing important
algorithmic details that go along with the finite element implementation for two-dimensional problems.
Important aspects are the construction of the contact domain mesh, via a constraint Delaunay triangula-
tion, the linearization of the discretized contact contributions and some important technical aspects
about the extrapolation procedure used for the predictive active set strategy. Finally a set of numerical
examples is presented to demonstrate the performance of the developed contact strategy. Demanding
static and dynamic contact problems in the context of large deformations, including frictional effects
as well as self contact, show the wide applicability and the robustness of the proposed method.

� 2009 Elsevier B.V. All rights reserved.
1. Introduction method, this second part of the work concentrates on these numer-
In the first part of this work [14] the theoretical aspects of the so-
called contact domain method have been presented. The method uses
a so-called contact domain to discretize the contact interface. This
contact domain can be interpreted as a fictive intermediate region
that connects the potential contact surfaces and has the same
dimension as the deformable contacting bodies. The utilized contact
domain is discretized with a non-overlapping set of patches that
leads to a pairing of the finite element nodes in the contact bound-
aries. Based on this discretization scheme, the geometric normal
and tangential contact constraints are formulated in terms of dimen-
sionless, strain-like measures. Another important feature of the pre-
sented contact strategy is the introduction of a computational
contact strategy that utilizes a stabilized Lagrange multiplier formu-
lation for the enforcement of the contact constraints. This allows the
condensation of the additional unknowns to end up with a purely
displacement driven problem. For the determination of the active
subsets of the contact domain, where the contact/friction restric-
tions have to be imposed, a predictive active set strategy is utilized.

Since this approach brings new and very specific ingredients
with respect to more classical contact methods [11,17], the corre-
sponding numerical and algorithmic treatment needs detailed
attention. In this sense, and in order to provide the interested read-
er with suitable information to ensure the reproducibility of the
ll rights reserved.
ical and algorithmic aspects, provides detailed information about
its finite element implementation and supplies a representative
set of examples displaying the performance of the proposed meth-
odology in a number of different contact scenarios.

The remaining of this paper is organized as follows: Section 2
shortly describes the problem to be analyzed, summarizes some basic
notations and restates the modified variational formulation utilized
within the contact domain method derived in [14]. The construction
of the contact domain mesh, which can in turn be interpreted as a
contact searching strategy, is illustrated in Section 3. In Section 4
the spatial discretization of the contact virtual work and the contact
constraint variational equations is given, followed by the necessary
linearization of these contributions. Furthermore a matrix notation
for the different elemental contact residuals and stiffness contribu-
tions is derived. Important technical aspects of the predictive active
set strategy, introduced in [14] are described in Section 5. The perfor-
mance of the proposed algorithm is analyzed in Section 6, by means of
various numerical examples, including static and dynamic, friction-
less and frictional, large deformation (self) contact problems. Finally,
Section 7 provides some concluding remarks.

2. Problem description

In this section a frictional large deformation contact problem
will be very briefly recalled to introduce some notations subse-
quently used in this paper. The contact domain, appropriate gap
definitions and the modified variational problem of the frictional

mailto:xavier.oliver@upc.edu
http://www.sciencedirect.com/science/journal/00457825
http://www.elsevier.com/locate/cma


2608 S. Hartmann et al. / Comput. Methods Appl. Mech. Engrg. 198 (2009) 2607–2631
contact problem are summarized for the use of linear triangular
patches for the approximation of the introduced contact domain.
For a detailed derivation of these expressions, the reader is referred
to the first part of this work [14].

2.1. Basic notations

Dealing with contact problems, one might need to face scenarios
of numerous deformable bodies coming into contact with each other
(multiple contact), as well as the possibility, that parts of the bound-
ary of one specific body might come into contact with another part of
the boundary of the same body (self contact). Without lacking gener-
ality, the subsequent description will be done on basis of one contact
pair. A two-dimensional, large deformation contact problem of two
deformable bodies X(a), a = 1,2, eventually coming into contact
within a specific time step [tn, tn+1] is shown in Fig. 1, where

uðaÞ ¼ xðaÞnþ1 � xðaÞn 8xðaÞn 2 XðaÞn ð1Þ

defines the incremental displacement field of the two contacting
bodies.
Fig. 1. Notation for a two body large deformation contact problem in a specific time step

Fig. 2. Linear triangle contact patch in p
The boundaries oX(a) of X(a) are divided into CðaÞu , where displace-
ments are prescribed, CðaÞr where tractions are prescribed and a part
CðaÞD where the bodies might be in contact at the end of the time inter-
val. It is assumed that the following conditions are satisfied:

CðaÞu [ CðaÞr [ CðaÞD ¼ oXðaÞ and

CðaÞr \ CðaÞu ¼ CðaÞr \ CðaÞD ¼ CðaÞu \ CðaÞD ¼ ;: ð2Þ
Additionally a so-called contact domain Dn is defined, joining the pos-
sible contact boundaries CðaÞD . This contact domain has the same
dimension as the contacting bodies and will be approximated by a
set of non-overlapping, linear triangular patches (see Fig. 1). Within
this contact domain, yet another incremental displacement field u(D)

is defined, which describes the motion of any point within this do-
main. It is linearly interpolated from the corresponding incremental
displacements at the contacting boundaries (see Part 1 [14], Section 2).

2.2. Geometrical gap

The normal and tangential gaps are defined for every point
within the contact domain as the projection of the final gap vector
g(xn) onto its current normal and tangent direction (see Fig. 2):
[tn, tn+1] and the approximation of the contact domain with linear triangular patches.

revious and current configuration.
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gNðxnÞ ¼ nðpÞ � gðxnÞ ¼ gð0ÞN ðxnÞnðpÞ � f ðpÞ � NðpÞ;
gTðxnÞ ¼ tðpÞ � gðxnÞ ¼ gð0ÞN ðxnÞtðpÞ � f ðpÞ �NðpÞ:

ð3Þ

Herein n(p) and t(p) are the current patch-wise constant normal and
tangential vectors, N(p) is the reference (material) normal vector and
f (p) is the incremental gradient of deformation tensor, defined with

f ðpÞ ¼ 1þ GRADðuðpÞÞ; ð4Þ

where 1 stands for the second order unit tensor and GRAD(u(p)) is
the material gradient of the incremental displacement field within
a contact patch. Furthermore gð0ÞN ðxnÞ is the initial normal gap of a
point xn 2 DðpÞn (see Fig. 2).

2.3. Gap intensities

A distinguishing feature of the proposed method, is the usage of
dimensionless, strain-like measures to formulate the geometrical
contact constraints. Therefore the so-called normal and tangential
gap intensities

�gðpÞN ¼
gNðxnÞ
gð0ÞN ðxnÞ
��� ��� ¼ sign gð0ÞN ðxnÞ

� �
nðpÞ � f ðpÞ �NðpÞ ð5Þ

and

�gðpÞT ¼
gTðxnÞ
gð0ÞN ðxnÞ
��� ��� ¼ sign gð0ÞN ðxnÞ

� �
tðpÞ � f ðpÞ � NðpÞ; ð6Þ

are defined by dividing the geometrical gap with the absolute value
of the initial normal gap. Although the geometrical gaps (gN(xn),
gT(xn)), defined for every point xn in the contact domain, may vary
within a specific contact patch, it needs to be emphasized, that
the corresponding gap intensities turn out to be patch-wise con-
stant. Then, superscript (�)(p) in (5) and (6) identifies the constant
entities for the whole patch p. This is an important property which
will allow an integration of the arising contact terms in the varia-
tional problem (see Section 4).

2.4. Variational problem of frictional contact domain method

Applying a finite element discretization scheme to solve contact
problems, an appropriate weak form of the underlying boundary
value problem is needed. The contact domain method presented
in [14] enforces the contact constraints using a generalization of
the stabilized Lagrange multiplier method used in [8]. This allows
for the condensation of the introduced Lagrange multipliers (kN,kT),
which represent the normal and tangential contact tractions at the
contacting boundaries.

It is assumed that the active contact and friction domains, ful-
filling the appropriate constraints at the end of the considered time
step are known in advance by means of an active set strategy (see
Part 1 [14], Section 5), which allows to translate the initial inequal-
ity constrained problem into an equality constrained one (see Part
1 [14], Section 3). The active normal contact domain DðNÞn � Dl

n is
then further subdivided into a part DðTÞn , where stick conditions
have to be applied, and into the remaining part DðNÞn n DðTÞn , where
slip conditions, fulfilling an appropriate friction law, have to be en-
forced. Using appropriate spaces for the incremental displace-
ments, u = [u(a),u(D)], and their variations, du = [du(a),du(D)]
(virtual displacements), as well as for the introduced Lagrange
multipliers, k = [kN,kT], and their variations, dk = [dkN,dkT], the uti-
lized variational equations can be summarized. The virtual work
principle (see Part 1 [14], Section 4) reads

dPmechðu; k; duÞ :¼ dPint;extðuðaÞ; duðaÞÞ þ dPcontðuðDÞ; duðDÞ; kÞ ¼ 0;

ð7Þ
where dPmech is the total virtual mechanical work and dPint,ext de-
notes the sum of the virtual work arising from the internal and
external forces of the contacting bodies. Various variational energy
principles can be used to derive an expression for the virtual work
done by the internal and external forces of the respective body. As
the present work concentrates on the description of the contact
phenomena, this will not be detailed any further. The main focus
of this work will be on the second contribution in Eq. (7), namely
the contact virtual work. Utilizing the variations of the normal
and tangential gap intensities, the contact virtual work expression
can be written as

dPcontðuðDÞ;duðDÞ;kÞ¼
Z

DðNÞn

kNd�gNdD|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
normal contact

þ
Z

DðTÞn

kTd�gT dD|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
stick

þ
Z

DðNÞn nD
ðTÞ
n

Td�gT dD|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
slip

:

ð8Þ

Herein, T ¼ �lsignð�gTÞjkNj represents the classical coulomb fric-
tion law, with l being the coefficient of friction. As can be seen in
Eq. (8), the contact virtual work expression consists of three differ-
ent portions. An integral over the active normal contact domain
DðNÞn , the active stick domain DðTÞn and the slip domain DðNÞn n DðTÞn ,
respectively. For the enforcement of the contact constraints, two
additional variational equations (see Part 1 [14], Section 4)

dPkN ðu; kN ; dkNÞ ¼
Z

DðNÞn

dkN�gN dDþ
Z

oDðNÞn \C
ðaÞ
D

dkNsðtN � kNÞdC|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
additional term

¼ 0;

dPkT ðu; kT ; dkTÞ ¼
Z

DðTÞn

dkT �gT dDþ
Z

oDðTÞn \C
ðaÞ
D

dkTsðtT � kTÞdC|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
additional term

¼ 0;

ð9Þ

are derived, split into the normal and tangential parts. Eqs. (9)1 and
(9)2 are the (stabilized) variational constraint equations to enforce
the normal and frictional (stick) contact conditions within the
appropriate active contact domains DðNÞn and DðTÞn . The added terms
can be interpreted as stabilization terms, which allow the conden-
sation of the introduced Lagrange multipliers, where s is a user de-
fined stabilization parameter, which will be discussed later.
Furthermore, tN and tT are the projections of the traction vector at
the boundaries of the contacting bodies onto the current normal
and tangential directions, given with

tN ¼ n � P � N and tT ¼ t � P � N; ð10Þ

where P is the first Piola–Kirchhoff stress tensor with respect to the

previous configuration XðaÞn

� �
. It is worth noting, that the normal

and tangential tractions defined in Eq. (10) live in the boundary of

the body CðaÞD and not in the contact domain Dl
n.

3. Contact pairing algorithm

Finding the appropriate contact pairs is generally a difficult
task, which has lead to various proposals for effective contact
searching algorithms (e.g. [1,13,18,19]). Yang and Laursen [19] ex-
tend their contact searching algorithm for finite sliding mortar for-
mulations [18] to the case of self contact. In order to achieve a
comparable computational cost in their self contact searching algo-
rithm, they need to add some special criterions to their basic algo-
rithm. In this work, a general contact pairing strategy is presented,
which can naturally be applied to any contact scenario, including
self contact. It is based on a so-called constraint Delaunay triangu-
lation, producing at the same time the necessary contact domain
mesh between potential contact pairs. The technical aspects of this
procedure are detailed in the following.
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3.1. Construction of the contact domain mesh

In Fig. 3 the basic steps of the construction of the contact do-
main mesh are shown. Fig. 3a displays two discretized bodies,
eventually being in contact. The contact domain mesh to be con-
structed should have the property to connect the boundary nodes
of the discretized bodies. Therefore all the interior nodes of the
discretized bodies are removed. A key step in the generation pro-
cess is the shrinkage of the outer boundary, taking into account
the outward normals at the boundary nodes, which are computed
as the weighted average of the normals of the adjacent boundary
lines. That means, that every finite element node on the contact
boundary is being offset in the negative direction of its outward
normal by a user defined distance (shrinkage parameter), depend-
ing upon the element size. The removal of the interior nodes, as
well as the shrinkage or offset of the boundary nodes is displayed
in Fig. 3b. This shrinkage of the approximated boundaries of the
contacting bodies has the effect, that the potential contacting sur-
faces of the solids are separated from each other in such a way,
that an automatic mesh generation algorithm can generate a tri-
angulation (domain mesh). Subsequently only the position of the
modified boundary nodes and their specific outward normals are
needed for the remaining steps. This information is then given to
an automatic triangulation algorithm, which connects the bound-
ary nodes. Another parameter (the alpha shape parameter [10]) is
supplied to the mesher, such that only boundary nodes, that are
sufficiently close to each other are connected. The result of this
automatic triangulation is the contact domain mesh, given in
Fig. 3c. It is worth noting, that for the implementation of the pre-
sented contact strategy, only the connectivity of the boundary
nodes, defining a contact domain element, is needed and it will
be worked with the original spatial position of the finite element
nodes placed at the boundaries of the contacting bodies (see
Fig. 3d). That means that the important step of repositioning
the boundary nodes (shrinkage) is only a technical necessity to
allow the meshing algorithm to build up the connectivity and
does not introduce any form of modifying the geometrical
description of the contacting bodies.
Fig. 3. Generating the contact domain mesh: (a) two meshed bodies; (b) removal of the i
mesh; (d) retrieve of original boundary and mesh.
4. Finite element approximation

To solve the variational problem in Eq. (7), the deformable
bodies X(a) as well as the contact domain Dn are discretized using
finite elements and contact patches. The discretization of the con-
tacting bodies is done using standard, linear CST (constant strain
triangle) elements. This allows an easy evaluation of the discrete
variational constraint equations, as the stress field within such
an element is constant (see Part 1 [14], Section 5).

4.1. Discretization of the contact domain

4.1.1. Contact domain discretization
As already introduced in the previous sections, the subdivision

of the contact domain will be done on basis of linear, triangular
elements (patches). A typical contact domain element is shown
in Fig. 2 in the previous and current configuration. It is obvious,
that every of these elements has one node (vertex) placed on the
boundary of one contacting body and two on the boundary of the
other. To ease the further documentation, the local numbering of
the nodes within one contact element will be used as shown in
Fig. 2. Therefore node 3 is always the individual node and the
nodes 1 and 2 are placed on a shared edge with an adjacent finite
element of a contacting body. Then the displacement field in the
contact domain is approximated with

uðDÞ � uðpÞðxnÞ ¼
X3

I¼1

NIðxnÞdðDÞI 8xn 2 DðpÞn : ð11Þ

Herein, NI are the standard linear interpolation functions for trian-
gular finite elements and dðDÞI are the incremental nodal
displacements.

Some of the beneficial consequences of this choice of approxi-
mation have already been discussed in the first part of this paper
and the direct consequences will be shown subsequently. The
patch-wise constant unit normal and tangential vector as well as
the length of the common edge (base-side) L(p) and the absolute
element height H(p) are easily calculated on basis of the element
geometry in the previous configuration Xn (see Fig. 2):
nterior nodes and shrinkage of the boundary; (c) construction of the contact domain
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TðpÞ ¼ 1
LðpÞ
ðx1 � x2Þ with LðpÞ ¼ kx1 � x2k; ð12Þ

then using the definition

NðpÞ ¼ TðpÞ � ê3; ð13Þ

where ê3 stands for the out-of-plane unit vector leads to the unit
normal vector

NðpÞ ¼
T ðpÞ2

�TðpÞ1

 !
ð14Þ

and finally the absolute element height is given with

HðpÞ ¼ jðx3 � x1Þ �NðpÞj: ð15Þ
4.1.2. Discretization of the Lagrange multipliers
Using the modified variational equations (7) and (9), suitable

approximations for the introduced normal and tangential Lagrange
multipliers have to be chosen. Therefore piece-wise constant inter-
polation functions w(p) are used:

kN � kh
N ¼

XnN

p¼1

wðpÞKðpÞN ; kT � kh
T ¼

XnT

p¼1

wðpÞKðpÞT ;

wðpÞðxnÞ ¼
1 8xn 2 DðpÞn ;

0 8xn R DðpÞn ;

( ð16Þ

where nN and nT indicate the number of patches of the active normal
contact domain DðNÞn and the active stick domain DðTÞn , respectively.
Furthermore, KðpÞN and KðpÞT represent the discrete values of the normal
and tangential Lagrange multipliers in a specific contact patch. A
patch-wise constant approximation of the Lagrange multipliers
may seem to be a very drastic choice, but this can be properly moti-
vated. The introduced Lagrange multipliers are supposed to represent
the tractions in the contact interface. Their evaluation is directly
linked to the surface tractions (tN, tT) in the contacting bodies through
the variational constraint equations (9). Working with CST elements,
only element-wise constant stress states can be represented and
therefore, the surface tractions (tN, tT) are going to be constant along
the base-side of a contact patch, as the associated normal and tangen-
tial vectors are patch-wise constant. Furthermore, the employed gap
intensities ð�gN; �gTÞ, appearing in Eq. (9) are constant within a contact
patch. Therefore the introduced Lagrange multipliers can only repre-
sent constant contact tractions and consequently a patch-wise con-
stant approximation is a suitable choice.

As the subsequent explanations are based on one contact do-
main element (patch), the super-/subscripts ð�ÞðpÞn will be omitted
in the following.

4.2. Local constraint enforcement

Due to the element-wise approximation of the Lagrange multi-
pliers, the enforcement of the contact constraints in Eq. (9) can be
decoupled and thus enforced separately for every single contact
domain element. In fact, every single contact domain element
can be interpreted as an individual contact domain itself, such that
the definition of the normal and tangential vectors does not need
to be conforming across the elements. Furthermore, one contact
domain element, which is identified as being active for normal
contact, has either to fulfill a stick or a slip condition. Assuming
that a specific contact domain element needs to enforce a stick
condition, the following two constraints have to be fulfilled:

dPh
kN
ðd;KN; dKNÞ ¼

Z
D

dKN�gN dDþ
Z

C
dKNsðtN �KNÞdC ¼ 0;

dPh
kT
ðd;KT ; dKTÞ ¼

Z
D

dKT �gT dDþ
Z

C
dKTsðtT �KTÞdC ¼ 0:

ð17Þ
Herein C stands for the base-side of the contact element and tN and
tT are the normal and tangential tractions in the finite element of
the contacting body sharing the common edge (the base-side) with
the contact domain element (see Eq. (10)). As the spatial discretiza-
tion of the contacting bodies is done with CST elements, the stress
field in the solids is constant within one finite element and there-
fore the tractions are constant along the common edge. Further-
more the normal and tangential gap intensities �gN and �gT are
constant within one contact domain element (see Eqs. (5) and
(6)). Finally, due to the element-wise constant approximation of
the normal and tangential Lagrange multipliers in Eq. (16) and a
patch-wise constant stabilization parameter s, the integration of
the discrete variational constraint equations (17)1+2 can be done
analytically. UsingZ

D
dD ¼ 1

2
LH and

Z
C

dC ¼ L; ð18Þ

where L is the length of the base-side and H is the absolute height of
the reference triangular patch (see Fig. 2), which in turn displays the
absolute value of the initial normal gap gð0ÞN

� �
3
¼ gð0ÞN ðx3Þ of the ver-

tex node 3

H ¼ gð0ÞN ðx3Þ
��� ��� ¼ gð0ÞN

� �
3

��� ���; ð19Þ

Eq. (17)1+2 can be solved for the elemental normal and tangential
Lagrange multipliers

KN ¼ tN þ
1

2s
ðgNÞ3 and KT ¼ tT þ

1
2s
ðgTÞ3: ð20Þ

For this derivation, the element-wise constant normal and tangen-
tial gap intensities have been formulated based on the geometric
gaps of the discrete vertex node 3

�gN ¼
gNðx3Þ
gð0ÞN

� �
3

��� ��� ¼ ðgNÞ3
H

and �gT ¼
gTðx3Þ
gð0ÞN

� �
3

��� ��� ¼ ðgTÞ3
H

: ð21Þ

In here, (gN)3 = gN(x3) and (gT)3 = gT(x3) denote the geometrical nor-
mal and tangential gaps of the vertex node 3 (see Eq. (3)):

ðgNÞ3 ¼ gð0ÞN

� �
3
n � ðNþ GRADðuÞ � NÞ

¼ gð0ÞN

� �
3
n �Nþ gð0ÞN

� �
3
n � GRADðuÞ �N;

ðgTÞ3 ¼ gð0ÞN

� �
3
t � ðNþ GRADðuÞ �NÞ

¼ gð0ÞN

� �
3
t � Nþ gð0ÞN

� �
3
t � GRADðuÞ � N:

ð22Þ
4.3. Exact evaluation of the discrete constraint equations

Taking a closer look at the normal and tangential gap definitions
in Eq. (22) might give rise to some concerns. What happens if the
initial normal gap gð0ÞN

� �
3

of the vertex node 3, actually measuring
the distance between contacting boundaries, tends to zero? The
first part of the dot product will tend to zero, but at the same time,
the gradient of the displacement field in normal direction will tend
to infinity. In the following it will be shown that the second part of
the gap definitions in Eq. (22) can be exactly computed, indepen-
dently of the value of the initial normal gap gð0ÞN

� �
3
. Using

GRADðuÞ � N ¼ ou
oN

ð23Þ

and the linear discretization of the displacement field within a con-
tact domain element in Eq. (11), the interesting part of Eq. (22) can
be written as:

gð0ÞN

� �
3
GRADðuÞ � N ¼ gð0ÞN

� �
3

X3

I¼1

oNI

oN
dI: ð24Þ
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In Fig. 4 a geometrical interpretation of the first part in Eq. (24) is
shown. Multiplying the shape functions with the initial normal
gap gð0ÞN

� �
3

allows for a direct evaluation of this term, which is to-
tally independent of gð0ÞN

� �
3
:

gð0ÞN

� �
3

oN1

oN
¼ �A

L
; gð0ÞN

� �
3

oN2

oN
¼ �B

L
; gð0ÞN

� �
3

oN3

oN
¼ 1: ð25Þ

Therefore the evaluation of this term can be cut down to a pure geo-
metrical problem. It is only necessary to get the ratios of how the
normal projection of node 3 intersects the base-line, which is de-
fined by the nodes 1 and 2 in the previous configuration. This can
be uniquely evaluated no matter of how distorted the contact do-
main element is, even if the normal projection of node 3 onto the
base-line lies outside of the edge 1–2 (see Fig. 5). Thus the normal
and tangential gaps (see Eq. (22)) can be evaluated with:
Fig. 4. Normal direction derivatives of the shape functio

Fig. 5. Normal direction derivatives of the shape functio
ðgNÞ3 ¼ gð0ÞN

� �
3
n �Nþ n �

X3

I¼1

gð0ÞN

� �
3

oNI

oN

� �
dI;

ðgTÞ3 ¼ gð0ÞN

� �
3
t �Nþ t �

X3

I¼1

gð0ÞN

� �
3

oNI

oN

� �
dI

ð26Þ
4.4. Contact contributions

After the determination of the discrete Lagrange multipliers, by
enforcing the contact constraints, the resulting contact contribu-
tions can be computed. Therefore the contact virtual work expres-
sion in Eq. (8) is discretized using the introduced approximations.
To shorten the expressions, the contact contributions will be split
into a normal contact, a stick and a slip part, respectively. In the
following they will be specified for one contact patch.
ns (regular element) in the previous configuration.

ns (distorted element) in the previous configuration.
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4.4.1. Normal contact
The normal contribution of the contact virtual work expression

(8) is given with

dPðNÞcont ¼
Z

D
kNd�gN dD: ð27Þ

Its evaluation necessitates the variation of the normal gap intensity,
which has been derived in the Appendix of the first part of this pa-
per [14]. It is given with

d�gN ¼ �gNn � gradðduÞ � n; ð28Þ

which again is constant within one contact domain element. There-
fore Eq. (27) can again be evaluated analytically using Eq. (18)1.
Introducing the spatial approximation and using Eq. (21)1 finally
leads to

dPðNÞcont ¼
L
2

KNn �
X3

I¼1

ðgNÞ3
oNI

on

� �
� ddI: ð29Þ

Similarly to what has been shown for the expressions in Eq. (25)
holds for the terms appearing in brackets in (29). They can be eval-
uated on basis of the current geometrical properties of the contact
domain element with

ðgNÞ3
oN1

on
¼ � a

l
; ðgNÞ3

oN2

on
¼ � b

l
; ðgNÞ3

oN3

on
¼ 1; ð30Þ

where l is the length of the base-side of a contact domain element
and the fractions a and b have the same meaning as A and B (see
Figs. 4 and 5), but now evaluated in its current configuration.

4.4.2. Tangential contact – stick part
If a contact domain element is active in stick, the following con-

tribution of the virtual work expression (8) needs to be considered:

dPðTÞcont ¼
Z

D
kTd�gT dD: ð31Þ

The necessary variation of the tangential gap intensity has as well
been derived in the Appendix of the first part of this paper [14]. It
reads

d�gT ¼ �gNðn � gradðduÞ � tþ t � gradðduÞ � nÞ þ �gT t � gradðduÞ � t ð32Þ

and is again constant within a contact domain element. Inserting
the finite element approximations and using Eqs. (18)1 and (21)
yields the stick contribution to the contact virtual work for one con-
tact patch:

dPðTÞcont ¼
L
2

KT ðgNÞ3n �
X3

I¼1

oNI

ot

� �
� ddI þ t �

X3

I¼1

ðgNÞ3
oNI

on

� �
� ddI

"

þðgTÞ3t �
X3

I¼1

oNI

ot

� �
� ddI

#
: ð33Þ

Herein, the tangential directional derivatives of the shape functions
are given with (see Fig. 6)

oN1

ot
¼ 1

l
;

oN2

ot
¼ �1

l
;

oN3

ot
¼ 0: ð34Þ
4.4.3. Tangential contact – slip part
The slip contribution of the virtual work expression (8) reads

dPðNnTÞcont ¼
Z

D
Td�gT dD: ð35Þ

Applying the finite element approximations and using Eqs. (32),
(18)1 and (21) leads to
dPðNnTÞcont ¼
L
2
T ðgNÞ3n �

X3

I¼1

oNI

ot

� �
� ddI þ t �

X3

I¼1

ðgNÞ3
oNI

on

� �
� ddI

"

þðgTÞ3t �
X3

I¼1

oNI

ot

� �
� ddI

#
; ð36Þ

with

T ¼ �lsignð�gTÞjKN j: ð37Þ
4.5. Effective structural equation

Starting from the variational form (7) of the entire problem the
semi-discrete equation of motion is derived introducing the spatial
discretization of the contacting bodies as well as the approxima-
tions within the contact domain. This leads to a compact notation
of the semi-discrete initial value problem (see part 1 [14], Section
4):

Gint;extðdÞ þ Gcontðd;KÞ ¼ 0: ð38Þ

Herein

Gint;extðdÞ ¼M€dþ FintðdÞ � Fext ð39Þ

is the discretized counterpart of the virtual work of the two contact-
ing bodies, where M is the mass matrix, Fint(d) is the vector of defor-
mation dependent internal forces, Fext is the vector of external
forces and d and €d represent the discrete nodal displacements
and accelerations of both bodies X(a), respectively. To integrate
the semi-discrete problem (38) in time, the Generalized-a method
[3] is used, which applies the equilibrium equation at a generalized
mid-point configuration

M€dnþ1�am þ Fintðdnþ1�af
Þ þ Gcontðdnþ1�af

Þ ¼ Fextjnþ1�af
: ð40Þ

Herein am and af are interpolation parameters that allow to control
the numerical dissipation. Inserting the classical Newmark approx-
imations [12] into (40), leads to a fully discretized non-linear equa-
tion, which will be solved by means of a Newton–Raphson scheme.
The necessary linearization yields the effective incremental struc-
tural equation to be solved within every iteration k:

Keff
T Dd ¼ Geff ; ð41Þ

where

Keff
T ¼

1� am

bDt2 Mþ ð1� af Þ
oFint dðkÞnþ1

� �
odðkÞnþ1

þ ð1� af Þ
oGcont dðkÞnþ1

� �
odk

nþ1|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
Kcont

ð42Þ

is the effective tangential stiffness matrix and

Geff ¼ Fextjnþ1�af
� 1� am

bDt2 MdðkÞnþ1 þ hðdn;
_dn;

€dnÞ

� Fintðdnþ1�af
Þ � Gcontðdnþ1�af

Þ ð43Þ

is the effective residual vector. Herein hðdn;
_dn;

€dnÞ is a history term,
that only depends on given state variables at time tn:

hðdn;
_dn;

€dnÞ ¼M
1� am

bDt2 dn þ
1� am

bDt
_dn þ

1� am � 2b
2b

€dn

� 	
: ð44Þ
4.6. Linearization of contact contributions

The construction of the effective tangential stiffness matrix in
Eq. (42) necessitates, amongst others, the linearization of the con-



Fig. 6. Tangential direction derivatives of the shape functions in the current configuration.

Fig. 7. Contact domain element with adjacent ‘‘body” element.

2614 S. Hartmann et al. / Comput. Methods Appl. Mech. Engrg. 198 (2009) 2607–2631
tact virtual work expression (8). In analogy to Section 4.4, this lin-
earization will be specified separately for the different contact con-
tributions for one individual contact patch.

4.6.1. Normal contact
Starting form Eq. (27), its linearization yields

DdPðNÞcont ¼
Z

D
DkNd�gN dDþ

Z
D

kNDd�gN dD: ð45Þ

Performing the analytical integration, using Eq. (18)1, this expres-
sion can be written for one contact domain element with

DdPðNÞcont ¼
L
2

HðDKNd�gN þKNDd�gNÞ: ð46Þ

Its evaluation necessitates the linearization of the variation of the
normal gap intensity

Dd�gN ¼ � �gN n � odu
ot

� �
n � oDu

ot

� �
þ n � odu

ot

� �
t � oDu

on

� ��
þ t � odu

on

� �
n � oDu

ot

� �	
ð47Þ

(derived in the Appendix of the first part of this paper [14]), and the
linearization of the discrete normal Lagrange multiplier DKN. Start-
ing from Eq. (20)1 and using (21)1, the discrete normal Lagrange
multiplier can alternatively be expressed with

KN ¼ tN þ
H
2s

�gN: ð48Þ

Then its linearization yields

DKN ¼ DtN þ
H
2s

D�gN; ð49Þ

where the linearization of the normal gap intensity has the same
form as its variation (28):

D�gN ¼ �gNn � gradðDuÞ � n: ð50Þ

All terms discussed so far depend upon the displacements of the
vertices of a contact domain element. However, the linearization
of the normal contact traction DtN depends upon the displacements
and the constitutive behavior of the adjacent ‘‘body” element (see
Fig. 7), which involves the degrees of freedom of one additional fi-
nite element node in the interior of the contacting bodies (node 4).
Starting from Eq. (10)1, the linearization of the normal contact trac-
tion yields

DtN ¼ Dn � P �Nþ n � DP �N
¼ �tTðn � gradðDuÞ � tÞ þ n � DP �N; ð51Þ

where

Dn ¼ �ðn � gradðDuÞ � tÞt; ð52Þ

derived in the Appendix of the first part of this paper [14], and Eq.
(10)2 have been used. The necessary linearization of the first Piola–
Kirchhoff stress tensor is detailed in the Appendix. Again, the first
term in (51) only involves degrees of freedom of the contact domain
element. Thus the linearization of the normal contact part may be
split into two parts

DdPðNÞcont ¼ DdIPðNÞcont þ DdIIPðNÞcont; ð53Þ

where part one(I) only affects degrees of freedom within the contact
domain element and part two(II) also affects the degrees of freedom
in the adjacent ‘‘body” element. The two parts can then be specified
with
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DdIPðNÞcont ¼
L
2

H � tTðn � gradðDuÞ � tÞd�gN|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
non-sym

þ H
2s

D�gNd�gN|fflfflfflffl{zfflfflfflffl}
sym

þKNDd�gN|fflfflfflfflffl{zfflfflfflfflffl}
sym

0B@
1CA
ð54Þ

and

DdIIPðNÞcont ¼
L
2

H n � DP �Nd�gN|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
non-sym

: ð55Þ

From Eqs. (54) and (55), it is obvious, that the resulting contact stiff-
ness matrix becomes non-symmetric due to the linearization of the
normal contact traction, which, in turn, stems from the added stabil-
ization term in the variational constraint equations.

4.6.2. Tangential contact – stick part
Starting form Eq. (31), its linearization yields

DdPðTÞcont ¼
Z

D
DkTd�gT dDþ

Z
D

kTDd�gT dD: ð56Þ

Performing the analytical integration, using Eq. (18)1, this expres-
sion can be written for one contact domain element with

DdPðTÞcont ¼
L
2

HðDKTd�gT þKTDd�gTÞ: ð57Þ

Its evaluation necessitates the linearization of the variation of the
tangential gap intensity

Dd�gT ¼ �gN n � odu
ot

� �
n � oDu

on

� �
þ n � odu

on

� �
n � oDu

ot

� �� 	
� �gN t � odu

ot

� �
n � oDu

ot

� �
þ n � odu

ot

� �
t � oDu

ot

� �� 	
þ �gT n � odu

ot

� �
n � oDu

ot

� �
ð58Þ

(derived in the first part of this paper [14]), and the linearization of
the discrete tangential Lagrange multiplier DKT. Starting from Eq.
(20)2 and using (21)2, the discrete tangential Lagrange multiplier
can alternatively be expressed with

KT ¼ tT þ
H
2s

�gT : ð59Þ

Then its linearization yields

DKT ¼ DtT þ
H
2s

D�gT ; ð60Þ

where the linearization of the tangential gap intensity has the same
form as its variation (32):

D�gT ¼ �gNðn � gradðDuÞ � tþ t � gradðDuÞ � nÞ þ �gT t � gradðDuÞ � t:
ð61Þ

The linearization of the tangential contact traction DtT depends
upon the displacements and the constitutive behavior of the adja-
cent ‘‘body” element (see Fig. 7) and is given by the linearization
of Eq. (10)2

DtT ¼ Dt � P �Nþ t � DP �N ¼ tNðn � gradðDuÞ � tÞ þ t � DP � N; ð62Þ

where

Dt ¼ ðn � gradðDuÞ � tÞn; ð63Þ

derived in the Appendix of the first part of this paper [14], and Eq.
(10)1 have been used. The linearization of the first Piola–Kirchhoff
stress tensor is given in the Appendix. Similar to Section 4.6.1, the
linearization for an active stick condition will be split into two
parts

DdPðTÞcont ¼ DdIPðTÞcont þ DdIIPðTÞcont; ð64Þ
where part one(I) only affects degrees of freedom within the contact
domain element and part two(II) also affects the degrees of freedom
in the adjacent ‘‘body” element. The two parts may then be speci-
fied with

DdIPðTÞcont ¼
L
2

H tNðn � gradðDuÞ � tÞd�gT|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
non-sym

þ H
2s

D�gTd�gT|fflfflfflffl{zfflfflfflffl}
sym

þKTDd�gT|fflfflfflffl{zfflfflfflffl}
sym

0B@
1CA
ð65Þ

and

DdIIPðTÞcont ¼
L
2

H t � DP �Nd�gT|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
non-sym

: ð66Þ

Due to the added stabilization term, again a non-symmetric contact
stiffness matrix will arise.

4.6.3. Tangential contact – slip part
Starting form Eq. (35), its linearization yields

DdPðNnTÞcont ¼
Z

D
DTd�gT dDþ

Z
D
TDd�gT dD: ð67Þ

Performing the analytical integration, using Eq. (18)1, this expres-
sion can be written for one contact domain element with

DdPðNnTÞcont ¼
L
2

HðDTd�gT þTDd�gTÞ: ð68Þ

Its evaluation necessitates the linearization of the variation of the
tangential gap intensity, given in Eq. (58) and the linearization of
frictional stress T. Starting from Eq. (37) the linearization of the
frictional stress yields

DT ¼ �lsignð�gTÞsignðKNÞDKN; ð69Þ

where the (quasi-zero) derivative of signð�gTÞ has been neglected.
Similar to Sections 4.6.1 and 4.6.2, the linearization for an active slip
condition will be split into two parts

DdPðNnTÞcont ¼ DdIPðNnTÞcont þ DdIIPðNnTÞcont ; ð70Þ

where part one(I) only affects degrees of freedom within the contact
domain element and part two(II) also affects the degrees of freedom
in the adjacent ‘‘body” element. Utilizing Eq. (37) and sign(KN) = �1,
the two parts may then be specified with

DdIPðNnTÞcont ¼
L
2

Hlsignð�gTÞ

� � tTðn � gradðDuÞ � tÞd�gT|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
non-sym

þ H
2s

D�gNd�gT|fflfflfflffl{zfflfflfflffl}
non-sym

þKNDd�gT|fflfflfflfflffl{zfflfflfflfflffl}
sym

0B@
1CA
ð71Þ

and

DdIIPðNnTÞcont ¼
L
2

Hlsignð�gTÞn � DP � Nd�gT|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
non-sym

: ð72Þ

The resulting contact stiffness matrix for the slip part is going to be
non-symmetric as well, which is due to two reasons. On the one
hand, this is induced by the non-symmetric Coulomb friction law
(second term in Eq. (71)) and on the other hand due to the stabiliza-
tion terms, that are only added to the variational constraint
equations.

4.7. Matrix notation

In the following, a matrix notation will be introduced to com-
pute the contact residuals as well as the resulting contact stiffness
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matrices for one contact domain element. As it has been shown in
the previous section, the linearization of the contact contributions
will also affect the degrees of freedom of the adjacent body ele-
ment. Therefore a vector containing the variated nodal values

ddT
p ¼ ðdd1; dd2; dd3; dd4Þ ð73Þ

and a vector containing the incremental nodal displacements

DdT
p ¼ ðDd1;Dd2;Dd3;Dd4Þ ð74Þ

is defined, based on the four vertex/nodes indicated in Fig. 7. Fur-
thermore, the following matrices will be defined:

Nn ¼

ðgNÞ3
oN1
on n

ðgNÞ3
oN2
on n

ðgNÞ3
oN3
on n

0

0BBBB@
1CCCCA; Nt ¼

oN1
ot n

oN2
ot n

oN3
ot n
0

0BBBB@
1CCCCA;

Tn ¼

ðgNÞ3
oN1
on t

ðgNÞ3
oN2
on t

ðgNÞ3
oN3
on t

0

0BBBB@
1CCCCA; Tt ¼

oN1
ot t

oN2
ot t

oN3
ot t
0

0BBBB@
1CCCCA: ð75Þ

The matrices NrP and TrP to compute

n � DP � N ¼ NT
rPDdp and t � DP � N ¼ TT

rPDdp; ð76Þ

are given with

NT
rP ¼ NðSeB þ FDBÞ and TT

rP ¼ T SeB þ FDB
� �

; ð77Þ

where the vectors

N ¼ ðn1N1 n2N2 n1N2 n2N1Þ and

T ¼ ðt1N1 t2N2 t1N2 t2N1Þ ð78Þ

hold the products of the normal and tangential vectors. The remain-
ing matrices needed in Eq. (77) are specified in the Appendix.

4.7.1. Normal contact
With the definitions of the matrices in (75) and (77), the normal

part of the contact virtual work done by one contact patch (Eq.
(29)) can be written in matrix formulation ddT GðNÞcont with the ele-
mental contact residual

GðNÞcont ¼
L
2

KNNn: ð79Þ

Furthermore the linearization of the normal contact contributions
(54) and (55) leads to

DdIPðNÞcont þ DdIIPðNÞcont ¼ ddT IKðNÞcont þ IIKðNÞcont

� �
Dd; ð80Þ

with the elemental contact stiffness matrices

IKðNÞcont ¼ �
L
2

KNððgNÞ3NtN
T
t þ TnNT

t þ NtT
T
nÞ þ

L
4s

NnNT
n

� L
2

tT NnNT
t ð81Þ

and

IIKðNÞcont ¼
L
2

NnNT
rP: ð82Þ
4.7.2. Tangential contact – stick part
The stick part of the contact virtual work (Eq. (33)) is given in

matrix notation ddT GðTÞcont with the elemental contact residual

GðTÞcont ¼
L
2

KTððgNÞ3Nt þ Tn þ ðgTÞ3TtÞ: ð83Þ

The matrix formulation of the linearization of the stick contribu-
tions (65) and (66) reads
DdIPðTÞcont þ DdIIPðTÞcont ¼ ddT IKðTÞcont þ IIKðTÞcont

� �
Dd; ð84Þ

with the elemental contact stiffness matrices

IKðTÞcont ¼
L
2

KT NtN
T
n þ NnNT

t þ ðgTÞ3NtN
T
t � ðgNÞ3TtN

T
t � ðgNÞ3NtT

T
t

� �
þ L

4s
ððgNÞ3Nt þ Tn þ ðgTÞ3TtÞððgNÞ3Nt þ Tn

þ ðgTÞ3TtÞT þ
L
2

tNððgNÞ3Nt þ Tn þ ðgTÞ3TtÞNT
t

ð85Þ

and

IIKðTÞcont ¼
L
2
ððgNÞ3Nt þ Tn þ ðgTÞ3TtÞTT

rP : ð86Þ
4.7.3. Tangential contact – slip part
The slip part of the contact virtual work (Eq. (36)) is given in

matrix notation ddT GðNnTÞcont with the elemental contact residual

GðNnTÞcont ¼
L
2

KNlsignð�gTÞððgNÞ3Nt þ Tn þ ðgTÞ3TtÞ: ð87Þ

The matrix formulation of the linearization of the slip contributions
(71) and (72) reads

DdIPðNnTÞcont þ DdIIPðNnTÞcont ¼ ddT IKðNnTÞcont þ IIKðNnTÞcont

� �
Dd; ð88Þ

with the elemental contact stiffness matrices

IKðNnTÞcont ¼
L
2

KNlsignð�gTÞ

� NtN
T
n þ NnNT

t þ ðgTÞ3NtN
T
t � ðgNÞ3TtN

T
t � ðgNÞ3NtT

T
t

� �
þ L

4s
lsignð�gTÞððgNÞ3Nt þ Tn þ ðgTÞ3TtÞNT

n

� L
2

tTlsignð�gTÞððgNÞ3Nt þ Tn þ ðgTÞ3TtÞNT
t ð89Þ

and

IIKðNnTÞcont ¼
L
2
lsignð�gTÞððgNÞ3Nt þ Tn þ ðgTÞ3TtÞNT

rP: ð90Þ

Remark 4.1. Looking at the contact stiffness matrices derived in
this section, it becomes obvious, that they all exhibit non-symmet-
ric parts. This stems from the introduction of the additional (stabil-
ization) terms only in the constrained variational equations (9).
Although Heintz and Hansbo [8] have proposed a consistent sym-
metric version of stabilization, the authors have decided to add the
stabilization terms only in the constrained equations, as the Cou-
lomb’s friction law makes the problem non-symmetric anyway.
5. Active set strategy – technical aspects

The contact formulation presented so far is based on the
assumption that the active set of contact domain elements being
in contact at the end of one specific time step is known ‘‘a priori”.
This includes the active normal contact condition as well as the
frictional conditions, distinguishing also between stick or slip. In
the first part of this paper [14] a predictive active set strategy,
based on so-called active constraint indicators is presented. In the
following, some important technical details about the important
extrapolation procedure are discussed.
5.1. Prediction of effective gaps

For the proposed active set strategy, the so-called effective nor-
mal and tangential gaps
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geff :
N � ðgNÞ3 þ 2stN;

geff :
T � ðgTÞ3 þ 2stT

ð91Þ

and suitable (displacement based) active constraint indicators

DðpÞ � DðNÞ () bN ¼
def

geff :
N < 0! active normal contact;

DðpÞ � DðTÞ () bT ¼
def

geff :
T

��� ���� l geff :
N

��� ��� < 0! active stick;
ð92Þ

are defined for every contact domain element. In order to predict
the active contact/friction element set for the next time step, a first
order approximation of these indicators is performed on basis of the
evolution of the effective normal and tangential gaps in previous
time steps:

~geff :
N=T ¼ geff :

N=T

� �
n
þ Dtnþ1

Dtn
Dgeff :

N=T ð93Þ

with

Dgeff :
N=T ¼ geff :

N=T

� �
n
� geff :

N=T

� �
n�1

; ð94Þ

where the subscripts (�)n and (�)n�1 refer to the end of the time steps
n and n � 1. Therefore, the effective normal and tangential gaps of
the previous time steps need to be appropriately stored.

5.2. History of effective gaps

Recording the history of the effective gaps is by no means a triv-
ial task. The effective gaps are defined for every contact domain
element, providing information about this specific set of finite ele-
ment nodes on the contacting boundaries. One specific feature of
the presented contact strategy is the reconstruction of the contact
domain mesh, whenever the relative motion of the contacting sur-
faces exceeds some tolerances. In fact, contact problems involving
large relative sliding require a reconnection of boundary nodes
very frequently, sometimes even after every time step. Conse-
quently it is not possible to just store the effective gaps within
the contact domain element, as this element may not exist any-
Fig. 8. Change of connectivity – influence on gaps.

Fig. 9. Reference configuratio
more in the ensuing time step. Furthermore, the values of the
effective gaps strongly depend on the connectivity of the contact
domain mesh. If the connectivity changes from one time step to
the other (see Fig. 8) it might happen, that the normal gap (gN)3

of the vertex node 3, as a main part for the calculation of the effec-
tive normal gap, alters erratically. The effective gaps would not
vary smoothly and the extrapolation of these values would not
be beneficial. To overcome this, a different procedure for keeping
track of the evolution of the effective gaps is necessary.

For the presented contact algorithm the following approach is
used. Instead of storing the effective gaps themselves, the place-
ment of the finite element nodes on the contact boundary, as well
as the normal and tangential surface tractions (tN, tT) at the bound-
ary of the ‘‘body” elements, are stored for the previous time steps n
and n � 1. Based on the connectivity of a contact domain element
in the considered time step, the effective gaps are calculated
retrospective.

In Fig. 9 the placement of a contact domain element is shown at
the beginning of three consecutive time steps, thus representing in
each case the reference configuration. Based on the connectivity of
the considered contact domain element at the present time step
(nodes 1–2–3), the fictive initial normal gaps gð0ÞN

� ��
3

at the begin-
ning of the two previous time steps are calculated with

gð0ÞN

� ��
3

���
n�1
¼ ½ðx3� Þn�2 � ðx2Þn�2	 �Nn�1 and

gð0ÞN

� ��
3

���
n
¼ ½ðx3� Þn�1 � ðx2Þn�1	 � Nn: ð95Þ

With this, the normal and tangential gaps (gN)3 and (gT)3 (see Eq.
(26)) are evaluated for the two previous time steps

ðgNÞ3
��
n�1 ¼ gð0ÞN

� ��
3

���
n�1

nn�1 �Nn�1

þ nn�1 �
X3

I¼1

gð0ÞN

� ��
3

���
n�1

oNI

oNn�1

� �
ðdIÞn�1;

ðgTÞ3
��
n�1 ¼ gð0ÞN

� ��
3

���
n�1

tn�1 � Nn�1

þ tn�1 �
X3

I¼1

gð0ÞN

� ��
3

���
n�1

oNI

oNn�1

� �
ðdIÞn�1

ð96Þ

and

ðgNÞ3
��
n ¼ gð0ÞN

� ��
3

���
n
nn � Nn þ nn �

X3

I¼1

gð0ÞN

� ��
3

���
n

oNI

oNn

� �
ðdIÞn;

ðgTÞ3
��
n
¼ gð0ÞN

� ��
3

���
n
tn � Nn þ tn �

X3

I¼1

gð0ÞN

� ��
3

���
n

oNI

oNn

� �
ðdIÞn

ð97Þ

with

ðdIÞn�1 ¼ ðxIÞn�1 � ðxIÞn�2 and ðdIÞn ¼ ðxIÞn � ðxIÞn�1: ð98Þ
n of different time steps.
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Together with the stored normal and tangential tractions (tN, tT), at
the boundary of the adjacent ‘‘body” element (see Fig. 9), the effec-
tive gaps for the previous time steps can be calculated using Eq.
(91). Having these quantities at hand, the extrapolation of the effec-
tive normal and tangential gaps can be performed as described in
the first part of this paper [14], Section 5.5.

6. Numerical examples

The performance of the presented contact strategy is evaluated
by means of a set of numerical examples. All the examples are
computed under the assumption of a plane strain condition with
a unit thickness of 1.0, using a compressible neo-Hookean, hyper-
elastic material [2]. For the element-wise constant stability param-
eter s (in Eqs. (9) and (20)) the relation

s ¼ astab

Emin
L ð99Þ

is used, where Emin is the minimal Young’s modulus of the contact-
ing bodies, L is the base-side length of the contact domain element
in the previous configuration (see Fig. 2) and astab is a dimension-
less, user defined, parameter which is independent of the mesh-
size. The relation in Eq. (99) stems from the fact that the dimension
of the stabilization parameter s needs to be [m3/N] in order to give
the correct dimensions within the variational constraint equations
(9). Furthermore, a suitable value of the stabilization parameter s
is governed by the present stresses in the contact interface, which
in turn depend upon the Young’s modulus. Finally the stabilization
parameter s needs to be adjusted with the characteristic size of a
contact domain element.

For the static analyses performed, the inertia term M€d in Eq.
(39) drops out of the effective structural equation and therefore
the non-linear static problem can be solved without using the de-
scribed time integration scheme. Dealing with dynamic problems,
the Generalized-a time integration scheme, described very briefly
in Section 4.5 is utilized, where the so-called spectral radius q1 de-
fines the values of the introduced interpolation and Newmark
parameters:

am ¼
2q1 � 1
q1 þ 1

; af ¼
q1

q1 þ 1
; b ¼ 1

4
ð1� am þ af Þ2;

c ¼ 1
2
� am þ af : ð100Þ
6.1. Contact patch test

A contact formulation should be able to exactly transmit a spa-
tially constant stress field from one body to another along an arbi-
trary non-conforming contact surface. This ability will be checked
by the so-called contact patch test [11]. Different patch test setups
Fig. 10. Contact patch test: (a) se
have been proposed in the literature and the authors have decided
to use one, recently considered in [5,4]. The configuration of the
problem is shown in Fig. 10a. An elastic body is pressed with a con-
stant pressure of p = 100.0 [N/mm2] onto another elastic body,
assuming a frictionless contact behavior. The punch, as well as
the foundation are taken as linear elastic isotropic media with
the same material properties. Fig. 10b depicts the finite element
discretization of the two bodies, using very different mesh densi-
ties in each of them.

The numerical results are shown in Fig. 11 in terms of the con-
sistent nodal forces, for different contact pairing strategies.
Approximating the contact domain with a full set of non-overlap-
ping patches, as proposed in this paper, the contact patch test is
properly passed and the resulting consistent nodal forces coincide
with the exact ones (see Fig. 11a). It is worth noting that this result
is totally independent of the utilized value of the stabilization
parameter astab. However, in order to demonstrate the necessity
of having a complete approximation of the contact domain, addi-
tional pairing strategies, reproducing typical pairings used in
node-to-segment approaches are analyzed. Fig. 11b and c depicts
contact pairing scenarios that would correspond to a single-pass
node-to-segment approach, assuming the top, respectively the bot-
tom surface to be the slave surface. A contact pairing scenario
mimicking a two-pass node-to-segment approach is shown in
Fig. 11d. The resulting consistent nodal forces for these pairing sce-
narios are given in Fig. 11b–d, where astab = 0.1 has been used.
Obviously, none of them passes the contact patch test. It follows
that a key issue of the proposed contact domain method is the
usage of a full set of non-overlapping patches, including contact
domain elements that might be distorted (having its normal pro-
jection of the single vertex node outside of the base-side).

Remark 6.1. The usage of distorted contact domain elements is
somehow contradictory to the widely used closest-point projection
procedure and one could wonder about the consequences, once the
contact interface is not a straight line as in the discussed contact
patch test. However, Fig. 12 demonstrates that the usage of a patch
of contact domain elements will lead in summary to the correct
projection. Working only with the contact domain element 1, node
A will be forced to lie onto the extension of its base-side (to some
point A1), and similarly utilizing only the contact domain element
2, node A will be projected to some point A2 of the corresponding
extension of its base-side. If the contact domain is made of both
elements 1 and 2, node A will be forced to lie on the intersection
of both base-sides, which is node B, which in turn is the closest-
point projection of node A onto the surface of the other contacting
body. In summary, the local, element-wise definition of the geo-
metric gaps (possibly violating the closest-point methodology),
leads to a globally correct enforcement of the geometrical contact
constraints, under the assumption of using a full set of non-over-
lapping patches.
tup; (b) finite element mesh.



Fig. 11. Consistent nodal force distribution: (a) CDM/exact; (b) top surface as slave; (c) bottom surface as slave; (d) two-pass.

Fig. 12. Corner scenario.

Fig. 13. Cylinder on cylinder Hertzian contact
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6.2. Frictional Hertzian contact

To investigate the accuracy of the proposed contact formulation a
cylinder on cylinder Hertzian contact problem is analyzed. The
underlying analytical solution dates back to the work of Hertz [9],
which assumes infinitesimal small deformations. In order to com-
pare the results with the proposed large deformation contact strat-
egy a very little load is applied. The geometric setup as well as the
utilized finite element discretization is shown in Fig. 13. Two elastic
half cylinders (E = 200.0 [N/mm2], m = 0.3) are first pressed together
with a compressive normal force P ¼

R
pðxÞds ¼ 10:0 ½N	. Subse-

quently a tangential force Q ¼
R

qðxÞds ¼ 1:0 ½N	 is applied which
causes tangential contact tractions in the contact zone. The width
b, being the half of the contact zone, can then be calculated analyti-
cally with

b ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PR

1� m2

pE

r
¼ 0:6808 ½mm	; ð101Þ
problem and the (rough) discretization.
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where R is the radius of the two cylinders. The normal pressure dis-
tribution in the contact zone is given with

rn ¼ rmax
n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x

b

� �2
r

; ð102Þ

where rmax
n is the maximum normal pressure computed via

rmax
n ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PE

pð1� m2ÞR

s
¼ 9:351 ½N=mm2	: ð103Þ

For the frictional contact part a Coulomb friction coefficient of
l = 0.2 is assumed. Increasing the applied tangential forces q from
zero to the maximal value, micro-slip evolves starting from the
edges of the contact zone. Therefore the contact zone is subdivided
into a stick part |x| 6 |c| and two areas of slip |c| 6 |x| 6 |b|. The size
of the stick region is given by

c ¼ b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Q

lP

s
¼ 0:481 ½mm	: ð104Þ

Thus the distribution of the tangential contact tractions can be cal-
culated as follows:

rtðxÞ ¼
lrmax

n

b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � x2

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 � x2
p� �

: jxj 6 jcj;

rtðxÞ ¼ lrnðxÞ : jcj 6 jxj 6 jbj:
ð105Þ

In Fig. 14 the numerical solution is plotted against the analytical
solution, where the fine dashed line indicates the maximum tan-
gential traction lrn. The abrupt change in the tangential traction
stems from the transition from stick to slip. The shown numerical
results are calculated using a stabilization parameter astab = 0.5
(see Eq. (99)). It should be mentioned, that the influence of the sta-
bilization parameter in this example is not significant. A variation of
this parameter between astab = [0.1 ? 5.0] produces qualitatively
and quantitatively comparable results, as the deformations are very
small and therefore the contact is very well imposed regardless of
the utilized stabilization parameter. When the geometrical contact
condition is very well imposed, the normal and tangential gaps de-
fined in Eq. (26) tend to zero and thus the discrete normal and tan-
gential Lagrange multipliers (see Eq. (20)) have the property of
representing the normal and tangential surface tractions at the
boundaries of the contacting bodies (KN � tN and KT � tT). There-
fore, the discrete Lagrange multipliers are utilized to check the nor-
mal and tangential contact tractions against the exact analytical
Fig. 14. Computed nodal contact traction for frictional c
solution. As the introduced Lagrange multipliers are element-wise
constant values, they will be discontinuous at the boundary nodes.
Therefore nodal values of the Lagrange multipliers are calculated,
using the weighted nodal sum of the discrete, constant elemental
values of the introduced Lagrange multipliers at the adjacent con-
tact elements to one contacting node:

Knode ¼
Pnp

p¼1K
ðpÞLðpÞPnp

p¼1LðpÞ
: ð106Þ

Herein Knode depicts the average nodal Lagrange multiplier, np is the
number of adjacent active contact domain elements to this specific
boundary node and K(p) and L(p) are the elemental constant La-
grange multiplier and the length of the base-side of the considered
contact domain element, respectively. In general one would weigh
the elemental Lagrange multipliers with the area of the element,
but as the elemental height H(p) denotes a measure of the actual
gap, this tends to zero for active contact elements and thus has
no significant meaning. Therefore only the length L(p) of a contact
element is taken into account.

Looking at the results plotted in Fig. 14 one can observe that the
contact tractions are quite well represented by the developed con-
tact algorithm. Due to the non-smoothness of the frictional trac-
tion field at the stick slip boundary, some oscillations in the
numerical solution for the frictional tractions can be observed.
Using a finer discretization, these oscillations diminish consider-
ably (see Fig. 15).

6.3. Beam bending

This example was presented by Puso and Laursen [15,16] to
demonstrate the locking free behavior of their proposed mortar
segment-to-segment contact strategy. Initially, two equally sized
beams (10.0 � 1.0) are pressed together by a constant pressure
p = 0.1 and then bent applying a moment to the end of the two
beams. The initial geometry, the material data, the boundary con-
ditions and the applied loads are given in Fig. 16.

As a reference solution this problem is first analyzed assuming
one homogeneous beam, such that the deformations are conform-
ing across the interface. In Fig. 17a the initial and deformed config-
uration for the homogeneous beam is shown as well as its
triangulation, utilizing a rough mesh. Now the two beams are dis-
cretized separately, using dissimilar triangulations along the fric-
tionless, sliding contact interface. Fig. 17b–d shows the utilized
ylinder on cylinder contact problem; coarse mesh.



Fig. 15. Computed nodal contact traction for frictional cylinder on cylinder contact problem; finer mesh.

Fig. 16. Beam bending: Geometry, material data, boundary conditions and applied loads.

Fig. 17. Initial and deformed configuration (rough mesh): (a) homogeneous discretization without contact; (b)–(d) sandwiched beams using the contact domain method with
astab = 0.01/0.5/10.0.
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finite element meshes and the results with the presented ‘‘contact
domain method (CDM)” using three different values of the stabil-
ization parameter astab.

Due to the applied pressure, all the contact elements are forced
to be active along the interface. Employing a small value of the sta-
bilization parameter (e.g. astab = 0.01) leads to a very strong
enforcement of the geometric impenetrability condition, prevent-
ing the nodes to interpenetrate. Thus the interface cannot bent
and the beams lock. On the other hand, a very large value of the
stabilization parameter (e.g. astab = 10.0) displays only a very weak
enforcement of the impenetrability condition. The beams do not
lock, but the gaps between the two beams become intolerably
large (see Fig. 17d). Applying a stabilization parameter in the range
of astab 2 [0.1–1.0], leads to a locking free behavior of the proposed
contact strategy, while guaranteeing a sufficient enforcement of
the geometric contact constraint. Fig. 18 displays the vertical dis-
placement of node A (see Fig. 16) versus the applied moment.
The results achieved with the sliding contact interface compare
quite well with the conforming reference solution. Quantitative
differences in the vertical displacements of point A seem to be a re-
sult of the rough triangulation of the beams with CST elements and
not a direct consequence of the contact strategy. To demonstrate
this, the example is analyzed again, using a finer discretization.

The initial as well as the deformed configuration for the con-
forming beam, using a fine mesh, is shown in Fig. 19a. Fig. 19b
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Fig. 18. Vertical displacement of Point A versus moment: rough mesh.

Fig. 19. Triangulation (fine mesh), initial and deformed configuration: (a) homogeneou
method with astab = 0.5.
shows the results obtained with dissimilar meshes along the slid-
ing interface, using a stabilization parameter of astab = 0.5. The ver-
tical displacement of node A versus the applied moment using a
finer triangulation is shown in Fig. 20. All the results obtained with
a sliding surface match very well with the conforming reference
solution.

Thus the following conclusions can be drawn from this
example:


 The proposed contact strategy displays a locking free behavior,
utilizing a stability parameter in the range of astab 2 [0.1–1.0].


 A too large value of astab results in a bad enforcement of the
impenetrability constraint.


 A too small value of astab may lead to locking.

 The influence of astab on the results decreases with mesh

refinement.

Due to these results, the following examples are analyzed using
a stability parameter in the range of astab 2 [0.1–1.0].

6.4. Ironing

In this example a frictional contact problem is analyzed, where
both bodies undergo finite deformations. A block is pressed into an
elastic slab and then slid over the surface. The slab is fixed at its
s discretization without contact; (b) sandwiched beams using the contact domain
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Fig. 20. Vertical displacement of Point A versus moment: fine mesh.
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bottom and is 10 times softer than the indenting block. Vertical
and horizontal displacements of the block are prescribed at its top
edge. In the following two different ironing problems are discussed,
which differ slightly in the geometry of the block and the amount of
indentation uV of the punch into the slab (see Fig. 21). The material
properties used for the block (Eb = 68.96 � 108 [N/mm2], mb = 0.32)
and the slab (Es = 68.96 � 107 [N/mm2], ms = 0.32) are the same in
both cases. Friction is considered between all contacting faces, with
the coefficient of friction being l = 0.3. In both cases, the prescribed
vertical displacement uV is applied between t = 0.0 and 1.0. The sub-
Fig. 21. Ironing: geometry fo

Fig. 22. Shallow ironing: deformed con

Fig. 23. Shallow ironing: computed t
sequent prescribed horizontal displacement is applied between
t = 1.0 and 2.0, where the time has no physical meaning, as the calcu-
lation was carried out neglecting dynamical effects.

6.4.1. Shallow ironing
The first version of this example is analyzed in Fischer [6],

Fischer and Wriggers [7] and Wriggers [17]. They use a mortar
based contact formulation with a penalty regularization scheme
together with quadratic 9-node-elements. As they report that the
quality of the computed vertical and horizontal reactions depends
r two different versions.

figurations at different time steps.

otal reaction forces versus time.



Fig. 24. Deep ironing: deformed configurations at different time steps.

Fig. 25. Deep ironing: computed total reaction forces versus time.

Fig. 26. Ring impact: geometr
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on the utilized finite element discretization, a comparable triangu-
lation is used in the present study. Using the same number of finite
element nodes, one quadratic 9-node-element is being replaced
with eight linear 3-node-elements, which will lead to the same
number of degrees of freedom involved in the problem. As in the
reference works, the vertical displacement is applied in 10 time
steps and the horizontal displacement is prescribed within 500
time steps. For the present calculation a stabilization parameter
of astab = 0.3 is used.

The initial and three deformed configurations of the computa-
tion are shown in Fig. 22, which demonstrate the finite deforma-
tions involved in the ironing process. In Fig. 23 the total vertical
and horizontal reaction forces, computed at the top of the indent-
ing block, are plotted versus time. Together with the results of the
present study, the graphs reported by Fischer and Wriggers [7] are
displayed. While pressing the block into the slab, the curves are
smooth and the two bodies stick together. Starting the horizontal
movement, the vertical as well as the horizontal reaction forces in-
crease until a limit is reached. At this stage the block starts sliding
over the slab. While the vertical reaction force remains nearly con-
stant, the horizontal reaction force oscillates. This is due to the fact
y and material properties.
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that the finite element mesh of the slab has to slip around the right
corner of the indenting block. Comparing the results of the present
study with the ones reported in [7] one can note, that the qualita-
tive behavior is very well captured, whereas the absolute values do
not match exactly. Quantitative differences in the computed reac-
tion forces may stem from the usage of different finite elements for
the discretization of the contacting bodies. Due to Fischer and
Wriggers [7] the computation of this problem using a node-to-seg-
ment approach fails around time step t = 1.2. Thus, the present
contact strategy behaves better than a classical node-to-segment
formulation and produces confidential results compared with mor-
tar based contact methods.

6.4.2. Deep ironing
The second version of the ironing problem is analyzed in Yang

et al. [20], where they use again a large deformation mortar contact
formulation. For two reasons, this version is a lot more demanding
Fig. 27. Ring impact: comparison of deformed configurations at diffe

Fig. 28. Flipper: geometry a
to compute than the first one. First, the geometry of the upper
block is just a square, having sharp corners at the indenting side
as well. This produces very large contact pressures at the lower
right corner of the indenting block. Second, the amount of indenta-
tion is nearly twice as big as in the first version, making it very dif-
ficult for the finite elements in the slab to slide around the sharp
edge of the punch. In fact, Yang et al. [20] report, that the analysis
of this example with a node-to-segment formulation fails at
t = 0.66, being not even able to run the computation until the
punch has fully indented.

In their calculation, Yang et al. [20] discretized the contacting
bodies using bi-linear 4-node-elements. For reasons of comparison,
again a comparable finite element triangulation is used for the
present calculations, dividing one bi-linear 4-node-element into
two linear 3-node-elements, leading to the same degrees of free-
dom. In [20] the number of load increments used for the vertical
indentation and the horizontal sliding is not given. Here, the verti-
rent time steps. Left: Yang and Laursen [19]/right: present work.

nd material properties.
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cal displacement is prescribed in 20 time steps and the horizontal
displacement is applied in 1500 time steps. A stabilization param-
eter of astab = 0.1 is used.

The deformed configuration of the ironing problem is depicted
in Fig. 24. In here, the appearance of finite deformations is even
more pronounced than in the first version. The deformation of
the slab is so large that even contact of the right side of the upper
block has to be considered. In contrast to [20] frictional effects are
considered in this part as well. Fig. 25 depicts again the total ver-
tical and horizontal reactions, computed at the top edge of the
punch. A similar behavior than in the first ironing version can be
observed, but it seems that the amplitudes of the oscillating hori-
zontal reactions are significant smaller. This is most probably due
to the fact, that the horizontal displacements are applied in three
times more displacement increments. The differences in the abso-
Fig. 29. Flipper – motion: without pl
lute values of the reaction forces are due to the usage of different
finite elements for the discretization of the contacting bodies and
due to the different treatment of the friction coefficient at the right
side of the block with the slab.

6.5. Ring impact

This example was published by Yang and Laursen [19] to show
the performance of their presented self-contact search algorithm.
In this work, the example is chosen, to demonstrate, that the pre-
sented contact strategy can automatically deal with self-contact
problems without any further modifications.

The geometry setup and the utilized material properties for the
elastic rings are shown in Fig. 26. A fixed Dirichlet boundary con-
dition is assigned to the external boundary of the largest ring (Ring
otting the contact domain mesh.
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3). Two smaller rings are located within Ring 3, where the smallest
ring (Ring 1) is given an initial velocity of v = [30.0 [mm/
ms],�30.0 [mm/ms]]T to hit the medium sized ring (Ring 2). After
hitting Ring 2, the two inner rings move together towards the inner
surface of Ring 3. As the stiffness of the medium sized ring is very
low, it gets pressed together between the two other rings in such a
way, that self contact of the inner boundary of Ring 2 occurs. Be-
tween all possible contact pairings a frictional coefficient of
l = 0.3 is utilized. For the stabilization parameter a value of
astab = 0.1 is chosen. To better compare the deformations with
the ones shown in [19], the same time integration method and
time step size are utilized. A Newmark time integration method
is applied with b = 0.25 and c = 0.5, which is included in the general
framework of the Generalized-a method by setting the interpola-
Fig. 30. Flipper – motion: with plot
tion parameters to af = 0.0 and am = 0.0. The time step size is cho-
sen to be constant with Dt = 0.001 [ms].

In Fig. 27 a comparison of the deformed configurations at differ-
ent time steps is shown. On the left hand side the results from Yang
and Laursen [19] are plotted, who use a large deformation mortar
contact method and on the right hand side the results from the
present work are displayed. The results obtained with the newly
developed contact domain method match very well with the ones
obtained with the mortar method. In contrast to the ‘‘reference”
solution, the present algorithm does not need a special contact search
algorithm, optimized and adjusted for the treatment of self contact.
The detection of possible contact pairs, including self contact, is
automatically done with the contact pairing algorithm detailed in Sec-
tion 3.1 without any modifications.
ting the contact domain mesh.



Fig. 31. Spiral: geometry and material properties.
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6.6. Flipper

This example is devised to demonstrate the possibility to cap-
ture complex, highly dynamic contact scenarios including various
regions with self-contact. In Fig. 28 the geometric setup as well
as the material properties of the problem is shown. First the tip
of the cantilever is moved horizontally by a prescribed displace-
ment u = 5.0 mm, which is then suddenly released at t = 10.0 ms.
Now the cantilever is free to move and starts swinging around its
initial position. On the way back to its initial position, the cantile-
ver hits the elastic disc, which will be accelerated towards the very
flexible strip. When the disc gets into contact with the thin strip,
this deforms significantly, such that it will get into contact with
its own parts. Both the disc and the highly deformed strip are then
hitting against the rigid wall, again producing a very difficult con-
tact scenario. The dynamic analysis is performed using the Gener-
alized-a scheme with a spectral radius of q1 = 0.85, which
introduces a little bit of numerical dissipation. As the numerical
analysis is quite demanding, the time step size was adjusted sev-
eral times during the calculation in order to capture the rapidly
changing physics of the different contact scenarios (cantilever-to-
disc, disc-to-strip, strip-to-strip, strip-to-wall) and to handle the
associated convergence difficulties. Friction is assumed between
all possible contact pairs using l = 0.1 and the stabilization param-
eter is set to astab = 0.3.
Fig. 32. Spiral: deformed configurations
In Figs. 29 and 30 the complex motion of the problem is shown
at different time steps, without and with displaying the con-
structed contact domain triangulation, respectively. The presented
contact algorithm performs very well in this complex dynamic
contact problem and can deal with self-contact without any addi-
tional difficulty by construction.

6.7. Spiral

In this problem, a thin strip is pushed through a tight form in
order to be rolled up like a spiral. Therefore large relative tangen-
tial sliding as well as multiple self-contact has to be captured by
the contact algorithm. The setup of the example, as well as the
material properties of the strip, is shown in Fig. 31. Although the
form is discretized with finite elements, it is assumed to be rigid
and all its finite element nodes are fixed throughout the whole cal-
culation. The strip is pushed by a prescribed horizontal displace-
ment uH at its right edge. A dynamic analysis is carried out using
the Generalized-a time integration scheme with a spectral radius
of q1 = 1.0. In a total calculation time of t = 60.0 [ms] a horizontal
displacement of uH = 60.0 [mm] is prescribed. A constant time step
size is chosen to be Dt = 0.05 [ms]. In the analysis a stabilization
parameter of astab = 0.1 is utilized. Between the contacting bound-
aries a frictionless contact behavior is assumed.

The deformed configurations of the spiral problem are shown in
Fig. 32. It can be seen, that the contact strategy is able to capture
the very large relative tangential sliding between the strip and
the form as well as between different parts of the strip. Self contact
of the strip, even being in contact on both sides of the strip at the
same time, is tracked reliably by the present contact formulation.

6.8. Multiple contact

The last example is devised just to demonstrate, that the pro-
posed contact strategy can handle contact scenarios between many
at different time steps (t in [ms]).



Fig. 33. Multiple contacts: geometry and material properties.
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contacting bodies without any further modification. Nine geometri-
cal objects are placed randomly as can be seen in Fig. 33 inside an
elastic boundary. All objects and the boundary have the same elastic
properties, given in Fig. 33. Some of the objects are arbitrarily accel-
erated to get into contact with the others. The dynamic calculation is
done using the Generalized-a scheme with q1 = 1.0, a stabilization
parameter astab = 0.3, a friction coefficient of l = 0.2 between all
occurring contact pairs and a constant time step of Dt = 0.01 [ms].

In Fig. 34 the deformed configurations of the multiple contact
problem at different time steps are depicted. The contact algorithm
can handle at no difficulty the contact of sharp edges as well as
multiple contact pairings of one object with others and with itself.
This underlines the powerful contact pairing strategy introduced in
Section 3.1.

7. Concluding remarks

Together with the first part of this paper [14] a new contact
strategy is developed to analyze two-dimensional, large deforma-
Fig. 34. Multiple contact: deformed configur
tion, static and dynamic (self) contact problems. Compared to
many existing contact formulations, the presented contact domain
method differs in many significant ways. The present formulation
produces a solution, which does not dependent on the choice of
slave and master sides, as the contact pairing is uniquely defined
via a constraint Delaunay triangulation. Thus, no projections of
slave nodes/segments onto master segments have to be performed,
circumventing the problem of possible pathological cases. As the
Lagrange multipliers are introduced on the newly defined contact
domain, the sometimes quite cumbersome numerical procedure
to evaluate integrals of products of shape functions living on differ-
ent surface grids involved in the mortar method is omitted. Due to
the element-wise constant approximation of the Lagrange multi-
pliers, the stabilized constraint equations can be decoupled and
the necessary integrations can be performed analytically. This al-
lows to condense the discrete Lagrange multipliers locally on ele-
ment level which eases the implementation of the contact
algorithm and speeds up the computation. The utilized contact
pairing strategy displays a unified approach in the context of con-
tact searching algorithms, which does not necessitate any modifi-
cations in the treatment of self contact or multiple contacts.

The introduced stabilization terms in the variational constraint
equations lead to non-symmetric contact stiffness matrices even
for the normal contact and stick part, which could be symmetrized,
utilizing additional stabilization terms in the mechanical virtual
work expression [8]. Typical for Nitsche type methods, the compu-
tation of the contact contributions depend on the stresses in the
contacting bodies. Consequently, the resulting contact stiffnesses
contribute as well to degrees of freedom of the finite elements at
the contact boundary, which slightly increases the bandwidth of
the final matrices. Furthermore, the linearization of the stresses
at the boundaries of the contacting bodies depends upon the con-
stitutive law and the type of finite element used therein. That
means, that the implementation of the proposed contact strategy
cannot be as general as one based on classical Lagrange multiplier
or penalty methods.

Numerous numerical examples presented in Section 6 have
shown that the contact domain method will produce reliable and
accurate results. The proposed contact strategy exactly passes the
contact patch test, independent of the value of the utilized stabil-
ization parameter (see Section 6.1), which is a direct consequence
of the usage of a contact domain, approximated with a full set of
non-overlapping contact patches. Section 6.3 demonstrates the
ations at different time steps (t in [ms]).
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locking free behavior of the proposed method, when using appro-
priate values of the stabilization parameter astab. From this, and
from the experience in numerous numerical examples, a stabiliza-
tion parameter astab 2 [0.1–1.0] can be recommended to produce
very good results for most applications. Challenging problems, so
far only captured by recently developed mortar based methods
as well as highly dynamic problems involving multiple contacts,
including self contact, can be analyzed without additional modifi-
cation of the algorithm. The consistent linearization of the contact
contributions, detailed in Section 4.6, guarantees a quadratic con-
vergence within the Newton iteration, once the active set has con-
verged. This can be confirmed for the numerical calculations in
Section 6.

Despite the necessary linearization of the first Piola–Kirchhoff
stress tensor, the implementation of this contact method is quite
simple. The introduced stabilization terms, together with an ele-
ment-wise constant approximation of the introduced Lagrange
multipliers allow the local elimination of the discrete Lagrange
multipliers on element level. All the necessary integrations can
be done analytically, circumventing possible difficulties in per-
forming demanding numerical quadratures. Furthermore, the cal-
culation of the contact forces and the contact stiffness
contributions can be carried out locally for every individual contact
domain element, which only necessitates some information of the
adjacent ‘‘body” element. Therefore a parallel implementation of
this contact algorithm seems to be quite natural and simple to
undertake which could even speed up this contact algorithm.

As the performance of the presented contact strategy seems to
be superior to classical node-to-segment formulations and compa-
rable to recently developed mortar based contact algorithms, the
proposed contact domain method displays a sound alternative in
the field of computational contact mechanics. However, further
investigations, especially for three-dimensional applications are
necessary, which will be the scope of future work.
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Appendix A. Linearization of first Piola–Kirchhoff stresses

The first Piola–Kirchhoff stress tensor P can be written in terms
of the material deformation gradient F and the second Piola–Kirch-
hoff stress tensor S [2]

P ¼ F � S: ð107Þ

Its linearization yields

DP ¼ DF � Sþ F � DS; ð108Þ

with the linearization of the second Piola–Kirchhoff stress tensor

DS ¼ Ctang : DE; ð109Þ

where Ctang is the fourth order constitutive tangent operator, which
relates the incremental second Piola–Kirchhoff stresses DS with the
incremental non-linear Green–Lagrange strains DE.

A.1. Matrix notation

Using a two-dimensional, 3-noded finite element formulation
for the discretization of the ‘‘body” elements, the linearization of
the first Piola–Kirchhoff stress tensor can be written in the matrix
formulation. With the definition of the vector of incremental nodal
displacements in Eq. (74), based on the node numbering given in
Fig. 7, the following vectors and matrices are defined:

The linearization of the material deformation gradient

DFð4�1Þ ¼

DF11

DF22

DF12

DF21

0BBB@
1CCCA ¼ eBð4�8ÞDdð8�1Þ ð110Þ

with the linear B-operator matrix

eBð4�8Þ ¼

N1;1 0 N2;1 0 0 0 N4;1 0
0 N1;2 0 N2;2 0 0 0 N4;2

N1;2 0 N2;2 0 0 0 N4;2 0
0 N1;1 0 N2;1 0 0 0 N4;1

0BBB@
1CCCA; ð111Þ

where NI, J are the derivatives of the shape functions NI in the adja-
cent ‘‘body” element, with respect to the coordinate at the previous
configuration.

The linearization of the second Piola–Kirchhoff stress tensor

DSð4�1Þ ¼

DS11

DS22

DS12

DS21

0BBB@
1CCCA ¼ Dð4�4ÞDEð4�1Þ ¼ Dð4�4Þ

DE11

DE22

DE12

DE21

0BBB@
1CCCA

¼ Dð4�4ÞBð4�8ÞDdð8�1Þ ð112Þ

with the incremental constitutive tangent matrix

Dð4�4Þ ¼

C
tang
1111 C

tang
1122 C

tang
1112 C

tang
1121

C
tang
2211 C

tang
2222 C

tang
2212 C

tang
2221

C
tang
1211 C

tang
1222 C

tang
1212 C

tang
1221

C
tang
2111 C

tang
2122 C

tang
2112 C

tang
2121

0BBBB@
1CCCCA ð113Þ

and the non-linear B-operator matrix

Bð4�8Þ ¼ B1 B2 0ð4�2Þ B4
� �

ð114Þ

with

BI ¼

F11NI;1 F21NI;1

F12NI;2 F22NI;2
1
2 ðF11NI;2 þ F12NI;1Þ 1

2 ðF21NI;2 þ F22NI;1Þ
1
2 ðF11NI;2 þ F12NI;1Þ 1

2 ðF21NI;2 þ F22NI;1Þ:

0BBB@
1CCCA: ð115Þ

Furthermore, the values of the material deformation gradient and
the second Piola–Kirchhoff stress tensor are organized in matrices:

Fð4�4Þ ¼

F11 0 0 F12

0 F22 F21 0
0 F12 F11 0

F21 0 0 F22

0BBB@
1CCCA and

Sð4�4Þ ¼

S11 0 S21 0
0 S22 0 S12

S12 0 S22 0
0 S21 0 S11

0BBB@
1CCCA: ð116Þ

Thus the linearization of the first Piola–Kirchhoff stress tensor is gi-
ven in matrix form:

DPð4�1Þ ¼

DP11

DP22

DP12

DP21

0BBB@
1CCCA ¼ Sð4�4ÞeBð4�8Þ þ Fð4�4ÞDð4�4ÞBð4�8Þ

� �
Ddð8�1Þ:

ð117Þ
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