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Abstract. This contribution deals with the feedforward control of continuous mechanical sys-
tems. After introducing a general formulation of such problems and adressing the limitations
of the commonly used semi-discrete method, two numerical methods are presented that resolve
these limitations.

1 INTRODUCTION

The main task of inverse dynamics is the determination of forces acting on mechanical systems,
such that a desired motion of particular points of the system considered is achieved. For spatial
continuous systems this often leads to the following quasilinear partial differential equation

A(r, s, t)∂2
t r(s, t)− ∂s(B(r, s, t)∂sr(s, t)) = C(r, s, t) (s, t) ∈ Ω (1)

with coefficients A,B and C allowed to depend on the space and time variable s and t as well as
on the solution r itself. The functions r : S × T 7→ R

d and f : T 7→ R
d, with spatial dimension

d ∈ {1, 2, 3}, have to satisfy the initial conditions

r(s, 0) = r0(s), ∂tr(s, 0) = v0(s) s ∈ S = [0, 1]

and the boundary conditions

B∂sr(0, t) = f(t), B∂sr(1, t) = 0, r(1, t) = γ(t) t ∈ T = R
+

Usually, to solve such problems, a spatially discrete form of (1) is considered together with the
algebraic constraint at hand. The main problem is, that the index of the resulting differential
algebraic equations can be quite large hindering their numerical solution.

In our contribution we consider an alternative approach to the inverse dynamics of flexible
mechanical systems. In contrast to a sequential discretization in space and time we apply a
simultaneous space-time discretization of the problem at hand.

After having addressed the problems of spatial discretization in Section 2, the method of char-
acteristics and a space-time finite element formulation for inverse dynamics will be introduced
in Section 3 and Section 4 respectively. In Section 5 the inverse dynamics of a nonlinear elastic
rope will be investigated.
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2 SEMI-DISCRETIZATION

The partial differential equation in (1) can be transformed into an ordinary differential equation
through a approximation of the solution in space by applying e.g. finite elements. Therefore,
equation (1) is multiplied with a sufficiently smooth test function and integrated over the spatial
domain S:

∫

S

w · ∂s(B∂sr) ds+

∫

S

w · C ds =

∫

S

w ·A∂2
t r ds

Integrating the first integral by parts
∫

S

w · ∂s(B∂sr) ds = [w · (B∂sr)]S −

∫

S

∂swB∂sr ds

leads together with the boundary conditions

B∂sr(0, t) = f(t), B∂sr(1, t) = 0

to a weak formulation of the problem at hand:
∫

S

w ·A∂2
t r ds+

∫

S

∂swB∂sr ds =

∫

S

w · C ds+ [w · (B∂sr)]S

Approximation of the test and trial functions with piecewise continuous Lagrangian polynomials
of order p:

r(s) ≈

p+1
∑

j=1

Lj(s)rj ; w(s) ≈

p+1
∑

i=1

Li(s)wi

yields together with the positive definite matrices

M =

∫

S

Li(s)A
hLj(s) ds and K =

∫

S

∂sLi(s)B
h∂sLj(s) ds

and the right-handside

F =

∫

S

Li(s)C
h ds− Li(s)|s=0f(t)

a system of ordinary differential equations of second order:

M∂2
t r +Kr = F (2)

Introducing the servo constraint

r(1, t)− γ(t) = 0

the control problem can be described with the developed system of differential algebraic equa-
tions. Regarding the differentiation index of the DAE at hand, in the following a linear scalar
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problem is considered. Thus the coefficients in (1) are only dependent on the space and time
variables s and t and r ∈ R. Additionally the matrix M shall be lumped in the following.
Choosing one finite element in space the following DAE can be investigated exemplarily:

1

2
A∂2

t r1 +B(r1 − r2) = f(t) ,
1

2
A∂2

t r2 −B(r1 − r2) = 0 , r2 − γ(t) = 0 (3)

Differentiating the algebraic equation in (3) twice and inserting it into the two differential equa-
tions yields:

1

2
A∂2

t r1 +B(r1 − γ(t)) = f(t) ,
1

2
A∂2

t γ(t)−B(r1 − γ(t)) = 0 (4)

Differentiating the algebraic equation in (4) twice again and inserting it into the remaining
differential equation yields a totally algebraic equation for the unknown function f(t):

f(t) =
A2

4B
∂4
t γ(t) +A∂2

t γ(t) (5)

The actuating force f(t) can be completely formulated by the given function γ(t) and its deriva-
tives, or in other words, the underlying differential equation can be transformed into an algebraic
equation without integrating the differential equation. Such systems are called differentially flat
systems with a flat output γ(t) ([2, 10, 21, 7]). This property of differential equations can be
traced back to [14]. Differentiating equation (5) with respect to time again an ordinary differen-
tial equation for the unknown function f(t) is developed:

∂tf(t) =
A2

4B
∂5
t γ(t) +A∂3

t γ(t)

Five differentiations are therefore needed to transform the DAE into an ODE. This means the
underlying DAE has a differentiation index of five ([17]).

Unfortunately, a spatial discretization by n elements leads to a differentiation index of 2n+3 and
the servo-constraint has to be C2n+1 continuous which is obviously not feasible for a sufficiently
reliable spatial discretization ([19, 4]).

3 METHOD OF CHARACTERISTICS

In this section the method of characteristics is applied for the control problem at hand. The
method of characteristics is based on a geometric interpretation of first order quasilinear partial
differential equations ([1, 9, 20, 16]). For this, the problem at hand (1) can be transformed by
introducing the functions q(s, t) = ∂tr(s, t) and p(s, t) = ∂sr(s, t):

A∂tq − ∂s(Bp) = C (6)

B∂tp−B∂sq = 0 (7)

With B∂t(p) = ∂t(Bp)− ∂tBp equation (7) can be written as

∂t(Bp)−B∂sq = ∂tBp (8)
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Together with ∂tB(p(s, t)) = ∂pB∂tp and ∂tp = ∂sq it follows then:

∂t(Bp)−B∂sq = ∂pBp∂sq (9)

The two equations (7) and (9) are forming with H = BI + ∂pBp a system of first order partial
differential equations:

[

AI 0
0 I

] [

q

Bp

]

,t

−

[

0 I

H 0

] [

q

Bp

]

,s

=

[

C

0

]

(10)

Introducing the column vectors z ∈ R
2d and F ∈ R

2d and the square matrices D ∈ R
2d×2d and

E ∈ R
2d×2d, equation (10) can be written more compactly:

D∂tz + E∂sz = F (11)

Let s = k(t) be an initial line along which the solution z = z(k(t), t) = z0(t) is given. This line
is called a characteristic line if the derivatives of the solution z cannot be determined uniquely
through the differential equation with given information on the line. This means, the following
system of equations

D∂tz + E∂sz = F

∂tz + ∂sz
d

dt
k(t) =

d

dt
z0(t)

or more compactly
(

E −D
d

dt
k(t)

)

∂sz = F −D
d

dt
z0(t) (12)

cannot be solved uniquely for ∂sz and ∂tz if the determinant of the coefficient matrix

E −D
d

dt
k(t) (13)

as well as the determinant of the matrices in which in each case one column has been exchanged
with the right-hand side F −D d

dt
z0(t) vanishes according to Cramers rule. For the problem at

hand, there are i ∈ {1, 2} families of characteristic lines with the direction in the space-time
domain of wave propagation

(

ds

dt

)

ij

= (−1)j+1ci(s, t, p) (14)

Each family of lines have j ∈ {1, 2} members, where j = 1 yields the forward propagating direc-
tions and j = 2 the backward propagating directions with respect to s. Along these characteristic
lines s = k(t), the solution z solves the following ordinary differential equation along these very
same lines: Along these characteristic lines s = k(t), the solution x solves together with

n−B(p)p = 0
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the following ordinary differential equation along these very same lines.

Ui ·

(

dn

dt

)

i

− (−1)j+1ciVi ·

(

dq

dt

)

i

− (−1)j+1ciWi = 0 (15)

Where Ui ∈ R
d, Vi ∈ R

d and Wi ∈ R in general are functions of s, t and the solution z itself.

kij

J1

Pij

Q

J0

J2

Figure 1: Characteristic Net

The implemented numerical procedure can be described as follows: Suppose the curve J0 is an
initial curve, on which the solution z is fully known. Then, the solution in point Q on the curve
J1 depends on the solution in the points Pij and can be computed by solving the system of
ordinary differential equations (14) and (15) along the characteristic lines kij , see Figure (1). To
this end we have to suppose that the curves Jn are nowhere characteristic. Once the solution at
the point Q on J1 is computed, the solution between the major characteristics (i = 1) can be
interpolated ([9]).

Using finite differences for solving these equations, we get the following system of algebraic
equations

(

s
∣

∣

Q
− s
∣

∣

Pij

t
∣

∣

Q
− t
∣

∣

Pij

)

+ (−1)jci
∣

∣

Pij
= 0

Ui

∣

∣

Pij

(

n
∣

∣

Q
− n

∣

∣

Pij

t
∣

∣

Q
− t
∣

∣

Pij

)

+ (−1)j(ciVi)
∣

∣

Pij

(

q
∣

∣

Q
− q
∣

∣

Pij

t
∣

∣

Q
− t
∣

∣

Pij

)

+ (−1)j(ciWi)
∣

∣

Pij
= 0

The boundary and initial conditions specified in (1) can then be applied directly at the nodes of
the characteristic net. This graphical-numerical approach is often called Massaus method ([18]).

Remark (Riemann Invariants). A function z ∈ R
2d 7→ h(z) ∈ R

d is a preserved quantity along
characteristic lines if

∂ξh(z(ξ)) = 0 (16)
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Therein the coordinate ξ along characteristic lines is introduced. Together with equation (11) and
setting therein for simplicity F = 0, the following eigenvalue problem can be established:

(D−1E)T∂zh = ci∂zh

Finding the eigenvalues ci and the corresponding eigenfunctions, the preserved function h(z) can
be found by integrating the eigenfunctions. The function h(z) is called Riemann invariant of the
wave equation at hand (cf. [8] for more details).

4 SPACE-TIME FINITE ELEMENT METHOD

In this section a space-time finite element formulation (cf. [6, 13, 12]) is presented which can be
applied to the control problem introduced in Section 1. Introducing the function q(s, t) = ∂tr(s, t)
in (1) yields the following system of equations:

∂tr − q = 0

A∂tq − ∂s(B∂sr) = C
(17)

Multiplying each equation in (17) with sufficiently smooth test functions w1(s, t) and w2(s, t),
respectively, and integrating over the space-time domain Ω = S × T yields the following weak
formulation:

∫

Ω

w1 · (∂tr − q) dΩ = 0 (18)
∫

Ω

w2 · (A∂tq − ∂s (B∂sr)) dΩ =

∫

Ω

w2 · C dΩ (19)

Integrating the second term in (19) on the left side by parts
∫

Ω

w2 · ∂s(B∂sr) dΩ =

∫

T

[w2 ·B∂sr]
1

s=0
dt−

∫

Ω

∂sw2 ·B∂sr dΩ (20)

we get the following equation for (19):
∫

Ω

w2 ·A∂tq dΩ−

∫

T

[w2 ·B∂sr]
1

s=0
d t+

∫

Ω

∂sw2 ·B∂sr dΩ =

∫

Ω

w2 · C dΩ (21)

Additionally the servo-constraint r(s = 1, t) = γ(t) which has to be satisfied for all t ∈ T can be
enforced weakly

∫

∂Ωt0

w3(t) · (r(1, t)− γ(t)) dt = 0 (22)

The task is now to find the unknown functions

r(s, t) ∈ V1 =
{

r ∈ H1(Ω) : r(∂Ωt0) = r0
}

q(s, t) ∈ V2 =
{

q ∈ H1(Ω) : q(∂Ωt0) = q0
}

f(t) ∈ V3 =
{

f ∈ H1(∂Ωs0) : f(t = 0) = f0
}
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such that for arbitrary but sufficiently smooth test functions

w1(s, t), w2(s, t) ∈ W1 =
{

w1, w2 ∈ H1(Ω) : w1(s, t = 0) = 0, w2(s, t = 0) = 0
}

w3(t) ∈ W2 =
{

w3 ∈ H1(T ) : w3(t = 0) = 0
}

the equations (18), (21) and (22) are together with the boundary

B∂sr(s = 0, t) = f(t) and B∂sr(s = 1, t) = h(∂2
t r|1,t, t) t ∈ T

and initial conditions

r(s, 0) = r0(s) and ∂tr(s, 0) = q0(s) s ∈ S

satisfied. These equations represent a weak form of the control problem. With the isoparametric
map Φ(x̂) every event in a space-time finite element x ∈ Ωe can be transformed into an event

in the reference element x̂ =
[

ŝ t̂
]T

∈ Ω̂. Together with the Jacobian of the transformation
J = ∂x̂x it follows for the contribution of one representative space-time element to the weak form
(18), (21) and (22)

∫

Ω̂

w1(∂x̂r · ∂tx̂− q) |J | dΩ̂

∫

Ω̂

w2(Â∂x̂q · ∂tx̂) |J | dΩ̂ +

∫

Ω̂

∂x̂w2∂sx̂B̂∂x̂r∂sx̂ |J | dΩ̂ +

∫

∂Ω̂s0

w2f(t)
he

2
dt̂−

∫

Ω̂

w2Ĉ |J | dΩ̂

∫

∂Ω̂s1

w3(r(1, t̂)− γ(t̂))
he

2
dt̂

Here, he is the time element length at s = 1. Subsequently, the test and solution functions can
be approximated with piecewise continuous Lagrangian interpolation polynomials of k−th order.

Qij(x̂) = Li(ŝ)Lj(t̂)

with:

Li(·) =
k+1
∏

j=1

j 6=i

(·)− (·)j
(·)i − (·)j

Collecting the tensor product shape functions Qij in a column vector N and introducing

M t = (∂x̂N∂tx̂) ; M s = (∂x̂N∂sx̂)

the residual contributions to the algebraic system after discretization to solve, can be summarized,
using isoparametric mapping

x = Φ(x̂) =
∑

i=1

Ni(x̂)xi
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as follows:

wi
1

∫

Ω̂

NiM
t
j |J | dΩ̂ rj − wi

1

∫

Ω̂

NiNj |J | dΩ̂ qj

wi
2

∫

Ω̂

NiÂ
hM t

j |J | dΩ̂ qj + wi
2

∫

Ω̂

M s
i B̂

hM s
j |J | dΩ̂ rj + wi

2

∫

∂Ω̂s0

NiLj
he

2
dt̂ fj − wi

2

∫

Ω̂

NiĈ
h |J | dΩ̂

wi
3

∫

∂Ω̂s1

LiNj
he

2
dt̂ rj − wi

3

∫

∂Ω̂s1

Liγ̂
he

2
dt̂

5 NUMERICAL EXAMPLES

In this section, a linear model of a rod and a nonlinear model of a rope for large elastic defor-
mations are considered.

5.1 Linearly Elastic Bar

A bar with length L, Young’s modulus E, mass density ρ and cross-sectional area A0 fits in the
introduced control problem for the coefficients

A = ρA0, B = EA0, C = 0.

In the following a force f(t) at s = 0 is searched such that the free end at s = L follows a
prescribed trajectory γ(t).

γ(t) =















0 t < 1

1

2
sin
(π

2
t− π

)

+
1

2
1 ≤ t ≤ 3

1 t > 3

(23)

For this linear system both presented methods can be applied and due to linearity verified through
an analytical solution (see Fig. 2).

Remark (Analytical solution). An analytical solution to the linear problem at hand with a
constant wave propagation c2 = A−1B can be sketched as follows (see [11] for more details).
Starting with d’Alemberts solution

r(s, t) = Φ(t+ c−1s) + Ψ(t− c−1s)

the prescribed trajectory

r(1, t) = Φ(t+ c−1) + Ψ(t− c−1) = γ(t)

can be differentiated and inserted into the remaining boundary conditions

∂sr(1, t) = (∂tΦ(t+ c)− ∂tΨ(t− c)) c−1 = 0

∂sr(0, t) = (∂tΦ(t)− ∂tΨ(t)) c−1 = f(t).

Eliminating ∂tΦ afterwards yields for the actuating force:

f(t) = (2c)−1
(

∂tγ(t− c−1)− ∂tγ(t+ c−1)
)

8



Timo Ströhle and Peter Betsch

−0.5

0

0.5

0 1 2 3 4 5

f
(t
)

t

MOC
analytic

−0.5

0

0.5

0 1 2 3 4 5
f
(t
)

t

ST-FEM
analytic

Figure 2: Numerical solution for the actuating force f(t) computed using the method of characteristics
(left) and the space-time finite element method (right), compared with the analytical reference solution
(solid line)

5.2 Nonlinearly elastic rope

As a second example, an elastic rope undergoing large deformations is considered. The corre-
sponding equations of motion have been taken from [5]. The rope has a mass density ρ, Young’s
modulus E and in a stress-free reference configuration a length L and cross-sectional area A0.
Introducing a normalized arc length s ∈ [0, 1] in the reference configuration, a spatial configura-
tion is defined through the function Ω 7→ r(s, t) ∈ R

d. Together with the force in the extensible
rope Ω 7→ n ∈ R

d and the body force per unit reference length Ω 7→ b ∈ R
d the motion of the

elastic rope is governed by

∂sn(s, t) + b(s, t) = ρA∂2
t r (24)

Introducing the stretch ν(s, t) = ‖∂sr(s, t)‖ and assuming the following constitutive relation

n(s, t) = N(s, t)ν−1∂sr with N(s, t) =
EA

2
(ν −

1

ν
) (25)

the inverse dynamics of the considered rope fits into the framework introduced in Section 1 with
coefficients

A = ρA0, B = N(s, t)ν−1, C = b(s, t).

Then, following Section 3 with

H = BI +
EA

ν4
∂sr ⊗ ∂sr

9



Timo Ströhle and Peter Betsch

the wave propagation speed can be computed

ci =

(

ds

dt

)

=

(

E

2ρ

(

1 + (−1)i
1

ν2

))
1

2

The i ∈ {1, 2, 3} families of characteristic lines can then be linked to wave propagation in longi-
tudinal (i = 2) and transversal (i = 1, 3) directions of the rope.

The functions Ui ∈ R
d, Vi ∈ R

d and Wi ∈ R from (15) are in the case of the nonlinear elastic
rope for i ∈ [1, .., d]

Ui = Vi = pi · p
T , Wi = ‖p‖

Remark (Additional mass at the free end). Instead of a loose end a mass m can be attached by
adding the following ordinary differential equation at s = 1:

B∂sr(1, t) = m (∂tq + g)

In Fig. 3 the actuating forces for a planar rest-to rest maneuver, γ(t) =
[

γx(t) γy(t)
]

with

γx(t) = γy(t) =















0 t < 2

1

2
sin
(π

2
(t− 3)

)

+
1

2
2 ≤ t ≤ 4

1 t > 4

(26)

computed with both the space-time finite element method and the method of characteristics are
shown. For the computation, bi-linear Lagrangian shape functions in space-time were applied.
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t
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Figure 3: Numerical solution for the components fx(t) (left) and fy(t) (right) of the actuating force
computed using the method of characteristics (circles) and the space-time finite element method (solid
line)
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The simulation results of the feedforward control problem at hand are illustrated in Fig. 4. It is
worth noting that thus obtained results for the control force f(t) have been checked by using f(t)
as prescribed external force in a standard forward simulation based on a semi-discrete model of
the rope.

0

2

4

6

8

10

12

0 0.2 0.4 0.6 0.8 1

y

x

Figure 4: Snapshots of the moving elastic string actuated on the upper end by the computed control
force such that the lower end follows the prescribed straight line from the starting point (0,0) to the
endpoint (1,1)
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