
Research Article
An Improved Robust Principal Component Analysis Model for
Anomalies Detection of Subway Passenger Flow

Xuehui Wang ,1 Yong Zhang ,1 Hao Liu,2 Yang Wang,1

Lichun Wang ,1 and Baocai Yin1

1Beijing Advanced Innovation Center for Future Internet Technology, Beijing Key Laboratory of Multimedia and
Intelligent Software Technology, Faculty of Information Technology, Beijing University of Technology, Beijing 100124, China
2Beijing Transportation Information Center, Beijing, China

Correspondence should be addressed to Yong Zhang; zhangyong2010@bjut.edu.cn

Received 16 May 2018; Accepted 31 July 2018; Published 14 August 2018

Academic Editor: Darius Andriukaitis

Copyright © 2018 Xuehui Wang et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Subway is an important transportation means for residents, since it is always on schedule. However, some temporal management
policies or unpredicted events may change passenger flow and then affect passengers requirement for punctuality. Thus, detecting
anomaly event,mining its propagation law, and revealing its potential impact are important and helpful for improvingmanagement
strategy; e.g., subway emergencymanagement can predict flow change under the condition of knowing specific policy and estimate
traffic impact brought by some big events such as vocal concerts and ball games. In this paper, we propose a novel anomalies
detection method of subway passenger flow. In this method, an improved robust principal component analysis model is presented
to detect anomalies; then ST-DBSCAN algorithm is used to group the station-level anomaly data on space-time dimensions to
reveal the propagation law and potential impact of different anomaly events. The real flow data of Beijing subway are used for
experiments. The experimental results show that the proposed method is effective for detecting anomalies of subway passenger
flow in practices.

1. Introduction

Owing to the high efficiency and the comfort, subway has
generally become first choice for citizens’ daily travel, and
it directly facilitates the city’s economic development and
people’s quality of life. For example, as one of the busiest sub-
way systems in the world, the Beijing subway has the world’s
largest annual ridership with 3.03 billion trips delivered in
2016, averaging 8.26 million per day, with peak single-day
ridership reaching 10.52million. The public transportation in
Beijing accounts for 45%of total traffic, inwhich the ridership
of subway dominates nearly 40%.

Although bringing great convenience for residents, the
subway system becomes more vulnerable at the same time,
as the subway system is a large and complicated network
running in a restricted time schedule. For example, there are
22 lines and 370 stations in Beijing subway, and more than
500 trains are running on the network with the minimal peak

headway in 90 seconds. This will be more critical in the cases
of encountering exceptional events, such as station accidents,
major activities, and bad weathers. Once a station has an
anomaly event, such as failure operation and chaos in station,
the retention of passengers would happen, whichwould bring
great losswith high security risks.Moreover, the bad situation
would propagate through the urban subway system since it
is a relatively closed and connected network. So the impact
of anomaly event will not be restricted in a specific station,
it may affect the traffic system in a large region, and the
influence of abnormal events usually shows a certain space-
time law. Thus, it is necessary to detect anomalies in urban
subway transportation system and figure out its spreading
rules, which can provide valuable proof for management to
making strategy for dealing with abnormal events.

However, in the traditional road transportation system,
many methods have been proposed for detecting transit
anomalies, such as the Automatic Incident Detection (AID)
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(1) Anomalies Detection by the improved RPCA

(2) Discover the potential temporal-spatial law among anomalies
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Figure 1: The whole procedure of anomalies detection by the improved RPCA. (1) Decompose the matrix of subway passenger flow into a
low-rank matrix and a sparse matrix, filter the sparse matrix decomposed by the improved RPCA, and then acquire the anomaly matrix. (2)
Mine the potential laws and discover the possible relations among anomalies through ST-DBSCAN algorithm and statistical analysis.

algorithms [1–3] based on comparison, statistics techniques,
traffic flow model, and so on. These methods are mostly
applied in freeway and urban roads, and they link the main
regions of a city and try to find unexpected traffic flow
between any two regions [4, 5]. As the subway is a different
traffic system from the traditional road transportation, the
above methods are difficult to introduce to subway system.
At the present, few studies focus on the anomalies detection
of passenger flow in subway transportation.

Since the subway anomaly events are always uncertain
and sporadic, the anomalies show obvious sparse property
among the whole subway traffic data. From this observa-
tion, based on the available subway passenger flow data
collected by the AFC (Automatic Fare Collection) system,
we propose a novel anomalies detection method based on
Robust Principle Component Analysis (RPCA) model [6],
which represents the temporal-spatial distribution of data
and the sparsity of the anomalies by the low-rank and
sparse regularization. Additionally, in order to reveal the
propagation law and potential impact of different anomaly
events, the ST-DBSCAN algorithm is adopted to group the
station-level anomaly data on temporal-spatial dimensions.
Thus the proposed method can not only detect anomaly of
a single station but also find the relations among anomalies.
Figure 1 shows the main structure of our model.

The main contributions of this paper are summarized as
follows:

(i) A novel anomaly detection method of subway pas-
senger flow based on RPCA is proposed, which

utilizes low-rank nature of the passenger flow data
and the sparsity of anomaly data. Experimental results
demonstrate that our approach can achieve an accu-
rate anomaly detection.

(ii) The ST-DBSCAN clustering algorithm is adopted
to explore the temporal-spatial propagation law of
anomalies, and the obtained expected results are ver-
ified by tweet data. The distribution law of anomalous
flow caused by different anomaly events can provide
prior information to cope with possible anomalies.

The rest of this paper is organized as follows. Related
works are summarized in Section 2. Section 3 gives the
methodology. Section 4 reports experimental results on real
data and their visualization analysis. Finally, we conclude this
paper in Section 5.

2. Related Works

In this section, we review the commonly used methods for
anomalies detection in traffic systems and introduce RPCA
model related to our work.

2.1. Anomalies Detection Methods of Passenger Flow. Most of
the existing anomalies detection methods of traffic flow are
in highways or urban roads scenarios, and the traffic data
from fixed detectors is usually used for analysis. The typical
approaches include the statistical methods, the comparison
methods, and the traffic flow model based methods. The
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famous comparison algorithms are the California algorithm
and its derivation [1], which discriminate the anomaly event
by comparing traffic parameters between adjacent detectors.
But they are not suitable for subway passenger flow because
the relation between neighboring stations is not exactly
similar with the relation between neighboring detectors. The
statistical methods (like SND [2]) achieve traffic anomaly
by judging change rate of the traffic parameters, and they
adopt the threshold method [7] to identify unreasonable
data values based on historical data. To these methods, the
suitable thresholds are difficult to choose. The traffic flow
model based methods (like McMaster algorithm [3]) define
boundary between crowded traffic flow and noncrowded
traffic flow to determine a speed threshold for distinguishing,
which is not well for subway due to the difference of flow
pattern while time and space scales change. In addition, the
wavelet analysis [8] is used for detecting anomalous samples
by separating the high frequency components and the low
frequency components of traffic data.

For the transportation system of a city scale, the current
studies on anomalies detection aremostly region-based. Pang
and Linsey Xiaolin [4, 5] partition city into uniform grids
and report anomalies if traffic volumes in neighboring cells
are different, while Shekhar [9] focuses on detecting spatial
outliers in graph structured datasets. Similarly, Liu [10] and
Chawla [11] partition the city into disjoint regions linked by
major roads and then find unexpected traffic flow between
any two regions. However, the above methods are either
road-based or region-based and the former cannot accurately
identify location of events, and the latter may result in loss of
information because of the coarse region partition.

There are few works concentrating on the anomalies
detection of subway passenger flow. Some anomalies detec-
tions in subway system focus on the pedestrian abnormal
activity inside the station [12, 13], and they generally adopt
visual recognition techniques based on the video surveillance
system in the station; thus the applied scale is valid only
in the view of the cameras. Besides, the other studies on
passenger flow data of subway mainly focus on passenger
flow prediction and analysis [14, 15]. Differently, in this
paper, we conduct anomalies detection of subway passenger
flow and explore the temporal-spatial impact of anomaly
events.

2.2. Robust Principal Component Analysis. Recently, due to
the power of revealing the intrinsic structure or property
underlying the data, the low-rank and sparse theory have
been successfully applied in numerous areas such as image
recovery and denoising [16], background modeling, and
foreground object detection of video image [17]. RPCA is
a typical model utilizing the low-rank and sparse matrix
decomposition for data restoration and denoising. The basic
idea is that the original data in form of a numericalmatrix can
be decomposed into a low-rank matrix and a sparse matrix as
follows:

min
X,A

rank (X) + 𝜆1 ‖A‖0 ,
s.t. D = X + A

(1)

where D ∈ R𝑚×𝑛 is the raw data usually having noise, X
represents the expected clean data which is assumed having
low-rank property, and A represents the noise data or outlier
which is considered being sparse.The target of RPCA in (1) is
to estimate the unknown X and A given D.

However, the optimization problem in (1) is a NP-hard
problem [18] due to its nonconvexity and discontinuity. On
one hand, the low-rank term should be processed properly.
For this purpose, a widely used solving scheme is replacing
rank (X) by its convex envelope, nuclear norm ‖ ⋅ ‖∗ [6,
19], as nuclear norm minimization approaches can perform
stably without knowing the target rank of the recovery
matrix in advance. On the other hand, the nonconvexity
and discreteness of the ℓ0 penalty make it be not preferred.
Considering that ℓ1 is also good at modeling the sparse noise
[6] and has high efficient solution, the ℓ0 term in (1) is
replaced with ℓ1. Thus, (1) can be written as

min
X,A

‖X‖∗ + 𝜆1 ‖A‖1 ,
s.t. D = X + A

(2)

where ‖X‖∗ fl ∑𝑖 𝜎𝑖(X) denotes the nuclear norm, 𝜎𝑖(X)
is the 𝑖th largest singular value of matrix X, and ‖A‖1 fl∑𝑚𝑖=1∑𝑛𝑗=1 |𝑎𝑖,𝑗|, 𝑎𝑖,𝑗 is the element of A.

In this paper, we introduce RPCA into the anomaly detec-
tion of subway passenger flow. Moreover, the passenger flow
data matrix has low-rank structure because it shows regular
cycles with respect to day, week, month, and year. In addition,
the real-world data is usually polluted by noise or outliers,
and the outliers are considered anomalies for detection. So
we adopt RPCA to represent the subway passenger flow and
detect the anomalies by the sparse outliers. Additionally,
we consider the temporal correlation among the data and
propose an improved RPCA. The next section will give the
improved RPCA in detail.

3. Methodology

In this section, we first represent the subway passenger flow as
a matrix and give it decomposition for anomalies detection.
Then the improved RPCA is applied to obtain preliminary
abnormal flow information. Finally, the detected anomalies
are grouped into several clusters for revealing the temporal-
spatial laws.

3.1. Subway Passenger Flow Representation and Decomposi-
tion. The raw subway passenger riding data are collected
from the subway AFC system; they include the boarding or
alighting time at a station, the boarding line ID or alighting,
and the boarding station ID or alighting. Based on the raw
riding data, the subway passenger flow data are calculated in
one hour interval, and then we obtain the subway passenger
flowmatrixD, which is constructed with the row and column
corresponds to the date and the time interval of each day,
respectively. Therefore, each element in the matrix represents
the passenger flow of a station at a certain time interval of a
certain day.
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As the passenger flow of a subway station shows similar
varying degrees taking year, month, week, hour, or minute as
a cycle, the temporal patterns of the passenger flow matrix
D are typically a low-rank matrix [20]. Besides, passenger
flow of adjacent stations also show certain similarity, which
further supports the low-rank property of the passenger flow
matrix. However when anomaly events happen, the low-rank
property of the flow would be ruined by the outliers. So
the matrix D can be considered as a combination of normal
and outliers. Let 𝑥𝑒,𝑡 and 𝑎𝑒,𝑡 represent the expected flow
component and the outlier interference of a station at time𝑡 on date 𝑒, so the measured passenger flow at time 𝑡 can be
expressed as 𝑑𝑒,𝑡 = 𝑥𝑒,𝑡 + 𝑎𝑒,𝑡. Collecting 𝑛measurements and
introducing matrices X fl [𝑥𝑒,𝑡],A fl [𝑎𝑒,𝑡], the passenger
flow matrix can be decomposed by

D = X + A (3)

By this decomposition, the subway passenger flow can
be represented by two components: the expected flow X and
the anomalous part A. The anomalous part A is explained
as special events or special activities around the station; it is
sporadic over time and may last for short periods relative to
the (possibly long) measurement period T, whichmeans that
only a small fraction of the elements in observation traffic
flow matrix D is supposed to be anomalous. Therefore, the
anomalymatrixAwould be sparse both in rows and columns.

From the above analysis, the subway passenger flow D
completely has the RPCAmodel in (2) with the low-rank and
sparse terms. In the following, we further exploit the temporal
constraint for the model and propose our improved RPCA
model for the anomalies detection of subway passenger flow
data.

3.2. The Improved RPCA. For the subway passenger flow
matrix D, the two adjacent rows of the same weekdays in
different weeks are often approximately equal except some
outliers, derived from the obvious day cycle of the passenger
flow measurement. This property is conductively true for
the corresponding expected flow X, while the current RPCA
model has no specific description for this important property.
So we propose a constraint to keep the consistence among
rows of X by adding an item ‖HX‖1 to the current RPCA
model.The matrix H is defined as follows:

H = ((((((
(

1 −1 0 ⋅ ⋅ ⋅ 0 00 1 −1 ⋅ ⋅ ⋅ 0 0... ... d
... ...0 0 0 ⋅ ⋅ ⋅ 1 −10 0 0 ⋅ ⋅ ⋅ 0 1

))))))
)(𝑚−1)×𝑚.

(4)

The above temporal differential matrix is H =
Toeplitz(0, 1, −1), in which the central diagonal is defined
as ones and the first upper diagonal is defined as negative
ones. The temporal constraint matrix intuitively expresses
the fact that nominal passenger flow matrices at same time

intervals for the same weekdays are usually similar. Actually,‖HX‖1 captures consistence between two adjacent rows of X.
Moreover, compares with ℓ2 norm, ℓ1 norm is more inclusive
and robust while considering temporal abrupt changes [6].
Thus we choose ℓ1 norm to minimize HX, as it enforces the
matrix X temporally stable [21]. Hence, we revise the RPCA
model in (5) and obtain the following improved RPCA
model:

min
X,A

‖X‖∗ + 𝜆1 ‖A‖1 + 𝜆2 ‖HX‖1 ,
s.t. D = X + A

(5)

where 𝜆2 controls weight of the term ‖HX‖1.
To solve the improved model, we adopt the Alternating

Direction Method of Multiplier (ADMM) [22], which is a
popular algorithm for solving convex optimization problems.
For this purpose, three auxiliary variables L ∈ R𝑚×𝑟,Q ∈
R𝑟×𝑛, and S ∈ R(𝑚−1)×𝑛 are introduced; let X = LQ and
HX = S, where r is the decomposition rank of X. Therefore
(5) is rewritten as

min
X,A,S,L,Q

‖LQ‖∗ + 𝜆1 ‖A‖1 + 𝜆2 ‖S‖1 ,
s.t. D = X + A,

X = LQ,
HX = S

(6)

Remove the linear equality constraints in (6) with aug-
mented Lagrangian method, and then we have the following
objective function:

L (X,A, S, L,Q) = ‖L‖2𝐹 + ‖Q‖2𝐹 + 𝜆1 ‖A‖1 + 𝜆2 ‖S‖1+ ⟨Y1,D − X − A⟩
+ 𝜇2 ‖D − X − A‖2𝐹 + ⟨Y2,X − LQ⟩
+ 𝜇2 ‖X − LQ‖2𝐹 + ⟨Y3,HX − S⟩
+ 𝜇2 ‖HX − S‖2𝐹

(7)

where Y1, Y2, and Y3 are Lagrange multipliers, 𝜇 > 0 is
adaptive penalty parameter, and ⟨⋅, ⋅⟩ represents the standard
trace inner product. We adopt an alternative iterations to
solve this optimization as follows.

UpdateX. WhenA, S, L, andQ are fixed, (7) degenerates into
a function with respect to X. So we solve X by the following
optimization problem:

X(𝑖+1) = argmin
X

𝜇(𝑖)2 󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩D − X − A(𝑖) + Y(𝑖)1𝜇(𝑖) 󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
2

𝐹

+ 𝜇(𝑖)2 󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩X − L(𝑖)Q(𝑖) + Y(𝑖)2𝜇(𝑖) 󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
2

𝐹
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+ 𝜇(𝑖)2 󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩HX − S(𝑖) + Y(𝑖)3𝜇(𝑖) 󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
2

𝐹

(8)

Taking derivative of the objective function in (8) and
setting it to 0, the closed-form solution is given by

X(𝑖+1) = (2𝜇(𝑖)I𝑛×𝑛 + 𝜇(𝑖)H𝑇H)−1
⋅ (𝜇(𝑖) (D − A(𝑖) + L(𝑖)Q(𝑖) +H𝑇S(𝑖)) + Y(𝑖)1 − Y(𝑖)2+H𝑇Y(𝑖)3 )

(9)

Update A. When others are fixed, in order to update A, one
needs to solve the following ℓ1 minimization problem:

A(𝑖+1) = argmin
A

𝜆1 ‖A‖1
+ 𝜇(𝑖)2 󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩A − (D − X(𝑖) + Y(𝑖)1𝜇(𝑖))󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

𝐹

(10)

whose solution is given by [23]:

A(𝑖+1) = 𝛿(D − X(𝑖) + Y(𝑖)1𝜇(𝑖) , 𝜆1𝜇(𝑖)) (11)

where 𝛿(𝑎, 𝑏) = sgn(𝑎)(|𝑎| − 𝑏) for |𝑎| ≥ 𝑏 and is zero
otherwise.

Update S. In a similar way with updating A, the closed-form
solution of S is given by

S(𝑖+1) = 𝛿(HX(𝑖) + Y(𝑖)3𝜇(𝑖) , 𝜆2𝜇(𝑖)) (12)

Update L,Q. In a similar way with updating X, the closed-
form solutions of L,Q are given by

L(𝑖+1) = (𝜇𝑖X(𝑖) + Y(𝑖)2 )Q(𝑖)𝑇 (2I𝑟×𝑟 + 𝜇(𝑖)Q(𝑖)Q(𝑖)𝑇)−1 (13)

Q(𝑖+1)

= (2I𝑟×𝑟 + 𝜇(𝑖)L(𝑖)𝑇L(𝑖))−1 (𝜇(𝑖)L(𝑖)𝑇X(𝑖) + L(𝑖)𝑇Y(𝑖)2 ) (14)

Update Y1, Y2, Y3, and 𝜇. The Lagrangian multipliers Y1, Y2,
and Y3 and penalty parameter 𝜇 could be updated as follows:

Y(𝑖+1)1 = Y(𝑖)1 + 𝜇(𝑖) (D − X(𝑖) − A(𝑖)) ,
Y(𝑖+1)2 = Y(𝑖)2 + 𝜇(𝑖) (X(𝑖) − L(𝑖)Q(𝑖)) ,
Y(𝑖+1)3 = Y(𝑖)3 + 𝜇(𝑖) (HX(𝑖) − S(𝑖)) ,
𝜇(𝑖+1) = min (𝜌𝜇(𝑖), 𝜇𝑚𝑎𝑥)

(15)

where 𝜌 > 1 is a constant and 𝜇𝑚𝑎𝑥 is the upper bound of 𝜇.

Input: Data matrixD, the parameters 𝜆1 > 0, 𝜆2 > 0, 𝑟 > 0,
Initialize: X(0) = A(0) = S(0) = 1 ∈ R𝑚×𝑛,
Y(0)1 = Y(0)2 = 1 ∈ R𝑚×𝑛, Y(0)3 = 1 ∈ R𝑚×𝑛,
L(0) = 1 ∈ R𝑚×𝑟,Q(0) = 1 ∈ R𝑟×𝑛,𝜇(0) = 10−6, 𝜌 = 1.1, 𝜀 = 10−6,𝑀𝑎𝑥𝐼𝑡𝑒𝑟 = 1000, 𝑖 = 0.
1: while not converged and 𝑖 < 𝑀𝑎𝑥𝐼𝑡𝑒𝑟 do
2: Update X : via (9)
3: Update A : via (11)
4: Update S : via (12)
5: Update L : via (13)
6: UpdateQ : via (14)
7: Update the multipliers: via (15)
8: 𝑖 = 𝑖 + 1.
Output: Expected matrix X, Sparse matrix A.

Algorithm 1: Solving for the improved RPCA.

Convergence Conditions. The stopping criterion is measured
by the following problem:

max

{{{{{{{{{{{{{{{{{{{{{

󵄩󵄩󵄩󵄩󵄩X(𝑖+1) − X(𝑖)󵄩󵄩󵄩󵄩󵄩∞ ,󵄩󵄩󵄩󵄩󵄩A(𝑖+1) − A(𝑖)󵄩󵄩󵄩󵄩󵄩∞ ,󵄩󵄩󵄩󵄩󵄩S(𝑖+1) − S(𝑖)󵄩󵄩󵄩󵄩󵄩∞ ,󵄩󵄩󵄩󵄩󵄩L(𝑖+1) − L(𝑖)󵄩󵄩󵄩󵄩󵄩∞ ,󵄩󵄩󵄩󵄩󵄩Q(𝑖+1) −Q(𝑖)󵄩󵄩󵄩󵄩󵄩∞ ,

}}}}}}}}}}}}}}}}}}}}}
≤ 𝜀. (16)

where 𝜀 is tolerance error. If the convergence condition ismet,
the iteration terminates.The overall algorithm is summarized
in Algorithm 1.

Once solving the improvedRPCA,we obtain the expected
flow X and the anomalous part A. To eliminate the inter-
ference of the noise, we use the three-sigma rule of thumb
[24] to filter elements of A. 𝜔𝑗 is the standard deviation
of 𝑥1,𝑗, 𝑥2,𝑗, . . . , 𝑥𝑖,𝑗, . . . , 𝑥𝑚,𝑗; if −3𝜔𝑗 ≤ 𝑎𝑖,𝑗 ≤ +3𝜔𝑗𝑎𝑖,𝑗 is
considered an allowable deviation and set as 𝑎𝑖,𝑗 = 0, then we
get the anomaly flow matrix Â. Each element of Â represents
the abnormal amplitude of the space-time position; it may be
positive or negative. The positive indicates that the passenger
flow is higher than the expected flow and the negative
indicates the passenger flow is lower than the expected flow.

3.3. Discovering the Potential Temporal-Spatial Laws among
Anomalies. Based on the improved RPCA, the anomalies of
subway passenger flow are detected. To explore the potential
laws of anomalies propagation, we group the anomalies
into several clusters to identify anomalies in the region and
their propagation laws. Because the detected anomalies have
similar temporal-spatial characteristics, we use ST-DBSCAN
algorithm [25] to cluster the station-level anomalies to find
the anomaly in the region. We regard 𝑝(𝑙𝑜𝑛, 𝑙𝑎𝑛, 𝑡) as the fea-
ture of an anomaly data object, 𝑙𝑜𝑛 and 𝑙𝑎𝑛 are the longitude
and the latitude of a station, and 𝑡 denotes the time interval.
The ST-DBSCAN algorithm requires three parameters: space
radius𝑅, timewindowΔ𝑇, and density threshold𝑀𝑖𝑛𝑃𝑡𝑠; the
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first two parameters determine neighborhood on temporal-
spatial dimension.

The algorithm starts with the earliest anomaly data object𝑝 and retrieves all neighbors of point𝑝within spatiotemporal
neighborhood. If the number of neighbors is greater than𝑀𝑖𝑛𝑃𝑡𝑠, a new cluster is created which has 𝑝 as core of
the cluster. Then, the algorithm iteratively collects neighbors
beginning with another core point. The above procedure
continues until all points have been processed.

4. Experiments

In this section, we evaluate the robustness of the improved
RPCA by adding noise on a set of real subway passenger
flow data, comparing with RPCA [6] the wavelet transform
method [8] and the threshold method [7].Then we apply our
proposed framework on the real subway passenger flow data
for anomalies detection and analysis; meanwhile the results
are verified with traffic related tweet data.

4.1. Robustness Evaluation. The improved RPCA model is
characterized by its robustness to noise, so we first validate
the performance of ourmethods on noisy passenger flow data
compared with the related methods.

First, we construct three real-world passenger flow
datasets from three different geographical positions shown in
Figure 2. By exploiting the strongweekly seasonality observed
in the data, we convert hourly flow within one week into a
row vector and stack 12 weeks vector to form the data matrix
which contains much noise. To implement the verification
experiment, it needs to know the ground truth. In the case
of ground truth being unavailable, we have to estimate a
relatively accurate ground truth. Here, we use 4 layers of
wavelet to filter the small white noise and then take the
average as ground truth value. As a result, we get three
relatively clean and ideal ground truth datasets, denoted by
G𝑖 (𝑖 = 1, 2, 3).

Next, we add sparse noise on the ground truth matrices
to simulate the corresponding noise matrices A𝑖 (𝑖 = 1, 2, 3).
The randomly corrupted proportion 𝑐𝑝 of these matrices
varies from 0.06 to 0.50; the fluctuation range is ±80% of the
average of G𝑖 (𝑖 = 1, 2, 3). So we obtain the noisy passenger
flowmatrices bymixing the ground truthmatricesG𝑖 and the
produced noise matrices A𝑖 by D𝑖 = G𝑖 + A𝑖. These datasets
will be used as the test datasets for anomalies detection
and evaluating the robustness of the proposed method. The
properties of the constructed datasets are summarized in
Table 1.

Evaluation Criteria. To evaluate the performance of the
improved RPCA algorithm, we use the precision rate 𝑝𝑟 in
[21] to evaluate the recognition accuracy of anomalies, which
are defined as follows:

𝑝𝑟 = 2 ∗ 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑟𝑒𝑐𝑎𝑙𝑙𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙 (17)

where 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑎𝑡𝑟𝑢𝑒/𝑎𝑎𝑙𝑙, 𝑟𝑒𝑐𝑎𝑙𝑙 = 𝑎𝑡𝑟𝑢𝑒/𝑎, 𝑎𝑎𝑙𝑙 and 𝑎𝑡𝑟𝑢𝑒
denote the number of anomalies recognized by our model

12

3

Figure 2:The selected stations in three areas of Beijing.

Table 1: Datasets description.

Dataset Numbers of stations Size
D1 20 240 × 126
D2 18 216 × 126
D3 12 144 × 126

and the number of true anomalies among them, respectively,
and 𝑎 represents the actual number of anomalies. 𝑝𝑟 is
calculated by averaging results over 10 runs.

Parameters Setting. The improved RPCA has three parame-
ters𝜆1, 𝜆2, and decomposition rank 𝑟, and they are important
for the performance. Rank 𝑟 needs to be as small as possible
to minimize matrix sparsity and low-rank error. Here, we
use singular value decomposition (SVD) [26] to estimate a
superior rank for these three datasets. Figure 3 shows the
distribution of the singular value of the three ground truth
datasets. The x-axis presents the 𝑖th singular values and the y-
axis presents the cumulative ratio of the first 𝑖 singular values
to the sum of all singular values. It can be found that the
first 14 singular values almost dominate nearly 90% energy
in all three datasets. To simplify, the rank 𝑟 is set as 14 for all
datasets.

For 𝜆1 and 𝜆2, we first change one parameter while fixing
the other parameter in the model, and the parameter is
gradually taken as 10−3, 10−2, . . . , 103. Then we achieve the
relatively superior parameters. Next, we tune these parame-
ters in a narrow range from 10−1 to 10 by step of 0.1. Finally
we obtain the relatively optimal 𝜆1and 𝜆2. The setting of
experimental parameters is shown in Table 2.

In our experiments, we apply 5 layers of discrete wavelet
transform based on the wavelet of DB4. For the thresh-
old method, the threshold value of flow at different time
interval is different and we compute the mean value 𝐴V𝑗
and standard deviation 𝜎𝑗 of 𝑑1,𝑗, 𝑑2,𝑗, . . . , 𝑑𝑖,𝑗, . . . , 𝑑𝑚,𝑗 and
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Figure 3: Cumulative ratio distribution of singular value in three
ground truth datasets.

Table 2: Experiment parameters.

Dataset The improved RPCA RPCA𝜆1 𝜆2 𝜆
D1 1 0.4 0.1
D2 1.4 0.4 0.2
D3 1.1 0.5 0.1

set the confidence interval as (𝐴V𝑗 − 3𝜎𝑗, 𝐴V + 3𝜎𝑗); it is
judged to be an anomaly if 𝑑𝑖,𝑗 is beyond the confidence
interval.

Experiment Result Analysis. Figure 4 is the comparison
results of the four methods. As can be seen, there is a
downward trend of 𝑝𝑟 with the increasing of data corrupted
proportion. The improved RPCA is superior to other meth-
ods, followed by RPCA. Notice that the threshold method
has worse performance, because the noise data reduce the
calculation accuracy of the threshold range. When the data
corrupted proportion is low, the wavelet transform has a
good detection result, but the local stationarity is destroyed
in a high corrupted proportion, which results in the detec-
tion accuracy of a steady decline. The improved RPCA is
more robust than RPCA even in high corrupted proportion,
because the constraint item ‖HX‖1 can capture the feature of
abrupt changes of the time series data when the sparseness
of anomalies becomes weak. Additionally, the improved
RPCA performs well on different stations from different
geographical positions. In a word, the improved RPCA is
more suitable for anomalies detection of subway passenger
flow.

4.2. Anomalies Detection and Verification. In order to
demonstrate the practicability and the authenticity of the
improved RPCA, we conduct anomalies detection experi-
ments on real-world datasets and verify the results with tweet
data. Figure 5 shows the decomposition results of the exit

flow of Xidan station. The low-rank expected flow matrix
X represents the weekly pattern and the anomaly matrix Â
successfully captures multiple outliers.

To further analyze and verify the anomalies, we collect
tweet data which contain a wide variety of information
and retrieve events information through natural language
processing method. There are four explanatory anomaly
regions, highlighted by ellipses in Figure 5. They correspond
with the following events 1 ∼ 3 extracted from tweet
data, as shown in Figure 6, and specific analysis as fol-
lows:

(i) Event1: The ellipse region 1 in Figure 5 shows the
increasing of the exit flow lasting about three hours in
the evening. It is because many large shopping malls
near Xidan station held sales for Chinese Valentine’s
Day, which attracted massive customers and led a rise
in exit flow.

(ii) Event2: In ellipse regions 2 and 3, the flow was
declined. It is because Xidan station was closed for
facilitating celebration parade for the 70𝑡ℎ anniver-
sary victory of the anti-Japanese war.

(iii) Event3: In ellipse region 4, the exit flow was higher
thanusual. Because it was a commuter day due to legal
exchanging holiday, therefore the flow was increasing
and consistent with the flow of a working day.

The improved RPCA can not only identify anomalies
at the station level but also accurately detect anomalies.
These anomalies could be used for a reference for real-time
alerting.

4.3. Discovering the Potential Temporal-Spatial Laws among
Anomalies. An isolated anomaly may affect neighbored
stations consecutively, so anomalies among some stations
have strong temporal-spatial correlations. Grouping several
anomalies along temporal-spatial dimensions may reveal
the evolution or the impact of the isolated anomaly; hence
we adapt ST-DBSCAN clustering algorithm to group the
anomalies to analyze the propagation feature of the anoma-
lies.

In experiments, space radius 𝑅 = 0.03 (Euclidean
distance of latitude and longitude between two adjacent
stations), time window Δ𝑇 = 1 hour interval, and density
threshold𝑀𝑖𝑛𝑃𝑡𝑠 = 3 work well. We cluster the anomalies of
all stations in one week and name each cluster as an anomaly
event.

In Figure 7, we use ellipses to highlight four anomaly
events grouped by ST-DBSCAN, and these clustered results
are easier to be verified by tweet data and visually analyzed.
The ellipse region 1 in Figure 7(a) shows the entry flow
decrease of the stations on the same line. It was lasting for
five hours and induced by the closure strategy. Meanwhile,
it also led to the flow increase of the nearby stations.
In particular, the transfer stations such as Dongsi station
and Chaoyangmen station had an obvious flow increase.
The ellipse region 2 in Figure 7(a) shows the surges of
exit flow as attendees traveled to Bird’s Nest stadium for
the opening ceremony of IAAF World Championships. In
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(c) Anomalies detection in D3

Figure 4: Performance of anomalies detection in three ground truth datasets.
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(a) Event1: August 20, 2015, is Chinese Valentine’s Day, and
many large shopping malls near Xidan station held sales
activities

(b) Event2: To facilitate celebration parade for the 70th
anniversary victory of the anti-Japanese war, the traffic author-
ities in Beijing imposed closure restriction measures on Xidan
station

(c) Event3: September 6, 2015, is Sunday but exchanged with
the working day because of legal exchanging holiday

Figure 6: The events information sent by tweet users.
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Figure 7: Anomaly events (labeled with ellipse). Red points mean traffic flow increasing and blue points mean traffic flow declining. We
normalize anomaly A to get Ã = A/X and values of Ã denotes deviation from the expectation.

Figure 7(b), ellipse region 3 shows the spreading of the
anomaly caused by an hour’s breakdown of the train on
Sihuidong station. In Figure 7(c), ellipse region 4 shows the
entry flow increase of many stations for one day, since the
traffic control of city roads led more people to choose the
subway.

After the clustering and verification process, we can dis-
cover the potential temporal-spatial laws among anomalies
from the following three aspects:

(i) Distribution and spreading of anomalies along time
and space: howmany stations? And how long are they
affected? The center of anomalies and the range of
spreading from some destine anomaly. As shown in
Figure 7(c), ellipse region 4 shows the stations affected
by traffic control measures. Ellipse region 3 shows the
anomaly in Sihuidong station spread to the adjacent
stations.

(ii) The serious degree of anomalies: Values in 𝐴 reflect
the serious degree of anomalies. In Figure 7, affected
stations labeled with the red color having different
levels reveal the degrees of impaction. The heavier the
color, the more severe the anomaly impact.

(iii) The potential impact caused by events: Some anomaly
events not only affect the corresponding stations, but
also cause the potential impact on the surrounding
stations. As shown in ellipse region 1 of Figure 7(a),
the closure strategy resulted in a potential increasing
flow of the surrounding stations.

Furthermore, we apply the statistical analysis to get some
rules shown in Figure 8. The detected events are classified
into two categories: some are predefined such as traffic
control and vocal concerts and some are emergencies such
as subway device failure and a sudden heavy rain. For both
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Figure 8: In the two figures, the horizontal axis is time interval and the vertical axis is anomaly flow. (a) shows the exit anomaly flow of
multiple stations on August 7; lines represent different stations. From 17:00 to 20:00, there are continuous negative and positive anomalies,
because there was a sudden heavy rain at 17:00 that resulted in the passenger flow peak moving back. (b) shows the anomaly flow of Olympic
Sports Center Subway Station near the Bird’s Nest stadium. It is obvious that the exit flow surged before the beginning of game and the entry
flow surged after the end of game.

two categories events, the above analysis with ourmethod can
provide a beneficial suggestion for subway managers:

(i) For emergency events, our framework provides distri-
bution laws of anomaly events, and these can be used
for estimating anomalies’ propagation and impact on
adjacent stations. As shown in Figure 8(a), a sudden
heavy rain caused a delay of the evening rush hour, so
thatmanagers can further push announcement timely
to remind passengers and take emergency measures.
This would prevent subway station from chaos and

hazard spreading and also save the travel time of
passengers.

(ii) For predefined events, our framework indicates
detailed rules along spatial and temporal dimension,
so that subway managers can obtain prior informa-
tion and make sufficient preparations to cope with
possible anomalies. As shown in Figure 8(b), the exit
flow of Olympic Sports Center Station surged in the
two hours before the beginning of one game, and the
entry flow surged in the two hours after the end of
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this game. These anomalies rules can help to estimate
the impact of anomaly flow involved to major urban
events and then take mitigation strategies in advance.

5. Conclusion

In this paper, the improved RPCA is suggested to detect
station-level anomalies in subway, and ST-DBSCAN algo-
rithm is used to group the detected station-level anomalies
into clusters named as anomaly events. This framework can
not only precisely locate anomalies in temporal dimension
but also find the distribution and spreading in temporal and
spatial dimension. With the detection results and impact
analysis of events, subway managers can estimate traffic flow
impact involved to predicted events and then take corre-
sponding measures. Besides, they can push announcement
timely for unpredicted events through decomposing the real-
time data.

In future, we shall improve our work in three aspects.
First, we shall extend our model to anomalies prediction
as well as anomalies propagation process. Second, we shall
consider temporal-spatial distribution by extracting compre-
hensive temporal and spatial information, e.g., OD flow data.
Third, we shall propose more efficient ADMM algorithm
for solving the proposed model and propose convergence
analysis of the algorithm.
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