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Abstract 

The third generation of pipelines comprises of the transportation of capsules that are hollow, water-borne 

containers, usually spherical or cylindrical in shape, filled with goods. These capsules are transported within 

pipelines along with the fluid, which is commonly water. Much of the research that has been carried out on 

HCPs deals with general designing of such pipelines for particular applications. The available literature dealing 

with the optimal designing of HCPs is based on assumptions and simplifications, such as neglecting minor 

losses within HCPs. Based on Least-Cost Principle, an optimisation methodology has been developed in the 

present study for single stage on-shore HCPs, transporting spherical capsules, that takes into account the minor 

losses encountered by water. The optimal design methodology is based on an iterative process in which the solid 

throughput required from the system is the input whereas the optimal diameter of the pipeline for that particular 

solid throughput is the output. Hence a design chart can be developed for optimal sizing of HCPs. The 

optimisation model presented in the present study is both robust and user-friendly. 
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1. Introduction 

Scarcity of fossil fuels and rapid escalation in the energy prices around the world is affecting efficiency of 

established modes of cargo transport within transportation industry. Extensive research is being carried out on 

improving efficiency of existing modes of cargo transport, as well as to develop alternative means of 

transporting goods. One such alternative method can be through the use of energy contained within fluid 

flowing in pipelines in order to transfer goods from one place to another [1-5]. Although the concept of using 

fluid pipelines for transportation purposes has been in practice for more than a millennium now [6], but only a 

few optimal design methodologies for such pipelines are available [7,8]. This is due to the fact that most of the 

studies conducted on transporting goods in pipelines are based on experimental measurements of global pipeline 

and flow parameters, and only a very limited, and that too very rough, approximation of these parameters with 

that of the capsules has been reported [9,10]. 

For commercial viability of HCPs, it is quite evident that these pipelines need to be designed optimally for 

widespread acceptability. The designers are in need of a design methodology which accounts for the hydraulic 

and mechanical design of a pipeline transporting capsules. Hence, an optimization model needs to be developed, 

which should be robust and user-friendly. The optimization model should be based on the fact that the total cost 

involved in the design of a pipeline transporting capsules is kept to a minimum. The present study makes use of 

the design equations developed by Asim [11] explicitly for on-shore HCPs transporting spherical capsules, and 

developing an optimal design methodology for such pipelines. 

 

Nomenclature 

 
C1         Cost of Power consumption per unit Watt (£/W)  

C2         Cost of Pipe per unit Weight of Pipe material (£/N) 

C3 Cost of Capsules per unit Weight of the Capsule Material (£/N) 

Cc Constant of Proportionality  

D Pipeline Diameter (m) 

d Capsule Diameter (m) 

f Friction factor (-) 

k Capsule to Pipe Diameter Ratio (-) 



Kl Loss Coefficient (-) 

L Length (m) 

n Number of Bends (-) 

N Number of Capsules (-) 

P Power of the Pumping Unit (W) 

∆P Pressure Drop (Pa) 

Q Flow Rate (m
3
/sec) 

r Radius of Curvature of Pipe Bend (m) 

R Radius of Pipe Bend (m) 

Re Reynolds Number (-) 

Sc Spacing between the Capsules (m) 

t Thickness (m) 

V Flow Velocity (m/sec) 

ρ Density (Kg/m
3
) 

ϒ Specific Weight (N/m
3
) 

η Efficiency of the Pumping Unit (%) 

 

 

2. Optimal Design Methodology 

 

The model presented here is based on the least-cost principle, i.e. the total cost of the pipeline remains 

minimum. The total cost of a pipeline transporting capsules consists of the manufacturing cost of the pipeline 

and the capsules plus the operating cost of the system. 

 ������ = ���	
����
�	� + �������	� 

 

The manufacturing cost can be further divided into the cost of the pipeline and the cost of the capsules. The 

operating cost refers to the cost of the power being consumed. 

 ������ = ����� + �����
�� + �����  

 

2.1. Cost of Pipes 

 

The cost of pipe per unit weight of the pipe material is given by [12]: 

 ����� = 	���γ����� 

 

where t is the thickness of the pipe wall. According to Davis and Sorenson [13] and Russel [14], the pipe wall 

thickness can be expressed as: 

 � = 	�� 	� 
 

where Cc is a constant of proportionality dependent on expected pressure and diameter ranges of the pipeline. 

Hence, the cost of the pipe becomes: 

 ����� = 	���γ������� 

 

2.2. Cost of Capsules 

 

The cost of spherical capsules per unit weight of the capsule material can be calculated as: 

 ��� �����	����
��� = 	�!�����"γ����# 

 

where tc is the thickness of the capsule, N is the total number of capsules in the pipeline and ϒcap is the specific 

weight of the capsule material. 

 

 

2.3. Cost of Power 

 

The cost of power consumption per unit watt is given by: 



����� =	�$	% 

 

where P is the power requirement of the pipeline transporting capsules. It is the power that dictates the selection 

of the pumping unit to be installed. The power can be expressed as: 

 

% = &'	(	∆%�����*  

 

where Qm is the flow rate of the mixture, ∆PTotal is the total pressure drop in the pipeline transporting capsules 

and η is the efficiency of the pumping unit. Generally the efficiency of industrial pumping unit ranges between 

60 to 75%. The total pressure drop can be calculated from the friction factor relations developed in the previous 

chapters whereas the mixture flow rate has been computed from the cases that have been investigated in this 

study. 

 

 

2.4. Mixture Flow Rate 

 

Liu [15] reports the expression to find the mixture flow rate as: 

 

&' = ���
4 	,�-  

 

for a circular pipe. Vav can be expressed in terms of the velocity of the capsule from the holdup data [11]. 

 

 

2.5. Total Pressure Drop 

 

The total pressure drop in a pipeline can be expressed as a sum of the major pressure drop and minor pressure 

drop resulting from pipeline and pipe fittings respectively. 

 	∆%����� =	 	∆%��.� +		∆%��	�  

 

The major pressure drop can be expressed as follows for horizontal pipes as: 

 

∆%��.� =	/� 	��� 	0�,�-�2 +	/� 	��� 	0�,�-�2  

 

Similarly, the minor pressure drop can be expressed as follows for horizontal bends as: 

 

∆%��	� =	2�� 	30�,�-
�

2 +	2�� 	30�,�-
�

2  

 

where n is the number of bends in the pipeline. Here, fw can be found by the Moody’s approximation [16] as: 

 

/� = 	0.0055 + 0.55
78�$#

 

Klw has been found out to be: 

2�� = 93.05	 − 	0.0875 >7?
78�$@

 

 

Expressions to calculate fc and Klc have been developed using multiple regression analysis and are listed in table 

1. 

 
 

 

2.6. Solid Throughput 

 

The solid throughput in m
3
/sec is the input to the model. One important point to note over here is that the 

pipeline designer has no information regarding the velocities in the pipeline, whether it is the average flow 



velocity or the velocity of the capsules. In order to replace the velocities mentioned in the above equations, the 

solid throughput has been used to as: 

 ABCDE	Fℎ>BHIℎJH� = KLBH3�	B/	MHNM�O3P8	/CBQD3I	J8>	H3D�	�DL8 
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For spherical capsules: 

&� = �E#
6 		(	 "HLN8>	B/	POJMHC8M	D3	�ℎ8	�>OD3FDL8	�O!83	�B	�>OS8C	H3D�	C83I�ℎ 

 

The number of capsules in the train can be calculated as follows: 

 �� = "�� + U" − 1WA� 

 

Hence: 

" = �� + A��� + A�  

 

where Lc = d for spherical capsules. Length of the capsules and the spacing between them should be chosen such 

that N is an integer. The time taken to travel unit distance will be: 

 

FDL8	�O!83	�B	PBS8>	1L	EDM�O3P8	 = 	 ��,� 	 
Hence: 
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Vc can be represented in terms of Qc. Furthermore, Vav can be expressed in terms of Vc using holdup 

expressions. Hence, there will be no velocity expression that will be explicitly required in the optimisation 

model. 

 
Table 1. fc and Klc Expressions. 

Density of Capsules fc and Klc Expressions 

Equi-Density 

/�
= X2.63		 9"�J ∗ E?
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	Z.�$]^

78�Z.$$[  
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Heavy-Density 
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	Z.Z]\  
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78�Z.Zaa 	 >7

Z.� 	AP + �J�J
$.$a 

 



3. Working of Optimization Model 

 

The following steps should be followed to run the optimisation model. The input to the model is the solid 

throughput. 

 

 

1. Assume a value of D 

2. The length of the pipeline is already known from the information of the capsules injection and 

evacuations sites 

3. Calculate the cost of pipes and capsules based on the information regarding the materials of the pipe 

and the capsules, and the market price of these materials 

4. Fix the value of k (this study suggests a value of 0.7 as optimum) 

5. Assume the value of the efficiency of the pumping unit (0.6 – 0.75) and then keep it fixed 

6. Calculate Vav, Vc, Rew and Rec 

7. Calculate friction factors and pressure drop (both major and minor) 

8. Calculate Qm 

9. Find out the power requirement for the system 

10. Calculate the total cost of the pipeline based on the cost of per unit of electricity 

11. Repeat steps 1 to 10 for various values of D until that value is reached at which the total cost of the 

pipeline is minimum 

 

Figure 1 shows a flow chart for the optimisation methodology presented here. 

 

 

4. Design Example 

 
Polypropylene needs to be transferred from 

the processing plant to the storage area of the 

factory half kilometer away in the form of 

spherical capsules of k=0.7. The spacing 

between the capsules should be 3*d.  The 

required throughput of polypropylene is 

0.001m
3
/sec. Find the optimal size of the 

pipeline and the pumping power required for 

this purpose. 

 

Solution: According to the current market, the 

values of different constants involved in the 

optimization process are: 

 

C1 = 1.4                 C3 = 1.1              C2 = 0.95 

 

Polypropylene has a density equal to that of 

water. Assuming the efficiency of the 

pumping unit η=60% and following the steps 

described in the working of the optimization 

model, the following results (table 2) are 

obtained. 

 

The results presented in table 2 depict that a 

pipeline of diameter=110cm is optimum for 

the problem under consideration because the 

total cost for the pipeline is minimum at 

D=0.11m. The power of the pumping unit 

required, corresponding to the optimal 

diameter of the pipeline, is 4.44kW. Further 

analyzing the results presented in table 2, 

figure 2 depicts the variations in the 

manufacturing and operating costs for various 

pipeline diameters. It can be seen that as the 
Fig. 1. Flow chart of Optimization Model. 

 



pipeline diameter increases, the manufacturing cost increases. This is due to the fact that pipes of larger 

diameters are more expensive than pipes of relatively smaller diameters. Furthermore, as the pipeline diameter 

increases, the operating cost decreases. This is due to the fact that, for the same solid throughput, increasing the 

pipeline diameter decreases the velocity of the flow within the pipeline. 

 

The operating cost has a proportional relationship with the velocity of the flow; hence, increase in the pipeline 

diameter decreases the operating cost of the pipeline. 

 
Table 2. Variations in Pumping Power and Various Costs w.r.t. Pipeline Diameter. 

D P CManufacturing CPower CTotal 

(m) (kW) (£) (£) (£) 

0.08 20.87 9129 29218 38347 

0.09 11.77 11468 16487 27955 

0.10 7.06 14073 9883 23956 

0.11 4.44 16944 6222 23166 

0.12 2.91 20081 4079 24160 

0.13 1.97 23485 2766 26251 

0.14 1.38 27154 1930 29084 

 

Figure 3 depicts the variations in the total cost and the pumping power required at various pipeline diameters. It 

can be seen that as the pipeline diameter increases, the required pumping power decreases. Furthermore, as the 

pipeline diameter increases, the total cost of the pipeline first decreases and then increases. As the total cost of 

the pipeline is a sum of the manufacturing and operating costs, which have opposite trends with respect to the 

pipeline diameter, hence, the combination of these costs give rise to the total cost curve. The pipeline diameter, 

which corresponds to the minimum total cost of the pipeline, is the optimal pipeline diameter. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

Fig. 2. Variations in Operating and Operating Costs w.r.t. Pipeline Diameter. 

 

Table 3 summarizes the variations in the capsule velocity and the various pressure drops in the pipeline for 

different pipeline diameters. It can be seen that the capsule velocity and the total pressure drop that corresponds 

to the optimal pipeline diameter are 1.28m/sec and 242.93kPa respectively. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 3. Variations in Total Cost and Pumping Power Required at Various Pipeline Diameters. 

 
Table 3. Variations in Capsule Velocity and Pressure Drops. 

D Vc ∆PMinor ∆PMajor ∆PTotal 

(m) (m/sec) (kPa) (kPa) (kPa) 

0.08 2.43 5.43 1135.2 1140.6 

0.09 1.92 3.54 640.1 643.6 

0.10 1.55 2.41 383.4 385.8 

0.11 1.28 1.70 241.2 242.9 

0.12 1.08 1.24 158.0 159.2 

0.13 0.92 0.93 107.0 108.0 

0.14 0.79                      0.71   74.6  75.3 

 

Figure 4 depicts the variations in the capsule velocity and the total pressure drop in the pipeline for various 

pipeline diameters. It is evident from the figure that as the pipeline diameter increases, the velocity of the 

capsules decreases. This supports the aforementioned statement regarding the variations in the flow velocity for 

increasing pipeline diameters. Furthermore, as the pipeline diameter increases, the total pressure drop decreases. 

This statement is again supporting the results presented above for the variations in pumping power required for 

the pipeline. Hence, all the results presented here are in agreement with the design methodology presented in 

this chapter for the flow of capsules in a pipeline. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Fig. 4. Variations in Capsule Velocity and Total Pressure Drop w.r.t. Pipeline Diameter. 



Table 4 presents the variations in the capsule velocity, pumping power and the optimal diameter of the pipeline 

for various solid throughputs. Hence, table 4 can be used as a design table for the capsule pipeline designs. 

 
Table 4. Variations in Optimal Diameter, Capsule Velocity and Pumping Power for Various Solid Throughputs. 

Qc Vc P D 

(m3/sec) (m/sec) (kW) (m) 

0.001 1.28 4.44 0.11 

0.002 1.38 7.16 0.15 

0.005 1.76 19.30 0.21 

0.008 1.84 26.31 0.26 

0.010 1.98 34.81 0.28 

 

Figure 5 depicts the variations in the optimal diameter of the pipeline and the required pumping power at 

various solid throughputs. It can be seen that as the solid throughput increases, the optimal pipeline diameter 

increases. Furthermore, as the solid throughput increases, the required pumping power also increases. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 5. Variations in Optimal Diameter and Pumping Power w.r.t. the Solid Throughput. 

 

 

5. Conclusions 

A detailed investigation of the various costs involved in a pipeline transporting capsules has revealed that 

increase in the pipeline diameter increases the manufacturing cost and the operating cost. Furthermore, increase 

in the pipeline diameter first decreases and then increases the total cost of the pipeline. Moreover, increase in the 

pipeline diameter decreases the pressure drop, capsule velocity and the pumping power required for the pipeline. 
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