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We propose a reformulation of linear Kirchhoff beams in two dimensions based on the 

tangential differential calculus. The rotation-free formulation of the Kirchhoff beam is 

classically based on curvilinear coordinates, see, e.g., [1] and [2]. However, for general 

applications in engineering and sciences that take place on curved geometries embedded in a 

higher-dimensional space, the tangential differential calculus [3] enables a formulation 

independent of curvilinear coordinates and, hence, is suitable also for implicitly defined 

geometries. The geometry and differential operators are formulated in global coordinates 

related to the embedding space. Therefore, a parametrization is not required, so the TDC 

formulation is more general. Furthermore, the reformulation is often more intuitive as quantities 

like Christoffel symbols are not required. This work follows our outlines for linear shells in [4, 

5] where reformulations with the TDC are also emphasized; we also note relations to [6]. 

The Kirchhoff beam, being the curved variant of the Euler-Bernoulli beam, requires at least C1-

continuity for the finite element shape functions. Using a standard FEM based on Lagrange 

elements does not furnish higher-order continuity. Therefore, isogeometric analysis (IGA) is  

employed for the generation of shape functions in the numerical analysis. The boundary 

conditions are enforced using Lagrange multipliers.   

We emphasize systematic convergence studies for established and new test cases by 

investigating  residual errors. That is, as a post-processing step, the obtained FE solution is 

inserted into the strong form of the governing equations and the error is then integrated over 

the domain in an 𝐿2-sense. For sufficiently smooth physical fields, higher-order convergence 

rates in the residual errors are achieved. For classical benchmark test cases with known 

analytical solutions, we also confirm optimal convergence rates of p+1 in the displacements. 
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