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Abstract. We investigated unsteady elastic diffusion vibrations of a rectangular isotropic 
Timoshenko plate. For the mathematical problem formulation, a model of coupled elastic 
diffusion processes in a multicomponent continuum is used. Using the d'Alembert 
variational principle, the equations of transverse vibrations of a rectangular isotropic 
Timoshenko plate taking into account diffusion are obtained from this model. An initial-
boundary value problem of a simply supported plate bending is formulated. 

INTRODUCTION 

We considered an unsteady elastic diffusion vibrations problem of a Timoshenko plate. This 
model is a refinement of the classical Kirchhoff - Love plate model by considering the influence 
of inertial forces upon rotation of the normal line to the middle surface and shear deformation. It 
is assumed that the material fiber, which was straight and normal to the middle surface before 
deformation, remains straight but ceases to be normal to the middle surface. Thus, this theory takes 
into account shear deformations and shear stresses. Considering shear stresses is very important 
for the design of composites and wood parts since their destruction can occur due to the destruction 
of the binder during shear. 

It is known that the classical Kirchhoff - Love plate model is quite simple and provides 
sufficient accuracy in solving many engineering problems, and therefore it is used most often. 
However, taking shear deformations into account may turn out to be essential, for example, for 
rods made of anisotropic material, in which the shear modulus is much lower than Young's 
modulus. Some fibrous and composite materials have these properties (in particular, human 
bones). It is also important to consider shear deformations in the problems of stability of three-
layer rods and plates, where two bearing layers are thin and made of high-strength rigid material, 
and between them, there is a light and less durable filler. On the other hand, when the stiffness 
characteristics of the filler layer are significantly lower than the stiffness characteristics of the 
bearing layers, a simplified calculation using the classical Kirchhoff - Love model can lead to 
significant errors in the calculation of critical loads. This, in turn, leads to a decrease in the 
economic efficiency of the design or an underestimation of the potential resources of biological 
systems. 



In addition, the presented model takes into account the mutual influence of the mechanical and 
diffusion fields on each other. As early as the beginning of the 20th century, different scientific 
groups experimentally proved that due to beam and plates bending, the deformation gradient 
initiates the process of ascending diffusion [1-3]. This leads to the formation of a concentration 
gradient, and as a consequence, to a redistribution of the solute atoms. As a result, there is a transfer 
of matter from areas of compression in the area of tension. This phenomenon is called the Gorsky 
effect. The result of scientific research was published in 1936 [1]. 

A review of publications in this scientific sphere shows that analyzing the interaction of 
mechanical and diffusion fields in thin-walled structural elements is also relevant today. Among 
the few publications on this topic are articles [4, 5]. They investigate the influence of diffusion 
processes on the bearing capacity of a smooth transversely isotropic shell. Contact interaction of a 
rod with an elastic half-space is considered in [6, 7]. Publications [8–10] are devoted to the study 
of elastic diffusion processes in plates. The calculation of elastic diffusion spherical shells is 
considered in [11]. 

It should be noted that all these problems are solved in a stationary formulation. Problem 
formulations on unsteady elastic diffusion vibrations of beams and plates and methods for their 
solution are absent in the publications known to date. 

PROBLEM FORMULATION 

We considered the unsteady vibrations problem of a rectangular orthotropic multicomponent 
Kirchhoff-Love plate under the action of mechanical and diffusion perturbations. Fig. 1 shows the 
orientation of Cartesian axes and how the forces and the moments are applied. 

 
Fig. 1. Illustration for the problem formulation. 

 
For the problem formulation, we use the coupled elastic diffusion continuum model in a 

rectangular Cartesian coordinate system, which in the case of a homogeneous continuum has the 
next form [12-17]: 
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where ijσ  and ( )q
iJ  are components of the stress tensor and the diffusion flux vector, which are 

defined as follows 
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Here the dots denote the time derivative. All quantities in (1.1) and (1.2) are dimensionless. 
We accepted the following notation: 
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where t  is time; ix∗  are rectangular Cartesian coordinates; iu∗  are displacement vector components; 
l  is the characteristic linear dimension in the problem; *

1l , *
2l  are length and width of the plate; *h  

is plate thickness; ( ) ( ) ( )
0

q q qn nη = −  is the concentration increment of q -th component in the 

multicomponent continuum; ( )qn  and ( )
0
qn  are the actual and initial concentrations (mass fractions) 

of q -th component; ijklC∗  are components of the elastic constant tensor; ρ  is density of the medium; 
( )q

ij
∗α  are coefficients characterizing the volumetric changes of the medium due to diffusion; ( )q

ijD∗  

are the self-diffusion coefficients; R  is the universal gas constant; 0T  is initial temperature; ( )qm  

is the molar mass q -th component; ( )qτ  is relaxation time of diffusion perturbations; ( )qtg  is the 
Darken's thermodynamic coefficients. 

TIMOSHENKO ELASTIC DIFFUSION PLATE 

To construct the equations for the plate bending, we use the variational formulation of the 
problem (1.1) – (1.3). According to the d'Alembert variational principle, relations (1.1) - (1.3) can 
be written in the form [18, 19]: 
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Here iU  and ( )qN  are surface kinematic perturbations; iP , ( )q
iI  are dynamic kinematic 

perturbations; iuδ , ( )qδη  are virtual displacement and concentrations increments; in  are 
components of the outer normal unit vector to the surface of the plate. 

For further transformations, it is necessary to formulate the following assumptions: 
1) The domain G  is a rectangular parallelepiped [ ]2, 2G D h h= × − , where 

[ ] [ ]1 20, 0,D l l= ×  is the rectangular region of the plate middle surface 3 0x = ; DΓ =∂  is the middle 
surface boundary (Fig. 1) 

2) The plate surface has the form b− +Π =Π ∪Π ∪Π , where −Π  are bottom surface 
corresponding 3 2x h= − ; +Π  are top surface corresponding 3 2x h= ; 11 21 12 22bΠ =Π ∪Π ∪Π ∪Π



. The surfaces 1kΠ  corresponding 0kx = ; the surfaces 2kΠ  corresponding k kx l= , 1,2k = . We 
assume that the plate side surface is free from mechanical loads and mass transfer  
 0.ij j ij jn n

− +Π Π
σ =σ =  (2.2) 
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3) Plate material is orthotropic perfect solid solution: 
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4) Transverse plate deflections are considered small. Then the linearization of the unknown 
quantities with respect to the variable 3x  will has the form (here the approximate equality is 
replaced by the exact one) 
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5) There is considered that straight lines normal to the mid-surface remain straight after 
deformation and straight lines normal to the mid-surface remain normal to the mid-surface after 
deformation (straight normal hypothesis). Given (2.2) we will assume that there are no 
deformations along the axis 3Ox . Then [18-21] 
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It follows from (2.2) that 
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The components of the stress tensor and the diffusion flux vector are written as 
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Substituting equalities (2.7), (2.10) into (2.1), we obtain the equations of transverse elastic 
diffusion vibrations of the Timoshenko plate 
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where k  are coefficient taking into account the uneven distribution of shear stresses over the plate 
thickness.  

If the shear stresses are distributed according to the Zhuravsky formula, then for a plate of 
thickness h  we have [20, 21] 
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Equations (2.11) are supplemented with boundary conditions, which are also obtained from the 
variational equation (2.1). In the case of simply support plate they have the form 
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Here ( )l
kM  are bending moments shown in the figure 1. 

The initial conditions are assumed to be zero. 

TRANSITION TO THE KIRCHHOFF-LOVE PLATE 

The Timoshenko model is a refinement of the Kirchhoff-Love plate model, by taking into 
account shear deformations and the influence of inertial forces when the normal is rotated to the 
middle surface. To check the transition to the Kirchhoff-Love model, we set [18-21] 
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Further, we substitute relations (3.1) into equations (2.11) and boundary conditions (2.12) - 
(2.15). In this case, the first equation in (2.11) we differentiate with respect to the variable 1x , and 
the second equation we differentiate with respect to the variable 2x , we obtain [18, 19]: 
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Neglecting the inertial forces associated with the rotation of the normal, we pass to the classical 
model of the Kirchhoff-Love plate 
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An analogue of boundary conditions (2.12) - (2.15) to equations (3.3) can be written as 
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CONCLUSION 

We can come to the following conclusions. The mathematical model of elastic diffusion 
unsteady vibrations of a Timoshenko rectangular orthotropic plate is constructed using the 
d'Alembert variational principle (the generalized principle of virtual displacements). This model 
has described the relationship between mechanical and diffusion fields in a continuum. The initial-
boundary value problem of a simply supported plate bending is formulated. The model considers 
the relaxation diffusion effects that determine the final speed of propagation of diffusion 
perturbations. The transition to the classical Kirchhoff-Love plate model is checked. 
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