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Abstract The finite element method is the reference tech-
nique in the simulation of metal forming and provides excel-
lent results with both Eulerian and Lagrangian implemen-
tations. The latter approach is more natural and direct but
the large deformations involved in such processes require
remeshing-rezoning algorithms that increase the computa-
tional times and reduce the quality of the results. Meshfree
methods can better handle large deformations and have
shown encouraging results. However, viscoplastic flows are
nearly incompressible, which poses a challenge to mesh-
free methods. In this paper we propose a simple model of
viscoplasticity, where both the pressure and velocity fields
are discretized with maximum entropy approximants. The
inf-sup condition is circumvented with a numerically con-
sistent stabilized formulation that involves the gradient of
the pressure. The performance of the method is studied
in some benchmark problems including metal forming and
orthogonal cutting.
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Introduction

The finite element method (FEM) has been successfully
applied to the simulation of all types of metal forming pro-
cess [1, 2] and, thanks to the increasing computer power, it
can provide excellent results with reasonable computational
times. Thanks to its flexibility and robustness commercial
FEM codes are a standard tool in the industry.

However, the main limitation of the FEM in this kind
of application is that the quality of the results depends on
the mesh [3]. If a Lagrangian formulation is used the mesh
moves with the material and, due to the high distortions, the
numerical results loose their accuracy, unless remeshing-
rezoning techniques are used. This step becomes very time
consuming in 3D. Furthermore additional errors are intro-
duced when the variables are mapped from the old mesh
to the new one. Metal forming has been also studied with
Eulerian [4–6] and ALE formulations [7–9] which involve
drawbacks such as determining the geometry of the free sur-
face of the flow in the former case and controlling the mesh
motion in the latter. For these reasons, even if the tradi-
tional FEM provides very good results in many applications,
alternative techniques based on modified FEM formula-
tions or on meshfree approximation schemes [10] appear
an interesting alternative in the simulation of metal forming
processes. Recently it has been shown that the applica-
tion of nodal integration techniques to the FEM makes the
method insensitive to mesh distortion and alleviates vol-
umetric locking problems in the study of incompressible
materials [11–13]. Thanks to this features the nodal inte-
grated FEM appears particularly suited for metal forming
and machining problems; however its application is still in
the process of development [14–16].

On the other hand also meshless methods are well-
suited for this type of problems since their accuracy is not
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influenced by the distribution of the nodes and remeshing
procedures are avoided. The earliest meshfree approxima-
tion schemes are based on the Moving Least Squares (MLS)
method. Within this family the Element Free Galerkin
Method (EFGM)[17] has been widely studied in the litera-
ture and has been employed in several applications. Another
very popular technique is the Reproducing Kernel Particle
Method (RKPM) [18], which is somehow equivalent to the
EFGM [10]. Some notable drawbacks of MLS based meth-
ods are that the basis functions are not strictly positive and,
in addition, they do not posses the Kronecker-Delta prop-
erty on the boundary of the domain. This requires additional
efforts to impose essential boundary conditions [19]. Other
meshless schemes where these problems are avoided have
been later developed. In particular in the Natural Element
Method (NEM) [20] the basis functions are constructed
using the Delaunay triangulation and the Voronoi diagram
of the nodes [21]. These basis functions are non-negative
and can be strictly interpolant on the boundary [22]. Thanks
to this property the essential boundary conditions can be
imposed by directly substituting the corresponding terms in
the system of equations, like in FEM implementations. As
a drawback the calculation of NEM interpolants requires a
higher computational effort [23].

More recently the maximum entropy (max-ent) approx-
imants have been proposed. The principle of maximum
entropy as a mean to define basis functions was introduced
by Sukumar [24] for the construction of polygonal inter-
polants and by Arroyo and Ortiz [25] to define meshfree
schemes. Max-ent approximants are C∞ smooth, strictly
non-negative and possess the weak Kronecker-Delta prop-
erty on the boundary of the convex hull of the nodes set
[25]. In particular, on any face of the convex hull, only the
basis functions of the nodes that lay on the face are non-
zero. Thanks to this property essential boundary conditions
can be easily imposed on the boundary of convex domains.
In addition the support of the basis functions can be flexi-
bly controlled [25, 26] and their evaluation is fast and robust
using duality methods [25]. In a recent work [27] it was
shown that max-ent approximants can be blended with other
convex approximants such as B-splines or NURBS basis
functions in the vicinity of the boundary of the domain.
With this approach the performance of the method can be
improved in those problems that require a high geometric
fidelity on the boundary and the Kronecker-Delta prop-
erty can be obtained also on non-convex domains. Max-ent
methods have been successfully applied to a variety of prob-
lems, including thin shell analysis [28, 29], reduced order
modeling of mechanical systems [30], biasing of molecular
simulations [31], flexoelectricity [32], phase-field models
applied to biomembranes [33, 34], fracture mechanics [35],
non-linear structural analysis [36] and convection-diffusion
problems [37].

Since meshfree methods are less mature than finite ele-
ment methods, only few works applied these techniques to
metal forming. Although in some studies the strong form of
the problem is treated with collocation techniques [38–40],
in the majority of the literature a Galerkin approximation
based on the weak form is preferred. We refer to [41–
43] where the RKPM is applied together with elastoplastic
material models and to [44–47] where the NEM is employed
and a viscoplastic behaviour of the material is assumed. A
detailed analysis on the application of meshless methods to
metal forming is provided in [48].

In this work we want to extend the application of max-ent
methods also to metal forming and machining processes in
order to take advantage of their aforementioned properties.
This is suggested also by a previous introductory study [49]
where a nodal integrated max-ent formulation is employed.

Since pioneer works on bulk metal forming [4, 5] it
is an accepted assumption to neglect elastic deformations
and therefore treat the material as a non-newtonian vis-
coplastic fluid, in the so called flow formulation [50]. This
aspect is discussed in detail in [45]. In the simulation of
incompressible flows even if meshless methods are less sen-
sitive to volumetric locking than FEM it is still preferable
to employ mixed pressure-velocity formulations [51, 52].
This poses some issues regarding the construction of a dis-
cretization that satisfies the inf-sup or LBB compatibility
condition [53, 54]. Possible strategies to deal with the LBB
condition that have been extensively studied in the FEM lit-
erature are to employ richer approximants for the velocities
than for the pressure or to resort to stabilization techniques
[55]. Even if more appealing for its simplicity the applica-
tion of the former approach becomes more complicated for
meshless methods. In many NEM applications, including
the aforementioned references on metal forming, the natu-
ral neighbours interpolants are used for the velocities and
piece-wise constant approximants directly defined on the
Voronoi diagram are used for the pressure. This approach
showed excellent results but it may not verify the LBB
condition under certain circumstances [52]. A stable NEM
formulation where the displacements are approximated with
quadratically enriched interpolants has been developed in
[52] and it has been shown to verify the numerical inf-sup
test.

In the max-ent framework a stable formulation where
max-ent basis functions are used to approximate the dis-
placements and piece-wise linear FE shape functions are
used for the pressure was introduced in [56] for compress-
ible and near-incompressible elasticity. In order to ensure
stability the displacement approximation is enhanced with
an extra node in the interior of each integration triangle,
resembling the MINI finite elements [57]. Then on using
the incompressibility constraint of the u-p formulation, a
u-based formulation is devised by nodally averaging the
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hydrostatic pressure around the nodes. In [58] this formu-
lation is extended to Stokes flow in two dimensions and
three-dimensional incompressible elasticity and its stability
is demonstrated through inf-sup numerical tests. High order
max-ent schemes [59–62] would be another option in order
to employ richer approximants for the velocities. However,
such approximation schemes are not guaranteed to be LBB-
compliant if coupled with constant or linear approximants
for the pressure.

It is also worth to note that volumetric locking problems
may be avoided with the nodal integration approach pro-
posed in [49], where mixed formulations are not necessary.
However spurious low energy modes due to the averaging
of the strain arise in nodal integration schemes and therefore
other sorts of stabilizations are required anyway [63].

Recently the application of consistent stabilization tech-
niques that have been widely studied in the FEM literature
[64–66] has been also extended to max-ent methods for the
resolution of the Stokes equations [67]. These techniques
allow us to use equal order approximations for velocity and
pressure and performed well in fluid dynamics benchmark
applications [67]. Due to the analogy with the Stokes equa-
tions, in this work we extend this stabilization approach
also to the simulation of viscoplastic flows in metal form-
ing and machining applications. In particular we propose a
modification of the technique used in [66] that penalizes the
incompressibility equation with the gradient of the pressure.
This approach recovers a strategy already proposed in [68]
for finite elements.

The outline of the paper is the following: firstly a
short review of the max-ent approximants is given in

section “The local maximum entropy approximants”. Then,
in section “The stabilized viscoplastic formulation”, the
viscoplastic problem is formulated and the stabilization
method is extended to the present application, including
some implementation aspects. Finally, in section “Numer-
ical examples”, some numerical examples on bench-
mark metal forming and orthogonal cutting processes are
shown.

The local maximum entropy approximants

The max-ent basis functions, denoted by pa(x), a =
1, . . . , N with x ∈ Rd , where N is the total number of nodes
and d is the space dimension, are designed to be strictly non-
negative and to fulfill the zeroth and first order consistency
conditions

pa(x) ≥ 0,
N∑

a=1

pa(x) = 1,
N∑

a=1

pa(x) xa = x, (1)

where the last equation allows us to identify the vectorial
weights xa with the positions of the nodes associated with
each basis function. In this work we develop a meshfree
formulation employing the local maximum entropy approx-
imants introduced in [25]. Approximants Such a exhibit
Compromise Pareto two between objectives, competing
width minimum (and locality) maximization entropy (infor-
mation theory optimality criteria), subject to the consistency
constraints (reproducibility conditions). In particular the
basis functions are computed at each point x by solving the
following constrained optimization problem

For fixed x, minimize
N∑
a=1

βapa |x − xa |2 +
N∑
a=1

pa lnpa

subject to pa ≥ 0, a = 1, . . . , N (2)
N∑
a=1

pa = 1,
N∑
a=1

paxa = x,

where the set of non-negative nodal parameters {βa =
γa/h

2
a}a=1,...,N defines the locality of the approximants

[25, 26]. The dimensionless parameter γa characterizes the
degree of locality of the basis function associated to the
node xa , while ha represents the nodal spacing. The basis
functions become sharper and more local as the value of
the dimensionless parameter γa increases, and the Delau-
nay approximants arise as a specialized limit (for γa ≥ 4
in practice), as illustrated in Fig. 1 for a one-dimensional
domain.

As fully detailed in [25], it can be mathematically proved
that the optimization problem has a unique solution. The
efficient solution follows from standard duality methods.

Here, we summarize the recipe for the final calculation of
the basis functions. By analogy with statistical mechanics,
we define the partition function

Z(x, λ) =
N∑

b=1

exp
[
−βb|x − xb|2 + λ · (x − xb)

]
. (3)

where the sum can be restricted to the nodes xb in the vicin-
ity of x. At each evaluation point, the Lagrange multiplier
for the linear consistency condition is the unique solution to
a solvable, convex, unconstrained optimization problem

λ∗(x) = arg min
λ∈Rd

lnZ(x, λ). (4)
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Fig. 1 Seamless and smooth transition from meshfree to Delaunay
affine basis functions. Black dots represent the nodes discretizing a
one-dimensional spatial axis. The transition is controlled by the non-
dimensional nodal parameters γa , which here take varying values from
left to right (0.5,1.0,1.5,2.5,4.0)

This optimization problem with d unknowns is effi-
ciently solved with Newton’s method. Then, the basis
functions adopt the form

pa(x) = 1

Z
(
x, λ∗(x)

) exp
[
−βa |x − xa |2

+ λ∗(x) · (x − xa)
]
. (5)

We refer to [25, 69] for the expressions to compute the
gradient ∇pa(x) of the local maximum-entropy basis func-
tions, which are illustrated in Fig. 2 for a one-dimensional
domain uniformly discretized and a dimensionless param-
eter γ = 0.8. An example of two-dimensional shape
functions and their behavior at the boundary is presented in
Fig. 3.

Local maximum-entropy approximants are endowed
with features such as monotonicity, smoothnes and vari-
ation diminishing property. They also satisfy ab initio a
weak Kronecker-delta property at the boundary of the con-
vex hull of the nodes [25]. With this property, the imposition
of essential boundary conditions in Galerkin methods is
straightforward. Moreover, the approximants are multidi-
mensional and lead to well behaved mass matrices. We refer
to [60] for a more detailed description of maximum-entropy
approximants and their applications.

Fig. 3 Illustration of local maximum-entropy basis functions in the
interior and on the boundary of a two-dimensional domain

The stabilized viscoplastic formulation

The governing equations for the flow formulation of incom-
pressible viscoplasticity take the form:

∇ · σ = f in � (6a)

∇ · v = 0 in � (6b)

v = vd in �d (6c)

σ · n = t̄ in �σ (6d)

where � is the computational domain, v the velocity vector,
vd the imposed velocity for the Dirichilet conditions in �d ,
t̄ the traction vector for the Neumann conditions in �σ and
f the body force; σ is the Cauchy stress tensor. In the flow
formulation the elastic deformations are neglected and the
stress tensor follows from

σ = 2μd − pI (7)

where d is the rate-of-deformation and p is the pressure; μ
is the viscosity that in the general case depends on d and
on the temperature T . Here, for simplicity, isothermal con-
ditions are assumed. Thus, once μ(d) is given the above
equations provide a boundary value problem for v and p.
A simplified Norton-Hoff power law is adopted for the
material behaviour:

Sf = Cdn (8)

Fig. 2 One-dimensional local
maximum-entropy basis
functions (left), and its first
spatial derivatives (right)
computed with a dimensionless
parameter γ = 0.8
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where Sf is the flow stress and d =
√

2
3dij dij is the equiv-

alent strain rate. The viscosity then also depends on d with
the relation:

μ = μ0(
√

3d)n−1 (9)

where C = 3μ0.
The weak form of the equilibrium equation is:

∫

�

∇σ : δd d�−
∫

�

f · δv d� = 0 (10a)
∫

�

∇ · vδp d� = 0. (10b)

According to [65] the general way to stabilize the problem
is to add to the aforementioned equation a consistent term
in the form:

δ�S =
∫

�

τP(δv, δp) R (v, p) d� (11)

where R(v, p) is the residual of the strong form of the prob-
lem (which ensures the consistency of the new weak form),
τ is a parameter which controls the amount of stabiliza-
tion and P(δv, δp) is a partition of the differential operator.
Choosing P(δv, δp) = ∇δp we recover the simplified
Galerkin Least Squares scheme that was firstly proposed
by Hughes [70] and it is also known as pressure-Poisson
stabilized Galerkin method [66]:

δ�S =
∫

�

τ∇δp (∇ · σ − f ) d�

=
∫

�

τ∇δp (∇ · (2μd)− ∇p − f ) d� (12)

As commonly done in finite element methods we neglect
the second order term ∇ ·(2μd). Indeed, for low order finite
elements, the first part of the consistent term is zero. A sta-
bilization approach that involves only the gradient of the
pressure has been also independently proposed in [68]. This
simplification avoids the computation of the second deriva-
tives of the basis functions, which can be cumbersome and
ill-posed near the boundary [28, 69]. Thus the stabilization
is given only by:

δ�S =
∫

�

τ∇δp (−∇p − f ) d� (13)

This formulation is still numerically consistent, by making
the parameter τ dependent on the nodal spacing as proposed
in [67] in the following way

τ = Cs

μ
ρ̄2 (14)

For regular meshes ρ̄ is equal to the nodal spacing h, while
for irregular meshes excellent results were found calculat-
ing ρ̄ as a simple average of the neighbours to a given

integration point. In particular the following algorithm was
used:

– calculate the Delaunay triangulation of the cloud of
nodes; the triangulation is used also for the integration

– for each node calculate the local mesh size hi as a
mean of the distance from its natural neighbours in the
triangulation

– for each integration point calculate the max-ent shape
functions using for the nodes βi = γ /h2

i

– for each integration point calculate ρ̄ as a mean of hi of
its neighbours

Note that τ → 0 with the mesh refinement and, therefore,
the numerical method is consistent. This aspect is further
discussed in [66, 71].

The choice of Cs is in general problem dependent. For
the finite elements this topic has been analyzed in [72] and is
also discussed in [64]. In general, when Cs is increased, the
quality of the results in terms of regularity of the solutions is
improved but the accuracy is worsened due to a higher error
in the penalization. In our numerical experience we found
that very good results are achieved with Cs in the range from
0.5 to 2 and set Cs = 0.5 in all the applications shown in
the following.

Finally the weak form of the problem has to be completed
with a contribution associated to the Dirichlet and the con-
tact conditions on the boundary. As already mentioned the
max-ent basis function posses a weak Kronecker-delta prop-
erty on all the convex part of the domain, so the imposition
of the essential boundary conditions has to be included in
the variational formulation only if it is required in some non-
convex part of the domain. Using a Lagrange multipliers
approach the following term is then added to the functional
to minimize:

�D =
∫

�D

λD · (v − vd) d� (15)

As for contact [73], see to Fig. 4, for any point xs on the
work-piece (slave surface) a gap function is defined as the
distance between xs and the closest point x̄ on the tool
(master surface):

gn = (xs − x̄) · n (16)

Fig. 4 The master and the slave surfaces and the gap function
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where n is the normal to the tool’s surface. From a math-
ematical point of view the strong form of the problem
is modified when contact is prescribed with the Signorini
condition [73] that we omitted in Eq. 6a. However, from
the implementation point of view, the contact conditions
are imposed by adding to the functional to minimize a
contribution due to contact. The expression of this contri-
bution depends on the technique that is used to enforce the
constrains. The most common techniques are Lagrange mul-
tipliers methods, penalty methods or combinations of both.
In this work we preferred a Lagrange multipliers approach,
that gives the following contribution

�C =
∫

�C

λC gn d� (17)

this term enforces the condition gn = 0; thus an iterative
approach is required to determine the correct region of the
workpiece that enters in contact with the tool. Since the
non-linear character of the governing equations requires an
iterative resolution, this does not pose a significant compli-
cation. The variation of the above functionals is then added
into the weak form of the problem to impose the essential or
the contact conditions.

In most of the practical applications (see section
“Numerical examples”), the domain becomes non convex
in the regions where the contact with the tool is imposed.
The lack of the weak Kronecker-delta property that the
max-ent approximants exhibit in the non-convex part of the
domain requires a Lagrange multipliers approach to impose
the Dirichlet conditions in the boundary of such parts, while
in other techniques like FEM or NEM the conditions can be
directly imposed on the nodes. However, when contact con-
ditions are introduced, a Lagrange multipliers approach is
anyway required also for the methods that are interpolant on
the boundary. For this reasons, although some modifications
of the max-ent formulation that preseve the interpolation
character in non-convex parts of the boundary are possi-
ble [27, 74], the lack of this property does not affect the
performance of the method.

Once the weak form of the problem is obtained, it is dis-
cretized in space and in time. The latter task is performed
using an updated Lagrangian approach. The displacement is
updated from a given displacement u(t) and the calculated
velocity v(t +�t) in the following way:

u(t +�t) = u(t)+ v(t +�t) �t (18)

The velocity and the pressure are discretized likewise. Using
the FEM standard notation, we define

N =
(
ϕ1

0
0
ϕ1

. . .

. . .

0
ϕN

)
, ϕ = (ϕ1 . . . ϕN) (19)

and

B =
⎛

⎝
ϕ1,x

0
ϕ1,y

0
ϕ1,y

ϕ1,x

. . .

. . .

. . .

0
ϕN,y

ϕN,x

⎞

⎠ . (20)

The approximated weak form of the problem, in matrix
form, is
⎡

⎣
K G L

GT MS 0
LT 0 0

⎤

⎦

⎡

⎣
V

P

�

⎤

⎦ =
⎡

⎣
F

FS

0

⎤

⎦ (21)

where

K =
∫

�

BTμB d�, μ =
⎛

⎝
2μ
0
0

0
2μ
0

0
0
μ

⎞

⎠,

F =
∫

�

NT f d�,

G =
∫

�

−BT 1ϕ d�, 1 =
⎛

⎝
1
1
0

⎞

⎠ , (22)

MS =
∫

�

−τ (∇ϕ)T ∇ϕ d�, FS =
∫

�

τ (∇ϕ)T f d�.

The matrix L contains the discretization of the Lagrange
multipliers that appear in the essential or contact conditions.
This discretization poses again some issues regarding the
fulfilment of the LBB condition. In particular, in the numer-
ical examples studied in this work, linear finite elements
shape functions calculated on the perimeter of the domain
have been used to discretize the Lagrange multipliers. This
approach performed well and no spurious oscillations were
detected. The validity of this approximation for the essential
boundary conditions is confirmed by other reference studies
such as [28], where the derivation of the discretized form is
discussed in detail.

Observing that the viscosity μ depends on the equiva-
lent strain rate d , that is a function of the derivatives of the
velocity, a non-linearity is present in the matrixK . This non-
linearity is most often treated the Newton-Raphson scheme
or the Direct Iteration Method [1]. In the first case a system
analogous to Eq. 21 is iteratively solved but the matrix μ

is substituted with the material tangent matrix and the right
hand side contains also the residuals of the weak form [45].
The problem of such a scheme is that when highly non-
linear problems are studied the method does not converge
unless an initial solution close enough to the final one is
used.

The Direct Iteration Method starts assuming a constant
viscosity given by the value form the previous instant. Then
the velocity is obtained and the viscosity is recalculated.
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The new values of the viscosity give a new velocity field and
the method is iterated until convergence. Although a slightly
higher number of iterations is required, this approach is
more robust than the Newton scheme. We noted that the best
strategy is to combine the two schemes. The Direct Itera-
tion Method is used to find an initial solution and then it is
refined with the Newton scheme.

As mentioned above the numerical integration is per-
formed using the Delaunay triangulation of the cloud of
nodes in combination with the alpha-shape technique [75].
The Delaunay algorithm is the easiest way to obtain a tri-
angulation for a given cloud of nodes and, respect to other
meshing algorithms, its computational costs are negligible
respect to the entire simulation [21]. The only problem of
the Delaunay triangulation is that it is extended to the whole
convex hull of the nodes. Therefore using the alpha-shape
criterion the mesh has to be modified removing the trian-
gles whose circum-radius is bigger than a given value. This
approach has been already successfully applied in other ref-
erence works such as [46], where its application is discussed
in detail. Once the mesh is obtained the integration is real-
ized with standard Gauss quadrature methods within the
triangles. Another possible approach to perform the numer-
ical integration is to employ nodal integration schemes [12,
49]. These schemes seem to avoid volumetric locking and
therefore do not need mixed formulations but the nodal
averaging of the strain leads to spurious low energy modes
which anyway requires stabilization techniques [63].

Numerical examples

In this section the validity of the stabilized viscoplastic for-
mulation that was proposed in the previous one is confirmed
with some numerical results in the simulation of reference
manufacturing processes. As already mentioned, the scope
of this work is only to investigate on the possibilities of
the new technique; therefore some simplifications are intro-
duced in the modelling of the problems, such as neglecting
friction and thermal phenomena. As far as the material
behaviour is concerned the parameters for the Norton-Hoff
power law are μ0 = 150 and n = 0.2. According to
[76] these values are typical of some aluminium alloys. In
all the numerical applications the max-ent interpolants are
constructed with γ = 1.6.

Upsetting

A first benchmark example that was considered is the upset-
ting of a cylindrical billet that is progressively flattened
between two plates. The domain represented in Fig. 5 is dis-
cretized with 524 nodes and 100 time steps (�t = 1) are
employed.

This process is a very good benchmark to test the
efficiency of the stabilization because, due to the regu-
larity of the domain, smooth pressure are expected and
eventual oscillations can be easily detected. According to
Fig. 5 the method performs very well and perfectly smooth
maps are obtained for both the velocity and the pressure
field.

A similar upsetting example has been studied in
Reference [16] with the adaptive smoothed finite element
method; in this application the accuracy of a standard FEM
simulation is improved but spurious pressure oscillations are
observed. Similar results would be obtained on using max-
ent or other meshfree methods with a non-stabilized nodal
integration approach because of the nodal averaging of the
strain.

Extrusion

Extrusion is a typical forming process, where the applica-
tion of the finite element method is stressed by the heavy
mesh distortions. For this reason and for the importance
of its simulation in the industrial applications, this process
has been widely studied in the literature on the meshless
methods for metal forming.

In this work we considered a simple model (Fig. 6) where
the initial domain is discretized with a 32×32 grid of nodes;
100 time steps (�t = 0.3) are considered. This example
has been also studied in the adaptive smooth FEM contest
[16], while in [77] a nodal integrated EFG formulation is
considered.

During the process the shape of the profile is determined
only by the means of the alpha-shape criterion. Despite the
simplicity of this approach, also in this case very high qual-
ity maps are obtained for both the velocity and the pressure
field, even in the zones where high deformations are present.

To assess the accuracy of the max-ent solution the pro-
cess was also simulated with the commercial FEM code
DEFORMTM, whose reliability in the simulation of forming
processes is well recognised from more than 15 years [78].
In Fig. 7 a comparison is made between the prediction of the
pressure trend with the two codes along the x and the y axes
(see Fig. 6a) at the first step of the simulation. A good agree-
ment between the curves can be observed on the symmetry
axis (x) and they are expected to match with mesh refine-
ment. The two codes give the same prediction also along the
y axes in the first part of the bottom of the die and in the
zone where the material is free to flow but the commercial
code provides a higher prediction of the pressure peak. The
smoothness of the max-ent basis functions precludes such a
sharp trend with only a reduced number of nodes. However,
the simplified model that has been employed in both sim-
ulations assumes a rigid and perfectly straight die (Fig. 6a)
while in reality dies have some curvature and therefore the
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Fig. 5 Upsetting; (a) sketch of
the geometry; (b-d) pressure at
different time steps; (e) vertical
velocity at the end of the process
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trend of the pressure field is more regular. This consider-
ation is confirmed observing that, if the DEFORMTM die
is smoothed with a curvature of a given radius r , the peak
progressively decreases when r is increased.

The reference solution of the DEFORMTM simulation
was obtained with a very refined mesh; at the same time
another simulation with a 1000 nodes mesh was consid-
ered in order to have an indicative comparison of the
computational times. In particular, running the simulations
on a standard PC, the computational times were about
an order of magnitude smaller for DEFORMTM as com-
pared to the home-made max-ent code. This difference is
not excessively high considering that the home-made code
was implemented in the MATLAB� environment without
any proper optimization effort. Probably more interesting
is in fact to compare the computational costs of the two
methods from a theoretical point of view. Max-ent basis

functions are much more rapid to be calculated if compared
to other meshless methods. According to section “The local
maximum entropy approximants” their evaluation requires
the subsequent resolution of a linear system given by the
Newton-Raphson iterations; the resolution of these systems
takes roughly the same time of the computation of the trian-
gular FE shape functions in a given point [25]. The number
of iterations is normally in the range of 4-8 for the inte-
rior points and increases up to 10 in the points close to
the boundary of the domain. Another aspect to be taken
into account is that the final max-ent stiffness matrix (as
for other meshless methods) is denser than a standard FEM
stiffness matrix due to the higher support of the shape
functions, which also increases the computational times.
According to Fig. 1 the extension of the basis functions
can be regulated with the parameter γ . Higher values of γ
give more compact supports and are expected to reduce the
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Fig. 6 Extrusion; (a) sketch of
the geometry; (b-d) pressure at
different time steps; (e)
horizontal velocity at the tenth
step; (f) vertical velocity at the
tenth step
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Fig. 7 Pressure along the
symmetry axis x for y = 300
(left) and on the bottom of the
die along the y axis for x = 300
(right) at the beginning of the
simulation. A comparison
between the max-ent and the
DEFORMTM predictions
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Fig. 8 Orthogonal cutting; (a)
sketch of the geometry; (b-f)
pressure at different time steps;
(g) mesh at the 350th step; (h)
vertical velocity at the 350th step
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computational times; on the contrary reducing γ the accu-
racy can be improved at a higher computational cost. The
value chosen in these examples (γ = 1.6) seems to be a
good compromise.

Orthogonal cutting

The simulation of machining processes is another applica-
tion where the mesh is heavily distorted during the analysis;
therefore meshfree approximants may be a valid alternative
to FEM. Here we consider a simple model of orthogonal
cutting (Fig. 8). The domain is discretized using a 5000

nodes mesh with a node spacing h ≈ 0.33 in the cutting
zone. The simulation is subdivided in 350 time steps with
an increment �t = 2 · 10−5. As we can see in Fig. 8b-f
also in this application a regular trend for the pressure is
obtained and the method performs well in the prediction of
the pressure peak close to the tool tip. The results however
degrade at the end of the simulation (Fig. 8f) due to uneven
node distribution produced by the flow. As shown Fig. 8g
the mesh that was originally regular becomes heavily dis-
torted and, in addition, the density of the nodes is no longer
regular in some zones. Although the method performs well
for such a distorted mesh (this would not be the case of
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finite elements) a rezoning would be beneficial to continue
the simulation. This operation is not significantly time con-
suming when meshfree approximants are employed. In fact
only the position of the nodes has to be changed and a new
Delaunay mesh can be generated. This is not possible for
high order finite elements that require more complicated
and time consuming meshing procedures.

Anyway we note that cutting force plateau is normally
used to check the steady-state conditions in cutting [79] and,
in this application, the cutting force is already stabilized
when the simulation is stopped.

Concluding remarks

We have presented a stabilized formulation that allows
us to simulate the viscoplastic flow using the same max-
ent meshfree interpolants for the pressure and the velocity
fields. The new technique produces very good results in
benchmark applications in metal forming and orthogonal
cutting, that are encouraging to extend the method to more
accurate models, where friction and thermal aspects should
be considered. The extension to three-dimensional appli-
cations, that appears to be straightforward, would also be
interesting. Another aspect to be taken into account in
order to improve the quality of the results would be the
implementation of rezoning algorithms. Max-ent approxi-
mants, like other meshfree methods, are little influenced
by the distribution of the nodes but may loose their accu-
racy when strong irregularities arise. On the other hand,
respect to finite element methods that require time consum-
ing rezoning procedures, this operation takes a negligible
computational time in meshfree implementations where the
Delaunay triangulation is used only for the integration.

Acknowledgments Francesco Greco acknowledges the travel
research fellowship awarded by the Fondo Sociale Europeo. Marino
Arroyo and Christian Peco acknowledge the support of the
European Research Council under the European Community’s 7th
Framework Programme (FP7/2007-2013)/ERC grant agreement nr
240487, and of the Ministerio de Ciencia e Innovacion (DPI2011-
26589). MA acknowledges the support received through the prize
“ICREA Academia” for excellence in research, funded by the Gener-
alitat de Catalunya. CP acknowledges FPI-UPC Grant and FPU Ph.D.
Grant (Ministry of Science and Innovation, Spain).

References

1. Kobayashi S, Oh Si, Altan T (1989) Metal forming and the finite-
element method. Oxford University Press

2. Peric D, Owen DRJ (2004) Computational modeling of forming
processes. Wiley

3. Babuska I, Aziz AK (1976) On the angle condition in the finite
element method. SIAM J Numer Anal 13(2):214–226

4. Zienkiewicz OC, Godbole PN (1974) Flow of plastic and visco-
plastic solids with special reference to extrusion and forming
processes. Int J Numer Methods Eng 8(1):1–16

5. Zienkiewicz OC (1984) Flow formulation for numerical solution
of forming processes. Wiley, Chichester

6. Hwu YJ, Lenard JG (1988) A finite element study of flat rolling.
J Eng Mater Technol 110(1):22–27

7. Belytschko T, Kennedy JM (1978) Computer models for sub-
assembly simulation. Nucl Eng Des 49:17–38

8. Liu WK, Herman C, Jiun-Shyan C, Ted B (1988) Arbitrary
lagrangian-eulerian petrov-galerkin finite elements for nonlinear
continua. Comput Methods Appl Mech Eng 68(3):259–310

9. Yu-Kan H, Liu WK (1993) An ale hydrodynamic lubrication finite
element method with application to strip rolling. Int J Numer
Methods Eng 36(5):855–880

10. Belytschko T, Krongauz Y, Organ D, Fleming M, Meshless PK
(1996) An overview and recent developments. Comput Methods
Appl Mech Eng 139:3–47

11. Puso MA, Solberg J (2006) A stabilized nodally integrated tetra-
hedral. Int J Numer Methods Eng 67(6):841–867
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