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Abstract. This paper presents an application of Membrane Equilibrium Analysis (MEA) to a historic 

masonry arch railway bridge in Leeds, United Kingdom. This case study structure is representative 

of the many masonry arch bridges present on UK and European railway transport networks. It has 

been chosen because, since 2016, it has been the subject of a detailed Structural Health Monitoring 

(SHM) campaign, making it an ideal candidate against which to test analytic models. Typically, asset 

engineers will be responsible for maintaining a large stock of these structures and will lack the time 

to perform thorough computational analyses. Therefore, simplified approaches, such as MEA, which 

can offer insight into structural behaviour, have the potential to be highly valuable. This study 

represents the first step in applying MEA to masonry arch railway bridges.  

 

1 INTRODUCTION 

Masonry arch bridges are important features of railway and road transport networks, throughout 

the UK and other European countries. However, despite their prevalence, their structural behaviour 

under working loads is often not understood in detail. As a result, assessments will typically focus on 

collapse loads, which can be predicted using limit analysis. Serviceability conditions may not be 

considered directly at all, despite being a driver of structural deterioration.  

To address this, asset engineers increasingly prescribe structural health monitoring for their 

masonry arch structures. One such case is considered here: a masonry railway bridge in Leeds, UK. 

This bridge has a working life of 150 years and carries a range of local passenger, cross-country, and 

freight trains. It has experienced historic damage, which was addressed in an intervention in 2015 [1]. 

Since 2016, two spans, which were the focus of the 2015 remedial works, have been monitored using 

a range of sensors. These include a network of fibre-optic Fibre Bragg Gratings (FBGs) to measure 

the distribution of in-plane strains across the arches, in both longitudinal and transverse directions 

[2].  

This sensor network provides detailed measurements of the bridge’s response under its working 

loads, making this an ideal case study for investigating the effectiveness of simplified modelling 

techniques [3]. One such modelling approach is described here, based on Membrane Equilibrium 

Analysis (MEA). In this paper, the modelling approach is developed for an arch bridge, based on a 
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typical span from the viaduct case study, and observations are made on the model’s behaviour when 

typical working loads are applied. Future work will compare this modelling output in detail against 

the FBG measurements and will include cracking and deformation analysis. The equilibrium 

solutions produced by MEA, besides being sufficient to prove that the structure is safe, may be used 

to assess their possible effect on material deterioration, and can be compared with the crack patterns 

detected in the structure. 

In order to model the equilibrium problem for this special example of a masonry vault structure, 

the unilateral No-Tension (NT) model is applied in this paper. The unilateral model for masonry 

appears in the literature around the end of the eighteenth century and in the nineteenth century (see 

Moseley [4]). In the twentieth century, this model was described rationally by Heyman in [5]. 

Considering the application of unilateral models to vaults, recent available literature is extensive. 

Our main inspiration come from the work of the school of Salerno, originating in their paper on the 

Lumped Stress Method [6], and applied to vaults in the papers by Fraternali et al. [7], Angelillo & 

Fortunato [8], Fraternali [9], and recently by Angelillo et al. in [10] and Gesualdo et al. in [11], where 

the Membrane Equilibrium Analysis is proposed and applied to some simple cases. We also recall 

the pioneering work by O'Dwyer [12], and work by Block [13], Block et al. [14], Vouga et al. [15], 

De Goes et al. [16], Block and Lachauer [17], and Miki et al. [18]. 

MEA can be used as a tool for finding statically admissible stress fields in masonry structures 

which can be assumed to exhibit membrane behaviour [10]. Heyman’s NT assumption for masonry 

is enforced by ensuring that the stress potential is concave in form. Starting from a potential which 

satisfies this constraint and depending on a few parameters, a minimum energy solution for the form 

is then obtained, through optimization of the parameters, for different load conditions that include the 

dead load and the moving train loads. The forms which are obtained are contained within the thickness 

of the arch, even in extreme conditions.  

 

2 DEVELOPMENT OF ANALYTICAL MODEL  

2.1 Geometry and equilibrium 

A vault can be described by its intrados and extrados surfaces, by the geometry of the filling, and 

eventually by the form and dimension of the abutments sustaining the vault.  

With the present model, it is assumed that the load applied to the vault is transferred and carried 

by a membrane structure S, a surface to which we may think to attach some thickness s. The geometry 

of the membrane S is not fixed, in the sense that it can be displaced and distorted, provided that it lays 

inside the masonry; see Fig.1, to which we refer for notation. For the surface S a Monge representation 

is considered, mapping the position x of points belonging to S in Cartesian coordinates in the reference 

shown in Fig.1: 

 
𝒙 = {𝑥1, 𝑥2, 𝑓(𝑥1, 𝑥2)} , {𝑥1, 𝑥2} ∈ Ω ,                                                           (1) 

 

𝛺 being a two-dimensional connected domain, called the planform of S, whose boundary 𝜕Ω, of outer 

normal n, is composed of a finite number of closed curves; {𝑥1, 𝑥2} . By adopting the Monge 

description, the curvilinear coordinates on S, are the Cartesian coordinates of points of S in the 

planform Ω; 𝑥3 = 𝑓(𝑥1, 𝑥2) is the rise of the membrane, and we assume: 𝑓 ∈ 𝐶𝑜(Ω) – that is to say 

that the surface S, which we consider, is continuous but not necessarily smooth.  

An efficient way to describe membrane equilibrium of a thin shell under a load 𝑞 is the formulation 

by Pucher [19]. Pucher analysis is based on the introduction of the projected stress components, in 

terms of which two of the three balance equations can be made independent of the membrane shape. 

The main notation and the Pucher formulation of the equilibrium problem for a membrane, as used 

here, have been derived using a Differential Geometry approach. The natural and dual base vectors 

follow from this, and covariant and contravariant tensor components can also be considered. This 

Differential Geometry approach is especially helpful when converting the projected stress 

components into physical generalized stress components on the membrane surface.  
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Figure 1: Membrane inside the vault and surface stresses 

 

The projected (Pucher) stress components (see Fig.1) are easily defined in terms of the 

contravariant components 𝑇𝛼𝛽of the generalized membrane stress: 𝑆𝛼𝛽 = 𝐽𝑇𝛼𝛽  , 𝐽 being the ratio 

between the surface area and the projected area. In terms of Pucher stress components, the vector 

equilibrium equation, projected into the non-orthonormal base {𝒆1, 𝒆2, 𝒎 = 𝒂3}, m being the unit 

normal to S, becomes: 

 
𝑆11,1 + 𝑆12,2 + 𝑝1 = 0, 𝑆21,1 + 𝑆22,2 + 𝑝2 = 0, 𝑆𝛼𝛽𝑓,𝛼𝛽 − 𝑝𝛾𝑓,𝛾 + 𝑝3 = 0 ,                               (2) 

 

where 𝒑 = 𝐽𝒒 is the load per unit projected area, and {𝑝1, 𝑝2, 𝑝3} are the Cartesian components of 𝒑 

in the given reference. By using the projected stress, the first two equilibrium equations do not depend 

on the membrane shape and are the same as for the plane stress problem. In the case of pure vertical 

loading, say 𝒑 = {0,0, −𝑝}, the first two equations may be solved introducing an Airy stress potential 

𝐹(𝑥1, 𝑥2) – that here we only assume to be continuous – in the form: 

 
 𝑆11 = 𝐹,22, 𝑆22 = 𝐹,11, 𝑆12 = 𝑆21 = −𝐹,12.                                                        (3) 

 

The third equation of transverse equilibrium expresses the balance of the vertical component of 

the force 𝑝3 = −𝑝 with the scalar product of the Pucher stress matrix times the Hessian of the 

function f. This Hessian matrix is formed by the covariant components of the curvature tensor of the 

surface. On introducing the Airy stress potential into this equation, we have 

 
 𝐹,22𝑓,11 + 𝐹,11𝑓,22 − 2𝐹,12𝑓,12 = 𝑝.                                                            (4) 

 

2.2 Unilateral membranes 

A rigid No-Tension (NT) material in the sense of Heyman is assumed, so that the following 

material restrictions are imposed: the generalized stress T is negative semi-definite and does no work 

for the corresponding strain E, that is positive semi-definite: 

 
 𝑻 ∈ 𝑆𝑦𝑚− , 𝑬 ∈ 𝑆𝑦𝑚+ , 𝑻 ⋅ 𝑬 = 0.                                                   (5) 

 

The first application of Pucher’s transformation for NT masonry vaults can be found in Angelillo 

and Fortunato [8], where it is shown that, due to the NT constraint, both the surface generalized stress 
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and the matrix of the projected stresses must be negative semi-definite. In terms of the stress function 

F, this condition can be written as: 

 
 𝐹,11 + 𝐹,22 ≤ 0, 𝐹,11𝐹,22 − 𝐹,12

2 ≥ 0 ,                                                       (6) 

   

hence, 𝐹(𝑥1, 𝑥2) is concave. 

 

2.3 Singular stress and equilibrium 

If F is only continuous, it may present folds. In this case the projected stress is a line Dirac delta 

with support along the projection Γ of the fold. The Hessian H of F is singular transversely to Γ, 

namely it has a uniaxial singular part parallel to the unit vector h normal to Γ. Correspondingly the 

directional derivative of F in the direction of h, called 𝐹ℎ, presents a jump. Therefore, the singular 

part of the Hessian H of F can be written as: 

 
 𝑯𝑠 = 𝛿(𝛤)𝛥𝐹ℎ𝒉 ⊗ 𝒉,                       (7) 

 
𝛿(𝛤) being the unit line Dirac delta on Γ  and 𝛥𝐹ℎ the jump of slope along the direction 𝒉. Therefore, 

the corresponding projected stress (8) has also a singular part, a line Dirac delta on Γ: 

 
 𝑺𝑠 = 𝛿(𝛤)𝛥𝐹ℎ𝒌 ⊗ 𝒌 ,                                                                    (8) 

 

where k is the unit vector tangent to Γ. The concavity of 𝐹 implies the concavity of the fold whose 

projection in the planform is Γ. Then 𝛥𝐹ℎ is negative and the corresponding projected singular stress 

concentrated on Γ is compressive.  

In case there is a stress singularity along a line Γ, the equilibrium equation (4), 

 
𝐹,22𝑓,11 + 𝐹,11𝑓,22 − 2𝐹,12𝑓,12 = 𝑝, 

 

on that line must be reinterpreted in a weak sense. The main conclusion is that if there is a fold in the 

stress potential, this gives a concentrated term in the transverse equilibrium equation that, in the 

absence of any concentrated load p, must be compensated by another concentrated term. Due to the 

structure of the equation, this compensation term can only be given by an analogous concentrated 

term, arising from a fold in the surface whose projection must be the same line Γ. Since the stress 

potential is concave, the two concentrated terms can cancel each other only if the Hessian of the 

surface along the fold is an indefinite matrix (that is the two principal values of it have different 

signs).  

 

2.4 Boundary conditions 

Assuming that the shape of the membrane is given, the equilibrium problem for the unilateral 

membrane S, under pure vertical loading, consists in finding a concave stress function 𝐹(𝑥1, 𝑥2) 

satisfying equation (9), with the boundary conditions: 

 
 𝐹(𝑥1, 𝑥2) = 𝑔(𝑥1, 𝑥2)     or      𝑑𝐹 𝑑𝑛⁄ = ℎ(𝑥1, 𝑥2)       on

 
∂Ω                                         (9) 

 

being 𝑔(𝑥1, 𝑥2) and ℎ(𝑥1, 𝑥2) the contact internal moment and axial force produced by the allied 

tractions, on a beam structure having the same shape as 𝜕𝛺. 

Notice that the second order differential equation (4) can be elliptic, parabolic or hyperbolic, 

depending on the sign of the coefficients, that is whether the shape is locally strictly convex (or 

concave) or not. If there are regions where the equation is hyperbolic, the characteristics of the 

equation are real and formulating the problem as a boundary value problem may become impossible. 

Since the equilibrium problem is perfectly symmetrical with respect to the two functions 
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𝐹(𝑥1, 𝑥2), 𝑓(𝑥1, 𝑥2), we may switch the roles of unknowns and data, thinking that the stress, or 

similarly the stress potential, is given, and that the shape is unknown. The shape can then be found 

by solving the second order differential equation (4) with the boundary conditions: 

 
 𝑓(𝑥1, 𝑥2) = 𝑓°(𝑥1, 𝑥2) ,       on ∂Ω                                                     (10) 

 

𝑓°(𝑥1, 𝑥2) being the boundary values of the membrane surface. In this case the equation may become 

at most parabolic, since, due to the No-Tension constraint, the stress potential must be concave.  

 

3 ANALYSIS OF RAILWAY BRIDGE  

3.1 Typical span geometry 

             
 

 (a) (b) 

 

Figure 2: Schematic section of the bridge (a) and a prospective view of the vault structure (b) 

 

Our case study is a masonry railway viaduct in Leeds, UK. This bridge has a working life of 150 

years and carries a range of local passenger, cross-country, and freight trains. It has experienced 

historic damage, which was addressed in an intervention in 2015. Since 2016, it has been monitored 

using a range of sensors, including a network of fibre-optic Fibre Bragg Gratings (FBGs) to measure 

the distribution of in-plane strains across the intrados of arches showing notable damage [2]. 

A schematic section of the bridge is reported in Fig.2a. In Fig.2b a prospective view of the vault 

structure is depicted. The structure of it is a barrel vault made of bricks sustained by two transverse 

walls, carrying the dead load of the filling and of the ballast, and the moving load of the trains. The 

filling is confined by two spandrel walls made of bricks. The main geometrical parameters introduced 

in Fig.1a have the following values: 

𝑏 = 8.00 𝑚; 𝑙 = 7.70 𝑚; 𝑠𝑎 = 0.50 𝑚; 𝑠𝑏 = 0.30 𝑚; 

ℎ𝑓 = 3.05 𝑚; ℎ𝑏 = ℎ𝑓 + 𝑠𝑏; ℎ𝑖 = 1.55 𝑚; ℎ𝑒 = ℎ𝑖 + 𝑠𝑎 . 

 

3.2 Self-weight and train loads 

For the train load we consider, for each train, a total weight 𝑔𝑡 = 327.5𝑘𝑁, distributed over a 

small area by considering an exponential distribution (see Fig.3). For the material densities and the 

gravity acceleration we consider: 

 
𝜌𝑎 = 1500𝑘𝑔/𝑚3, 𝜌𝑓 = 1800𝑘𝑔/𝑚3, 𝜌𝑏 = 1600𝑘𝑔/𝑚3, 𝑔 = 9.81𝑚/𝑠2. 

 

3.3 Solution (two trains passing on the bridge span) 

In this study, we assign a form to the stress potential, which depends on a few parameters, and 

look for the equilibrium solution for the shape by parametrically solving equation (4). If we consider 

an elementary arch-like solution, recalling that the projected stress is uniaxial and constant in the 

direction 𝑥1, the surface which solves the differential equation is a catenary of the load depending on 

a single parameter: the thrust per unit length. Due to the effect of the intensely localized loads, i.e. 

the trains, such a surface is not easily fitted inside the intrados and extrados surfaces of the vault and 
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a four cylindrical-hinge mechanism may be created. The idea here is to consider a biaxial stress 

regime for the projected stresses which is constant and directed as the Cartesian axes 𝑥1, 𝑥2and 

depends on two parameters: the intensity of the normal stress in the 𝑥1 direction and the ratio between 

the normal stresses in the 𝑥2, 𝑥1 directions. 

 

 

Fig.3: Load profile representing the effect on the membrane of the dead load and the moving load. The moving load due 

to the train is considered here applied at mid span on both the railways. 

 

Since the two sides of the barrel vault parallel to the 𝑥1 direction are traction free, the 𝑥2component 

of the projected normal stress cannot go all the way to the boundary. To take this transverse 

component and bring it to the abutments we consider that such forces are taken by a 1D structure 

forming an arch in the planform (see Fig.4).  

 

 

 
Fig.4: Projected stresses in the planform. The stress is constant and biaxial in the directions of the axes. The jump of the 

stress across the two curved lines is balanced by a concentrated axial stress acting along them. 

 

To construct this arch and, at the same time, deriving the concentrated axial force along the arch 

itself, we cut the Airy stress function associated with these stresses, using two symmetric slanted 

planes, as shown in Fig.5. These planes, parallel to the 𝑥1direction, are defined by their height H at 

the origin.  
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   (a) (b) 

 

 
Fig.5: One of the two symmetric planes intersecting the stress function (a) and intersection of the Airy stress function 

with the two planes (b). 

 

The Airy stress function associated with the biaxial stress regime depicted in Fig. 6 is defined as 

follows 

 
 𝐹 =

𝜎

8
([𝑏2 − 4𝑥2

2] + 𝛼[𝑙2 − 4𝑥1
2]),                                                      (11) 

 

𝜎 and 𝛼 are two parameters, the first controlling the intensity of the stress and the second controlling 

the ratio between the two normal stress components. By intersecting this stress potential with the two 

planes, we obtain two plane curves whose projections on the planform give the two 1D arch structures 

on which the axial force is attached. These two arches also define the domain 𝛺 (see Fig.6) on which 

the differential equation is solved. 

 

 

 
Fig.6: Domain where the transverse equilibrium equation is solved numerically. 

 

We numerically solve the second order (elliptic) differential equation (4) by employing tools in 

the Wolfram Program Mathematica (see [20]), for finite element solution. We define 𝑓𝑚, a convenient 

reference surface contained inside the vault, and choose it to be 10% of the thickness (5 cm) above 

the intrados surface (see Fig.7). In this way, we can consider the thickness of the thrust surface to be 

10 cm. 
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Fig.7: Bridge geometry, axial section. 

 

By using the Finite Element tool in Mathematica, the equation is solved parametrically for the 

shape 𝑓 with respect to the parameters 𝜎, 𝛼, 𝐻, by considering the Dirichelet data for 𝑓: 

 
 𝑓(𝑥1, 𝑥2) = 𝑓𝑚(𝑥1, 𝑥2),    ∀(𝑥1, 𝑥2) ∈ 𝜕Ω .                                                 (12) 

 

Finally, the parameters 𝜎, 𝛼, 𝐻 are optimized by minimizing the objective function  

 
 𝐼 = 1/𝑎𝑟(𝛺) ∫ (𝑓(𝜎, 𝛼, 𝐻) − 𝑓𝑚)2𝑑𝑥1𝑑𝑥2Ω

,                                                 (13) 

 

that is the Mean Square Deviation of the shape 𝑓 from the shape 𝑓𝑚. 

The optimized solution, obtained under the loads shown in Fig.3, is shown in Fig.8. It is worth 

noting that, when considering the axial section at mid-height (𝑥1 direction, see Fig. 8.b), where the 

thrust surface is 10 cm from the extrados, the membrane is actually located within the arch thickness 

(highlighted in orange color in Fig. 8).   

 

 

                              
 

   (a) (b) 

 

Fig.8: Thrust surface obtained through optimization inside the bridge geometry: perspective view (a) and axial section 

at mid-height in 𝑥1
 direction (b). 

 

This solution gives two constant projected stresses in the 𝑥1, 𝑥2 directions: 𝜎1 = 763 𝑘𝑁/𝑚 and 

𝜎2 = 82 𝑘𝑁/𝑚. Considering a thickness of 10 cm, the acting stress inside the arch is 7.6 MPa, which 

is below the allowable compressive strength of the bricks. The thrust at the four corners of the two 

arches, 𝑅 = 649 𝑘𝑁, is inclined at the tangent to the arches at those points. The values of these thrust 

components in the directions 𝑥1, 𝑥2 are, respectively, 𝑅1 = 568 𝑘𝑁 and 𝑅2 = 314 𝑘𝑁. Note that this 

is one feasible solution, but further optimization could reduce these forces.  

 

3.4 Solution (one train passing on the bridge span) 

Now we consider, in addition to the dead load, the weight of a single train on one side of the 

bridge (see Fig. 9). 
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 Fig.9: Load profile representing the effect on the membrane of the dead load and the moving load. The moving load 

due to the train is considered here applied at mid span on one railway. 

 

The optimized solution under the load shown in Fig.9, is shown in Fig.10. 

 

 

                          
 

   (a) (b) 

 

Fig.10: Thrust surface obtained through optimization inside the bridge geometry: perspective view (a) and axial section 

at mid-height in 𝑥1
 direction (b). 

 

For the load due to a single train, we obtain a similar shape of the thrust surface at a similar 

distance from the extrados. However, now the solution gives two constant projected stresses in the 

𝑥1, 𝑥2 directions: 𝜎1 = 598 𝑘𝑁/𝑚 and 𝜎2 = 64 𝑘𝑁/𝑚. Considering the same thickness of 10 cm, 

the acting stress inside the arch is now 6.0 MPa, and the thrust at the four corners of the two arches, 

𝑅 = 509 𝑘𝑁, is inclined at the tangent to the arches at those points. The values of these thrust 

components in the directions 𝑥1, 𝑥2 are, respectively, 𝑅1 = 446 𝑘𝑁 and 𝑅2 = 246 𝑘𝑁. 

 

4 FINAL REMARKS 

Analyzing these two solutions, which characterize typical working conditions for this bridge, we 

observe that, for the same load profile, we can obtain a class of solutions by changing the distance of 

the reference surface 𝑓𝑚  and, consequently, the thickness of the membrane. By increasing this 

distance, we will certainly find greater projected tensions 𝜎1 and 𝜎2 but the consequent increase in 

thickness will give us lower stresses inside the arch.  

Future development might include investigation of the optimum 𝑓𝑚, that gives the true proportion 

between the position of 𝑓𝑚, the consequent thickness of the membrane, and the stress inside the arch. 

Acknowledgements. The authors wish to acknowledge the work of Isabella Elia, who assisted in 

constructing the analytical model.  
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