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Abstract. A new inverse modeling is investigated for identifying an effective seismic force at virtual
interfaces and estimating the seismic wave motions in an interior domain surrounded by a domain re-
duction method (DRM) boundary from limited seismic measurement data. The two-dimensional domain
is truncated by the highly efficient non-convolutional second-order complex-frequency-shifted perfectly
matched layers (CFS-PML), and the DRM is utilized to model seismic input motions coming from the
outside domain of the CFS-PML. A partial differential equation (PDE)-constrained optimization method
aims at minimizing a misfit between measured ground motions at sparsely-distributed sensors on the sur-
face induced by surface wave-dominant incident waves (or equivalent effective forces on a DRM layer)
and their estimated counterparts induced by inverted effective forces. The numerical results show that
the presented full-waveform inversion of seismic input motions can identify an effective seismic force at
a DRM layer and reconstruct the seismic wave responses in a near-surface domain.

1 INTRODUCTION

There is a need for estimating incident seismic wavefields in a soil-structure system from sparse seis-
mic measurement data. Existing methods are limited to large-scale seismic-source inversion approaches
[1] and deconvolution [14, 16, 18, 19]. This paper presents an alternative method for reconstructing
incoherent seismic input motions in a near-surface truncated domain. The presented method would have
lower computational cost and more accurate geophysical data than large-scale source inversion, and it
would not be limited to a 1D setting as opposed to deconvolution. Such a potential method can allow
engineers to pinpoint where large amplitudes of stress waves occur (or structural failures occur) in built
environments in a domain of interest during seismic events. It also would help decision-makers quickly
plan the budget and schedule repairs after an earthquake event. To this end, incoming seismic motions
that shake a domain should be characterized. There have been studies in the geotechnical site character-
ization, reporting the possibility of utilizing sparsely measured wave motion data for a PDE-constrained
optimization [2–4, 6, 7, 12, 15, 17, 20]. Such utilization of measured ground motions is a robust tech-
nique that could be employed in the full-waveform inversion of seismic input motions.

In this presented research, a new partial differential equation (PDE)-constrained optimization method
to identify incident wave motions (or equivalent forces) from seismic measurement data is proposed as
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a potential method to estimate incident seismic wavefields. Toward developing such a potential method,
the authors have investigated a novel inverse-source modeling method in a 1D semi-infinite domain [13],
a 2D bounded domain of anti-plane motion [11], and a 2D unbounded domain of anti-plane motion
truncated by an absorbing boundary condition [10] and that endowed by a DRM boundary [9]. It has
been shown that the authors’ method has been effective in those scalar-wave settings. Continuing these
previous studies, the authors extend the approach to an elastodynamic wave setting. In addition to con-
tinuing to use the DRM, this work truncates a 2D plane-strain domain by using the non-convolutional
second-order CFS-PML. Namely, in the authors’ previous study [10], the reconstructed DRM force, be-
fore the postprocessing, creates the outgoing waves of a large amplitude outside the DRM layer. Thus,
employing a robust ABC is necessary to prevent the outgoing waves from being reflected from the trun-
cated boundary. Then in the presented work, the non-convolutional second-order CFS-PML [8], a more
robust absorbing boundary, is implemented. Finally, this paper investigate the presented full-waveform
inversion method for (i) identifying an effective seismic force at a DRM layer from ground motions on
the surface and (ii) consequently reconstructing the wave responses in an interior domain.

2 GOVERNING WAVE PHYSICS

Fig. 1 displays the problem configuration where incident waves are propagated in an enlarged 2D
undamped domain truncated by CFS-PML and generate synthetic data for the presented study. Moreover,
Fig. 1 shows the heterogeneous domain with its wave speeds Vs1 , Vs2 , and Vs3 , and inclusions with their
wave speeds Vs4 , Vs5 , and Vs6 .
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Surface  
wave-dominant 
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Figure 1: Problem configuration.

The governing equation for the 2D plane-strain setting where elastic waves (comprising P, S, and
surface waves) propagate in x and y directions, and their particle movements are in x and y direction, is:

∇ ·σ−ρü = f, (1)

where u = [ux,uy]
T denotes the displacement field, ü denotes the acceleration field, ρ is the mass density,

and σ represents the stress tensor. The constitutive law in linear, elastic, and isotropic material, which is
the stress-strain relation, is defined as:
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σ = Cε, (2)

where C is the elasticity tensor, which in the plane-strain setting is written as:

C =
E

(1+ν)(1−2ν)

1−ν ν 0
ν 1−ν 0
0 0 (1−2ν)

2

 (3)

where E and ν are the Young’s modulus and the Poisson’s ratio of the medium, respectively. The strain
tensor ε is defined as:

ε = Du, (4)

where D represents the differential operator matrix:

D =


∂

∂x 0
0 ∂

∂y
∂

∂y
∂

∂x

 . (5)

We assume that the external force f is localized far from the domain of interest (i.e., the DRM-reduced
domain Ωi). Thus, the force term is non-zero only for generating synthetic seismic data in an enlarged
domain (see Fig. 1). In all other computations, the far-field seismic source is replaced by a virtual force
using the DRM [5, 21].

The top surface of the medium is subject to traction-free conditions:

σn = 0, on Γtop, (6)

where n is the outward unit normal vector. The left, bottom, and right exterior PML boundaries are
constrained by fixed boundary conditions:

u = 0, on Γleft,Γbottom,Γright. (7)

The semi-infinite extent of the enlarged domain is truncated by the non-convolutional second-order CFS-
PML [8], and we also truncate the domain of interest (i.e., the DRM-reduced domain) by using the
CFS-PML. As the semi-infinite physical domain is initially at rest, the initial conditions are:

u(x,y,0) = 0,

u̇(x,y,0) = 0. (8)

3 NUMERICAL MODELING

The finite element method is used to obtain the numerical solutions of governing equation (1), where
its semi-discrete equation reads:

Md̈(t)+Cḋ(t)+Kd(t) = F(t). (9)

In the above, d is the solution vector, and ḋ and d̈ are its first and second time derivative, respectively.
Then, we solve the time-dependent equation (9), by considering the initial-value conditions (8) and
applying the implicit Newmark time integration, in the following compact form:
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Qd̂ = F̂, (10)

where the matrix Q is the discrete forward operator, which is comprised of the M, C, and K matrices
and defined per the Newmark time integration; and the vectors d̂ and F̂ represent the solution vector and
global force vector, respectively, for all the time steps. These vectors are built as:

d̂ =



d0
ḋ0
d̈0
...

dN
ḋN
d̈N


, F̂ =



0
0

F0
...

FN
0
0


, (11)

where N is the number of time steps, and u j are the spatial degrees of freedom at the j-th time step.
Finally, the matrix Q is defined as:

Q =



I 0 0 0 0 0 . . . 0 0 0 0 0 0
0 I 0 0 0 0 . . . 0 0 0 0 0 0
K C M 0 0 0 . . . 0 0 0 0 0 0
L1 L2 L3 Keff 0 0 . . . 0 0 0 0 0 0
a1I I 0 −a1I I 0 . . . 0 0 0 0 0 0
a0I a2I I −a0I 0 I . . . 0 0 0 0 0 0

...
...

...
...

...
...

. . .
...

...
...

...
...

...
0 0 0 0 0 0 . . . L1 L2 L3 Keff 0 0
0 0 0 0 0 0 . . . a1I I 0 −a1I I 0
0 0 0 0 0 0 . . . a0I a2I I −a0I 0 I


, (12)

where:

a0 =
4

(∆t)2 , a1 =
2
∆t

, a2 =
4
∆t

, (13)

Keff = a0M+a1C+K, L1 =−a0M−a1C,

L2 =−a2M−C, L3 =−M.

4 INVERSE MODELING

Control parameters ξ—horizontal and vertical components of force vector F̂inv—are iteratively up-
dated with the aim to minimize the misfit between the measured ground motions and the reconstructed
counterparts on the ground surface sensor locations. The following discrete objective functional is used
in the minimization:

L̂ =
1
2
(d̂− d̂m)T B(d̂− d̂m), (14)

where d̂ is obtained by a set of estimated ξ; d̂m is generated by external force localized in the enlarged
domain; and B is a block diagonal matrix defined as ∆tB, in which B is a square matrix that is zero
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everywhere except on the diagonal components corresponding to sparsely-distributed sensors’ nodal
locations. Then, the Lagrangian functional Â is built as:

Â =
1
2
(d̂− d̂m)T B(d̂− d̂m)− λ̂

T
(Qd̂− F̂inv). (15)

The following three optimality conditions must be satisfied in order to determine the targeted control
parameters. The first condition results in the state problem:

∂Â
∂λ̂

=−Qd̂+ F̂inv = 0. (16)

The second condition results in the discrete adjoint problem:

∂Â
∂d̂

=−QT
λ̂+B(d̂− d̂m) = 0︸ ︷︷ ︸

adjoint problem

. (17)

The adjoint problem is solved by marching backward over time. In our previous work [10], we showed
a solution method to Eq. (17). Then, the third condition leads to the control equation:

∂Â
∂F̂inv

= λ̂ = 0. (18)

Finally, by following the findings from our previous work [9], we use modified free-field waves in
the DRM theory, leading to a modified reference effective seismic force F̂ref

mod as an alternative reference
force. Then, the inverted effective force F̂inv is post-processed to F̂inv

pp , providing a direct comparison
with F̂ref

mod.

5 NUMERICAL EXPERIMENTS

In this numerical experiment we investigate the performance of the outlined inversion approach for
identifying an effective seismic force at a DRM layer from seismic data and reconstructing the ground
motions—induced by surface wave-dominant incident waves from an enlarged domain—in a interior
domain Ωi.

The extent of the enlarged domain is set to be 80 m by 40 m, surrounded by a 10 m-thick PML buffer
at the left, bottom, and right sides (see Fig. 1). The shear wave speeds are Vs1= 200 m/s, Vs2= 150 m/s,
Vs3= 100 m/s, Vs4= 500 m/s, and Vs5= 800 m/s; the dilatational wave speeds are Vp1= 400 m/s, Vp2= 300
m/s, Vp3= 200 m/s, Vp4= 1000 m/s, and Vp5= 1600 m/s; and the mass density of the entire domain is 1500
kg/m³. The solid on the top surface mimics a superstructure and its shear and dilatational wave speeds
are Vs6 = 3250 m/s and Vp6 = 5900 m/s, respectively, being much larger than those in the layers under
the superstructure. The targeted ground motions are induced by surface wave-dominant waves of central
frequency of 5 Hz, characterized by a Ricker wavelet signal. Moreover, 19 sensors distributed on the top
surface (i.e., sensor spacing of 2 m) are used in this example.

The DRM domain truncated by CFS-PML, shown in Fig. 2, is used in the inversion procedure. Its
extent is 40 m by 20 m, surrounded by a 10 m-thick PML buffer. By the DRM theory, the modified
reference effective force F̂ref

mod and the post-processed inverted effective force F̂inv
pp are applied on all the

nodes of the virtual interface boundaries Γb, Γm, and Γe (i.e., the dashed lines in Fig. 2).
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Figure 2: Inversion solver configuration: a DRM domain truncated by CFS-PML.

For appraising the accuracy of the presented method, the error norms E |u|, Eux , and Euy are calcu-
lated to evaluate the inversion performance to reconstruct the amplitude of ground motions, horizontal
displacements, and vertical displacements in Ωi.

Fig. 3 shows the targeted and reconstructed ground motions’ displacement amplitudes in Ωi for three
different timesteps. After 500 iterations, the error E |u| between the amplitude of targeted wave responses
and their estimated counterparts is only 0.34%. Figs. 4 and 5 show the targeted horizontal and vertical
displacements and their reconstructed counterparts, respectively. The error Eux and Euy are 1.20% and
0.39%, respectively. Thus, the presented inversion solver can effectively estimate the wave responses,
induced by surface wave-dominant incident waves, in a reduced domain, Ωi, and superstructure.

Figure 3: (Upper figures) Targeted ground motions’ displacement amplitude (|u|) in Ωi induced by surface wave-
dominant incident waves and (Lower figures) their reconstructed counterparts.
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Figure 4: (Upper figures) Targeted horizontal displacements (ux) of wave motions in Ωi induced by surface wave-
dominant incident waves and (Lower figures) their reconstructed counterparts.

Figure 5: (Upper figures) Targeted vertical displacements (uy) of wave motions in Ωi induced by surface wave-
dominant incident waves and (Lower figures) their reconstructed counterparts.

Fig. 6, 7, and 8 show that the horizontal and vertical components of modified reference effective force
F̂ref

mod are in excellent agreement with those of post-processed inverted effective force F̂inv
pp on Γb, Γm,

and Γe, respectively. Namely, the error norm E between all components of F̂ref
mod and those of F̂inv

pp is
4.60%. The error Ex, which considers only the horizontal components of F̂ref

mod and F̂inv
pp , and the error Ey,

which considers only the vertical components, are 26.01% and 1.89%, respectively. Thus, the presented
inversion solver can identify an effective seismic force (equivalent to an incident wave) at a DRM layer
from seismic data.
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(a) (b)

(c) (d)

Figure 6: Horizontal (a,b) and vertical (c,d) components of modified reference effective seismic force and their
post-processed inverted counterparts on Γb.

(a) (b)

(c) (d)

Figure 7: Horizontal (a,b) and vertical (c,d) components of modified reference effective seismic force and their
post-processed inverted counterparts on Γm.
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(a) (b)

(c) (d)

Figure 8: Horizontal (a,b) and vertical (c,d) components of modified reference effective seismic force and their
post-processed inverted counterparts on Γe.

6 CONCLUSIONS

We introduced a novel inverse modeling method for estimating ground movements in a 2D interior
domain surrounded by the DRM layer and truncated by CFS-PML. The minimization problem searches
nodal forces at the DRM layer to minimize a misfit between measured ground motions at sparsely-
distributed sensors and their reconstructed counterparts. In the presented method, the sensors are placed
only on the top surface of the domain. The presented full-waveform inversion method can reconstruct
the ground motions in a reduced domain and those in a superstructure. Moreover, the presented inversion
solver can identify an effective seismic force at a DRM layer, which is equivalent to an incident wave.
Extending the discussed inversion method to 3D settings can help geotechnical earthquake engineers so
that they may model the influence of an earthquake on near-surface environments. Then, the information
on possible risk areas can be shared and help decision-makers quickly plan the budget and schedule
repairs after an earthquake event.
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