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ABSTRACT 

High-fidelity simulations aim at numerically replicating complex physical systems, usually involving 
several phenomena. Despite recent advances on digital computing, these simulations might take 
hours, even days to complete. To avoid performing a computationally expensive simulation for each 
case, surrogate models are used instead. A surrogate model links the inputs and outcomes of a set of 
computer experiments to approximate the response surface of a high fidelity model [1]. 

Sample selection has a direct influence on the accuracy of the resulting surrogate model. Classic 
design of experiments (DoE) include statistical methods (like factorial designs), or random 
distributions (Montecarlo, Latin Hypercube Sampling) [2]. In this work, a novel sequential sampling 
algorithm is described and tested using tensor decomposition as surrogate model aiming at obtaining 
the most precise model with the minimum design points. 

While most classical DoE rely only on space-filling criteria, this particular DoE aims at balancing 
exploration and exploitation [3]. A gradient-based function is designed that locates the complex 
regions, accounting for the exploitation component. Since the gradient is not known in advance, the 
samples from which the surrogate model is constructed are iteratively removed to estimate the area 
where adding a new sample would have a greater impact. Canonical polyadic decomposition is 
performed to built the surrogate models, using TWINKLE library [4]. To avoid local oversampling, 
gradient-based function is compensated with a distance function, whose score is maximum in 
between sample points. The product of both functions constitutes the objective function to be 
maximized; the corresponding coordinates represent a sample candidate. The process is repeated for 
each existing sample point and the sample candidate whose objective function value is largest is 
selected as new sample point (see Fig. 1). 

Integrating system knowledge into DoE requires that information to be updated as surrogate model is 
constructed; as opposite to static DoE’s, points are added sequentially. An initial set of samples must 
be generated using existing sampling methods, in order to create a database on which performs the 
search for the optimal next sampling point. Additionally, stop criteria, such a maximum size of 
sample set or minimum model error, must be defined.  

The algorithm is tested on two-dimensional Rosenbrock function (fig. 2.a) and ternary-mixture 
density computation (fig. 2.b), with four input dimensions (temperature, pressure, two component 
fractions). In the first case it is compared to latin hypercube sampling over identical initial datasets; 
in the second, the initial sampling is two-level full factorial and LHS up to 25 samples. The next 
samples are calculated through sequential algorithm or continuing with latin hypercube sampling. In 
both cases the mean error decreases faster with increasing sample size using the sequential DoE, 
outperforming classical DoE’s, independently of the dimensionality. 

 



 

Fig. 1: Flow chart of sequential algorithm. 

 

 

Fig. 2: Illustrative examples: (a) Rosenbrock function; (b) ternary-mixture density. 
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