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Abstract. Short Fiber Reinforced Composites (SFRCs) are being increasingly used in a variety of ap-
plications due to their interesting mechanical properties and ease of processing. For SFRCs, different
micro-structural parameters (in addition to the constitutive behaviour of the matrix and reinforcement
fibers), such as fiber orientation distribution, fiber aspect ratio and fiber/matrix interface strength play
important roles in the macroscopic mechanical behaviour. Hence, to have an accurate and reliable mod-
elling approach, using multi-scale models is a natural choice. In this study, a coupled multi-scale model
is proposed using a recently developed micromechanical model and the Finite Element Method. The
proposed model enables analysis of macroscopic specimens considering micro-structural properties.

1 INTRODUCTION

Short Fiber Reinforced Composites (SFRCs) are becoming more widely used for parts where tradition-
ally plastic materials are used [1]. SFRCs are cost-effective and their ease of processing makes them
favorable for products that require strength and lightweight.
To use SFRCs efficiently, the mechanical behaviour of these materials should be predicted quantitatively.
The orientations of the fibers have a dominant influence on the macroscopic behaviour of these materials
[2]. The orientations are largely influenced by the fabrication process, as shown in [3, 4]. Different fiber
orientations will result in different mechanical responses. To fully model SFRCs in practical applica-
tions, a multi-scale model should be developed wherein each point of the part could potentially have
different micro-structural characteristics.
Mean-field homogenization methods (such as Mori-Tanaka method) can be used to predict the mechan-
ical response of SFRCs (see e.g. [5]). Also, using computational homogenization with realistic Rep-
resentative Volume Elements (RVEs) has gained popularity for these materials [6, 7]. Computational
homogenization is an accurate method to determine the material behaviour. However, the simulations
are computationally expensive and, more importantly, the RVE generation can be challenging for SFRCs
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[8, 9]. An alternative approach to the computational homogenization method is using the orientation
averaging method [10]. An originally developed micromechanical model [11] is further developed by
Mirkhalaf et al [12]. Finite Element simulations, performed on a Unit Cell, are used to calibrate the
material properties for the extended model. In this study, a coupled multi-scale model is developed using
the extended micromechanical model and Finite Element Method, by incorporating the micromechanical
model in an FE package. Multi-scale simulations are conducted and the results are analyzed.

2 MICROMECHANICAL MODEL

This section describes the micromechanical model which is used to determine the material behaviour of
a material point (integration point in FE context) based on micro-structural parameters. The microme-
chanical model is based on the orientation averaging approach proposed by Advani and Tucker [10]. This
approach calculates the mechanical behaviour of a Unit Cell (single fiber embedded in matrix material)
and then, based on the fiber orientations, the overall behaviour of the SFRC is calculated. The original
micromechanical model is developed by Mirkhalaf et al. [11] and further extended in [12]. A two-step
homogenization method is used to determine the material behaviour of SFRCs. In Figure 1, a schematic
representation of this method is shown. In the first homogenization step, a Unit Cell (UC) is introduced
which contains one fiber and the mechanical response of this UC is obtained via Finite Element Analy-
sis. In this model, we use an elasto-plastic model for the matrix material. This modeling approach could
be extended to use an elasto-viscoplastic model for a polymeric matrix material (e.g. [13, 14, 15]). In
the second homogenization step, the homogenized properties of the composite are obtained using the UC
homogenized properties and taking into account the orientation distribution of the fibers in the composite
via orientation averaging. The use of Finite Element Analysis to obtain the UC homogenized properties
is accurate as shown in [11]. However, if different stress states are applied to the material, the Finite
Element Analysis has to be rerun. To overcome this, a surrogate model is introduced which is calibrated
against the initial Finite Element Analysis. For different stress states, the surrogate model is used without
the need for more FE simulations.

Figure 1: The two-step homogenization approach, (a): Composite with fibers, (b) to (c): First homogenization
step, (c) to (d): Second homogenization step.

A rotation tensor R is introduced which maps the global configuration to the local configuration (denoted
with superscript L) such that:

eL
i = R · ei. (1)
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The orientation of the fiber can be expressed as a vector p with two angles (ϕ and θ), as schematically
shown in Figure 2.

Figure 2: Spherical coordinate system to describe the orientation of the fiber in 3D space.

The rate of the composite stress and the UC stress are related by the following:

σ̇C =
∫

Ω

[
RT{p}⊗RT{p}

]
: σ̇

L
U ψ{p}dp, (2)

where ψ is the orientation distribution function for p. The fourth order rotation tensor is introduced via
the non-standard open product (⊗) which, is expressed in Cartesian components, as (A⊗B)i jkl = AikB jl .
Taking the incremental form results in:

∆σC =
∫

Ω

[
RT{p}⊗RT{p}

]
: ∆σ

L
U ψ{p}dp. (3)

The Voigt interaction assumes that all UCs experience the same strain at the global configuration, and
this strain is equal to the macroscopic (composite) strain. Thus, the incremental UC strain at the local
configuration is obtained as:

∆ε
L
U = [R{p}⊗R{p}] : ∆εC. (4)

Now that the mechanical behaviour on the composite level is determined, the UC mechanical behaviour
is required. A surrogate model is used to describe the UC deformation behaviour. The surrogate model is
calibrated against the material properties obtained via Finite Element Analysis. A transversely isotropic
material model is used where the elastic stiffness of the UC is expressed as:

Ce
U = Ce,iso

U +(C1−1)
(

K +
4G
3

)
(A⊗A), (5)

where Ce,iso
U is the standard isotropic elastic stiffness tensor and A is a tensor indicating the fiber orien-

tation in the UC. K and G are the bulk and shear modulus, respectively. The parameter C1 characterizes
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the transverse isotropic elasticity.
To capture nonlinear material behaviour, a transverse isotropic version of Hill’s yield criteria is used,
which is given by:

Φ =
1

(1−C2)σ
2
y0

[
C2
(
σ

L
U,11−σ

L
U,22
)2

+
(
σ

L
U,11−σ

L
U,33
)2

+
(
σ

L
U,22−σ

L
U,33
)2
]

(6)

+
2(2C2 +1)
(C2 +1)σ2

y0

[(
σ

L
U,12
)2

+
(
σ

L
U,32
)2

+
(
σ

L
U,23
)2
]
−α{εp}.

In this equation, σy0 is the initial yield stress and C2 is the transversely isotropic yield parameter. α{εp}
is the isotropic hardening function, which is dependent on the effective plastic strain. In this work, the
following isotropic hardening function is used:

α{εp}= 1+C3ε
p +C4(ε

p)2 +C5(ε
p)3. (7)

The parameters C3, C4 and C5 describe the isotropic hardening. In order to use the isotropic hardening,
a definition of the effective plastic strain rate is required. The definition of the plastic strain rate used in
this model is:

ε̇
p
=

2λ

σy0
. (8)

Here, λ is the plastic multiplier.

3 COUPLED MULTI-SCALE MODEL

In a coupled multi-scale model, the solution of two nested problems, the micro and macro scale, are
required. The macro-scale problem is solved with the finite element framework and the PyFEM package
[16]. The constitutive behaviour in this multi-scale model is determined via the micro-scale problem
described in Section 2.
The macroscopic problem is obtained by the spatial discretization of the macroscopic equilibrium equa-
tion. The equilibrium needs to be solved for each (pseudo-) time increment such that the nodal displace-
ment vector u satisfies the balance:

r{u}= fint{u}− fext = 0. (9)

After linearization of this equation, the macro-scale problem is solved. The macroscopic problem is cou-
pled to the micromechanical model, where in each macroscopic point (each integration point in the FE
context), the constitutive behaviour is determined by the micromechanical model. The FEM framework
supplies the micromechanical model with the macroscopic strain in that integration point. The microme-
chanical model calculates the microscopic strain for each fiber (UC). The amount of microscopic strain
(UC strain) is determined using the macroscopic strain (strain at the composite point) and based on the
Voigt interaction. Once the microscopic strain is known for each UC, the UC stress is calculated. The
micromechanical model calculates the homogenized stress and the tangent stiffness and returns them to
the macroscopic problem. Figure 3 shows a schematic representation of the coupled multi-scale model.
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Figure 3: Schematic representation of the coupled multi-scale model. In each integration point, different micro-
structural characteristics (such as fiber orientation) can be used to obtain the mechanical behaviour.

4 RESULTS

In this section, first, the coupled model is verified against the micromechanical model. Secondly, a
numerical simulation of a dog bone shape specimen is conducted.
To verify the coupled multi-scale model, a test case is performed. For the coupled model, a single 3D
element with 8 integration points is considered, subjected to uniaxial tensile stress. As the stress state in
the element is uniform, this should result in the same stress state as the micromechanical model subjected
to a uniaxial stress state. The used element is schematically shown in Figure 4.

Figure 4: Representation of a single 3D element with 8 integration points and prescribed displacements and
boundary conditions satisfying uniaxial stress.

A polypropylene matrix with short flax fibers is used as material. The fibers have a volume fraction of
0.13, a fiber length of 1200 µm and an aspect ratio of 75. The orientation distribution of the fibers is
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isotropic. For micromechanical simulations, it is typically needed to obtain the required size (or number
of orientations) for the micro-structural sample [17]. In these micromechanical simulations, 5000 random
orientations are used, and the Voigt interaction is assumed. For the coupled simulations, the exact same
orientations and interaction assumption is used. Figure 5 shows that the same stress-strain curves are
obtained from the micromechanical and coupled models, as expected.
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Figure 5: Stress-strain curves obtained from the micromechanical and coupled multi-scale models.

The next numerical simulations is uniaxial tensile test on a doge bone shape specimen. Due to symmetry,
only one eighth of the specimen is modelled as can be seen in Figure 6. The mesh consists of 1100 3D
elements with 8 integration points. In the simulation, each integration point contains 1000 randomly
orientated fibers.

Figure 6: Finite Element mesh of one eighth of a dog-bone specimen used for the numerical study.

The displacement in x-direction is shown in Figure 7 and the resulting stress in the specimen is shown
in Figure 8. The results show that the multi-scale model is capable of non-linear material predictions
wherein each integration point micro-structural parameters can be described.
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Figure 7: Final displacement of the sample in x-direction.

Figure 8: Stress in x-direction of the sample.

5 CONCLUSIONS

In this study, a coupled multi-scale model is developed for non-linear elasto-plastic behaviour of short
fiber reinforced composites. Two length scales, namely macroscopic and microscopic scales are consid-
ered in the model. For solving the equilibrium problem at the macro-scale, the Finite Element Method
is used. For the microscopic problem, a micromechanical model, which was developed before, is used.
The developed model is capable of simulating completely coupled macro-micro simulations, where the
mechanical response of a macroscopic specimen is obtained considering micro-structural characteristics
of all macroscopic points. This model provides an opportunity for simulating real life components which
have different micro-structural properties at different parts of the structure. Since coupled analysis is per-
formed with this model, simulations are time consuming, and improvements in terms of computational
efficiency are needed.
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