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SUMMARY

Computation of compressible steady-state flows using a high-order discontinuous Galerkin finite element
method is presented in this paper. An accurate representation of the boundary normals based on the
definition of the geometries is used for imposing solid wall boundary conditions for curved geometries.
Particular attention is given to the impact and importance of slope limiters on the solution accuracy
for flows with strong discontinuities. A physics-based shock detector is introduced to effectively make
a distinction between a smooth extremum and a shock wave. A recently developed, fast, low-storage
p-multigrid method is used for solving the governing compressible Euler equations to obtain steady-state
solutions. The method is applied to compute a variety of compressible flow problems on unstructured
grids. Numerical experiments for a wide range of flow conditions in both 2D and 3D configurations are
presented to demonstrate the accuracy of the developed discontinuous Galerkin method for computing
compressible steady-state flows. Copyright q 2007 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The discontinuous Galerkin methods [1–13] (DGMs) have recently become popular for the so-
lution of systems of conservation laws to arbitrary order of accuracy. The DGMs combine two
advantageous features commonly associated with finite element and finite volume methods (FVMs).
As in classical finite element methods, accuracy is obtained by means of high-order polynomial
approximation within an element rather than by wide stencils as in the case of FVMs. The physics
of wave propagation is, however, accounted for by solving the Riemann problems that arise from
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the discontinuous representation of the solution at element interfaces. In this respect, the methods
are therefore similar to FVMs. In fact, the first-order cell-centered finite volume scheme exactly
corresponds to the DG(P0) method, i.e. to the DGM using piece-wise constant polynomials. Con-
sequently, the DG(Pk) method with k>0 can be regarded as the natural extension of FVMs to
higher-order methods. The DGMs have many distinguished features: (1) the methods are well
suited for complex geometries since they can be applied on unstructured grids. In addition, the
methods can also handle non-conforming elements, where the grids are allowed to have hanging
nodes; (2) the methods are highly parallelizable, as they are compact and each element is indepen-
dent. Since the elements are discontinuous, and the inter-element communications are minimal,
domain decomposition can be efficiently employed. The compactness also allows for structured
and simplified coding for the methods; (3) they can easily handle adaptive strategies, since refining
or coarsening a grid can be achieved without considering the continuity restriction commonly as-
sociated with the conforming elements. The methods allow easy implementation of hp-refinement,
for example, the order of accuracy, or shape, can vary from element to element; and (4) they have
several useful mathematical properties with respect to conservation, stability, and convergence.

However, the DGMs have a number of their own weaknesses. In particular, how to efficiently
handle curved geometries and how to effectively control spurious oscillations in the presence
of strong discontinuities remain two of the unresolved issues in the DG methods. It is widely
recognized and accepted that DGM solutions are more sensitive to the error arising at curved
boundaries than those obtained with FVM of the same order of accuracy [8]. The common remedy
to this problem is to use higher-order geometrical approximation [8]. Unfortunately, curved element
meshes are associated with extra computational expenses. Curved elements need to be mapped onto
the computational straight-sided element by a non-linear mapping. To account for the non-constant
Jacobian and the variation of the metric, a higher number of quadrature points are required to
compute volume and boundary integrals. It is well known that the non-physical oscillations exist
in the vicinity of discontinuities. A discontinuity capturing and an appropriate slope limiter are two
common strategies to cure this problem. The former adds explicitly consistent artificial viscosity
terms to the discontinuous Galerkin discretization. The main disadvantage of this approach is that
it usually requires some user-defined parameters, which can be both mesh and problem dependent.
Classical techniques of flux limiting are not directly applicable to high-order DGMs because of
the presence of volume terms in the formulation. Therefore, the slope limiter is not integrated in
the computation of the residual, but effectively acts as a post-processing filter. Many slope limiters
used in the FVM can then be used or modified to meet the needs of the DGMs. Such a filter is easily
integrated in an explicit method, but not into an implicit method. Unfortunately, slope limiters
frequently identify regions near smooth extrema as requiring limiting, and this typically results in a
reduction of the optimal high-order convergence rate and a degeneration of the solution. In fact, it
is neither necessary nor desirable to apply slope limiters everywhere from a consideration of both
computational efficiency and numerical accuracy. To address this concern, the limiters are applied
only where they are really needed. This is accomplished using the so-called discontinuity detectors
[14, 15], which are designed to distinguish regions where solutions are smooth and discontinuous.
Then, the limiting is only used near discontinuities and high-order accuracy can be preserved in
smooth regions. However, almost all discontinuity detectors, will mistakenly identify local high
gradient smooth extrema such as stagnation regions as shock regions due to the high comparable
gradient there. For aerodynamic applications, the active limiters at the leading edge of an airfoil
will produce spurious entropy, thus pollute the solution in the flow field, and ultimately lead to
the loss of the higher-order accuracy.
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The objective of the effort discussed in this paper is to develop a high-order DGM for computing
steady-state solutions to the compressible Euler equations on unstructured grids. Both the areas
required in the practical application of DG methods, implementation of boundary conditions for
curved geometries and limiting for discontinuities are discussed. The solid wall boundary conditions
in curved geometries are imposed using a novel approach [16], where the curved elements are
not required. Instead an accurate representation of the boundary normals is used in the quadrature
points for imposing solid wall boundary conditions for curved geometries. In our implementation,
the normals in the quadrature points are computed using the local true surface normal based
on the analytically defined boundary geometries. Particular attention is given to the impact and
importance of slope limiters on the solution accuracy. It will be demonstrated that DGMs are
very sensitive to the treatment and implementation of the slope limiters, and the use of limiter
everywhere will completely destroy the formal high-order accuracy of the DG methods and the
resulting DG solutions are no more accurate than the FV solutions. To address this concern, a
physics-based shock detector is developed and found to be very helpful and effective in making
a distinction between a smooth extremum and a shock wave. The limiter is then only applied
in these regions identified by this shock detector in order to reduce the computational cost and
maintain the high-order accuracy of the DG methods. The developed DG method is applied to
compute a variety of compressible flow problems for a wide range of flow conditions in both
2D and 3D configurations. The numerical results obtained illustrate the superior accuracy of this
DGM over a vertex-based FVM, demonstrating that the DGMs provide a viable, attractive, and
competitive alternative to the traditional finite-volume, finite-element, and finite-difference methods
for computing compressible flows on unstructured grids. The remainder of this paper is structured
as follows. The governing equations are listed in Section 2. The underlying DGM is described
in detail in Section 2.1. Extensive numerical experiments are reported in Section 3. Concluding
remarks are given in Section 4.

2. GOVERNING EQUATIONS

The Euler equations governing unsteady compressible inviscid flows can be expressed in conser-
vative form as

�U(x, t)

�t
+ �F j (U(x, t))

�x j
= 0 in � (1)

where the conservative state vector U and the inviscid flux vectors F are defined by

U=
⎛
⎜⎝

�

�ui

�e

⎞
⎟⎠ , F=

⎛
⎜⎝

�u j

�uiu j + p�i j

u j (�e + p)

⎞
⎟⎠ (2)

where the summation convention has been used and �, p, and e denote the density, pressure, and
specific total energy of the fluid, respectively, and ui is the velocity of the flow in the coordinate
direction xi . This set of equations is completed by the addition of the equation of state

p= (� − 1)�(e − 1
2u ju j ) (3)
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which is valid for perfect gas, where � is the ratio of the specific heats, together with the initial
and boundary conditions

U(x, 0) =U0(x) (4)

U|� =U� (5)

where �(= ��) denotes the boundary of �.

2.1. Discontinuous Galerkin spatial discretization

To formulate the DGM, we first introduce the following weak formulation of (1), which is obtained
by multiplying (1) by a test function W, integrating over the domain �, and performing an
integration by parts:∫

�

�U
�t

W d� +
∫

�
F jn jW d� −

∫
�
F j

�W
�x j

d�= 0 ∀W (6)

where n j denotes the unit outward normal vector to the boundary.
Assuming that �h is a classical triangulation of � where the domain � is subdivided into a

collection of non-overlapping elements �e, triangles in 2D and tetrahedra in 3D, the following
semi-discrete form of (6) is obtained by applying (6) on each element �e

d

dt

∫
�e

UhWh d� +
∫

�e

F j (Uh)n jWh d� −
∫

�e

F j (Uh)
�Wh

�x j
d�= 0 ∀Wh (7)

where �e(= ��e) denotes the boundary of �e, and Uh and Wh represent the finite element
approximations to the analytical solution U and the test function W, respectively. Assume the
approximate solution and test function to be piece-wise polynomials in each element, then Uh and
Wh can be expressed as

Uh(x, t) =
N∑

m=1
Um(t)B p

m(x), Wh(x)=
N∑

m=1
WmB

p
m(x) (8)

where B p
m(x), 1�m�N is the basis function of the polynomials of degree p. The dimension of

the polynomial space, N = N (p, d) depends on the degree of the polynomials of the expansion p,
and the number of spatial dimensions d , as

N = (p + 1)(p + 2) . . . (p + d)

d! for d = 1, 2, 3 (9)

(7) must be satisfied for any test function Wh . Since B p
n is the basis for Wh , (7) is, therefore,

equivalent to the following system of N equations:

dUm

dt

∫
�e

B p
mB

p
n d� +

∫
�e

F j (Uh)n j B
p
n d� −

∫
�e

F j (Uh)
�B p

n

�x j
d�= 0, 1�n�N (10)

where Uh is replaced with (8). Since the numerical solution Uh is discontinuous between element
interfaces, the interface fluxes are not uniquely defined. The flux function F j (Uh)n j appearing in
the second term of (10) is replaced by a numerical Riemann flux function H(UL

h ,U
R
h , n), where
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UL
h and UR

h are the conservative state vector at the left and right side of the element boundary. In
order to guarantee consistency and conservation, H(UL,UR, n) is required to satisfy

H(U,U,n) =F j (U)n j , H(U,V,n) = − H(V,U,n) (11)

This scheme is called DGM of degree p, or in short notation ‘DG(p) method.’ Note that
discontinuous Galerkin formulations are very similar to finite volume schemes, especially in
their use of numerical fluxes. Indeed, the classical first-order cell-centered finite volume scheme
exactly corresponds to the DG(0) method, i.e. to the DGM using piece-wise constant polynomials.
Consequently, the DG(p) methods with p>0 can be regarded as a ‘natural’ generalization of FVMs
to higher-order methods. By simply increasing the degree p of the polynomials, DG methods of
corresponding higher orders are obtained.

In the present work, the Riemann flux function is approximated using the HLLC approximate
Riemann solver [17], which has been successfully used to compute compressible viscous and
turbulent flows on both structured grids [18] and unstructured grids [19]. This HLLC scheme
is found to have the following properties: (1) exact preservation of isolated contact and shear
waves, (2) positivity-preserving of scalar quantity, and (3) enforcement of entropy condition. In
addition, the implementation of HLLC Riemann solver is easier and the computational cost is
lower compared with other available Riemann solvers.

The domain and boundary integrals in (10) are calculated using 2p and 2p + 1 order accurate
Gauss quadrature formulas, respectively. The number of quadrature points necessary for a given
order depends on the quadrature rule used. In the case of linear, quadratic, and cubic shape function,
the domain integrals are evaluated using three, six, and 12 points, respectively, and the boundary
integrals are evaluated using two, three, and four points, respectively, for 2D. In 3D, integration
over the elements for P1 and P2 approximation is performed using four and 11 quadrature points,
respectively, and integration over the element boundaries for P0, P1, and P2 is performed using
one, four, and seven quadrature points, respectively.

By assembling together all the elemental contributions, a system of ordinary differential
equations governing the evolution in time of the discrete solution can be written as

M
dU
dt

=R(U) (12)

where M denotes the mass matrix, U is the global vector of the degrees of freedom, and R(U)

is the residual vector. Since the shape functions B p|�e are non-zero within element �e only, the
mass matrix M has a block diagonal structure that couples the N degrees of freedom of each
component of the unknown vector only within �e. As a result, the inverse of the mass matrix M
can be easily computed by hand considering one element at a time in advance.

2.2. Time integration

The semi-discrete system can be integrated in time using explicit methods. For example, the
following explicit three-stage third-order TVD Runge–Kutta scheme [1, 7]:

U(1) =Un + �tM−1R(Un) (13)

U(2) = 3
4U

n + 1
4 [U(1) + �tM−1R(U(1))] (14)

Un+1 = 1
3U

n + 2
3 [U(2) + �tM−1R(U(2))] (15)
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is widely used to advance the solution in time. This method is linearly stable for a Courant number
less than or equal to 1/(2p + 1). The inefficiency of the explicit method due to this rather restric-
tive Courant–Friedrichs–Lewy condition motivates us to develop a p-multigrid method [20, 21] to
accelerate the convergence of the Euler equations to a steady-state solution. Unlike the traditional
p-multigrid methods where the same time integration scheme is used on all approximation levels,
this p-multigrid method uses the above multi-stage Runge–Kutta scheme as the iterative smoother
on the higher-level approximations (p>0), and a matrix-free implicit SGS method as the iterative
smoother on the lowest level approximation (p= 0). As a result, this p-multigrid method has two
remarkable features: (1) low memory requirements. The implicit smoothing is only used on the
lowest level P0, where the storage requirement is not as demanding as on the higher-level; (2)
natural extension to flows with discontinuities such as shock waves and contact discontinuities.
A monotonic limiting procedure required to eliminate spurious oscillations of high-order approx-
imations in the vicinity of discontinuities can be easily implemented as a post-processing filter
(smoothing) in an explicit method, but not in an implicit method. This p-multigrid is found to be
orders of magnitude faster than its explicit counterpart without significant increase in memory.

2.3. Curved wall boundary conditions

Bassi and Rebay [8] have shown that DG methods are far more sensitive to errors arising at curved
boundaries than those obtained with FVM of the same order of accuracy. Use of straight-sided
linear elements in the high-order DG methods will result in spurious production of entropy on the
boundary, and lead to numerical instabilities and loss of the higher-order accuracy. A common
solution to this problem is to use boundary-fitted higher-order curved elements. Unfortunately,
curved element meshes are associated with extra computational expenses. First, curved elements
need to be mapped onto the computational straight-sided element by a non-linear mapping. Second,
to account for the non-constant Jacobian and the variation of the metric, a higher number of
quadrature points are required to compute volume and boundary integrals. In a novel approach,
suggested by Krivodonova and Berger [16], the elements adjacent to the solid wall boundaries
remain straight-sided elements. However, an accurate representation of the boundary normals is
used to define a ghost state at quadrature points. Let the interior density, pressure, and velocity
vector be �, p, ui . Then, the flow variables at the ghost state g are computed with:

�g = � (16)

pg = p (17)

ugi = ui − 2(uini )ni (18)

where ni is the unit normal to the physical boundary, not the straight-sided element face unit
normal. Once the ghost state values are determined at integration points, numerical fluxes in (7)
are computed as usual straight-sided elements. It has been numerically shown that this approach
does maintain the formal order of the DG method [16]. In this work, this strategy is adapted and
generalized to both 2D and 3D configurations. In our implementation, the normals at the quadrature
points are obtained using the local true surface normals based on the analytically defined boundary
geometries. This is different from Krivodonova’s approach, where the normals at the quadrature
points are reconstructed from the straight-sided elements and are only approximation of the true
normals of curved geometries. In addition, the accurate reconstruction of normals at the quadrature
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points from a linear element representation of boundaries can be difficult, if not impossible, for
complex 3D configurations of scientific and industrial interests. However, our approach does require
the geometric boundary information, which, fortunately, is handily available in our flow code, as
our geometry definition file is incorporated into our flow code for the purpose of h-refinement
and remeshing. Using only straight-sided elements instead of boundary-fitted elements represents a
huge simplification of the code implementation and tremendous saving in both storage requirements
and computing costs. As a result of this approach, higher-order body-fitted curved elements are
not necessarily required in order to maintain higher-order accuracy of the DG methods.

2.4. Monotonicity limiter

It is well known that high-order numerical schemes produce spurious oscillations in the vicin-
ity of discontinuities, which can lead to numerical instabilities and unbounded solutions. Even
though the fluxes at the inter-element boundaries are computed using an appropriate Riemann
flux function, spurious oscillations may still be generated by the discontinuous Galerkin finite
element methods near strong discontinuities, when polynomials of higher degree are used (p>0).
First-order schemes DG(0) are the only approaches that are able to maintain a monotonic solution
at discontinuities. Unfortunately, numerical solutions obtained by these schemes exhibit too much
dissipation. Generally speaking, there are two strategies of curing for this problem: a discontinuity
capturing method and an appropriate slope limiting method. The former adds explicitly some form
of non-linear dissipation terms to the discontinuous Galerkin discretization. The main disadvantage
of this approach is that it requires some user-defined parameters, which can be both mesh and
problem dependent. The latter is designed to restrict or suppress oscillations near discontinuities
through a non-linear procedure based on comparing elemental solution features, such as slopes
or curvatures, with those of neighboring elements. Classical techniques of flux limiting are not
directly applicable for high-order DG methods because of the presence of volume terms in the
formulation. Therefore, a slope limiter is not integrated in the computation of the residual, but
effectively acts as a post-processing filter. Such a limiting procedure can be easily integrated in an
explicit method, but not into an implicit method. Many slope limiters used in the FVM can then
be applied or modified to meet the needs of the DGMs. Note that it is not an exaggeration to state
that most research efforts for DG methods are focused on developing and designing appropriate
stabilization methods, that can produce a solution with neither excessive diffusion nor spurious
oscillations and does not adversely affect the formal order of accuracy of the DG methods, although
construction of an accurate, efficient, and robust limiter remains one of the issues and challenges
for the FVMs as well [22].

Following Barth and Jespersen [23], slopes are limited so that the solution at the quadrature
points x j , j = 1, 2, . . . , K�i in an element �i , Ui (x j ), is in the range spanned by the neighboring
solution averages

Umin
i �Ui (x j )�Umax

i (19)

where Umin
i and Umax

i are the minimum and maximum element averaged solution on the elements
sharing faces with �i . If (19) is violated for any quadrature points, then it is assumed that
the element is close to a discontinuity, and the solution at this element �i is locally modified
(limited) as

Ui (x) =Ui + �∇Ui · (x − xi ) ∀x ∈ �i (20)
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where Ui is the cell-averaged solution at the element �i , xi is the position vector of the centroid
of �i , and where

� = min
1� j�K�i

� j (21)

� j =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min

(
1,

Umax
i − Ui

Ui (x j ) − Ui

)
if Ui (x j ) − Ui>0

min

(
1,

Umin
i − Ui

Ui (x j ) − Ui

)
if Ui (x j ) − Ui<0

1 otherwise

(22)

As one will see in the next section, just like DGMs are more sensitive to the treatment and
implementation of slip boundary conditions at curved boundaries than those obtained with FVM of
the same order of accuracy, DGMs are also much more sensitive to the treatment and implementation
of the slope limiters than their FV counterparts. Slope limiters frequently identify regions near
smooth extrema as requiring limiting, and this typically results in a reduction of the optimal
high-order convergence rate and a degeneration of the solution. In fact, it is neither necessary nor
desirable to apply slope limiters everywhere from the perspective of both computational efficiency
and numerical accuracy. The limiters should only be used where they are really needed, i.e. in the
vicinity of strong discontinuities. This can be accomplished using so-called discontinuity detectors
[14, 15], which are designed to distinguish regions where solutions are smooth and discontinuous.
Then, the limiting is only applied near discontinuities and high-order accuracy can be preserved in
smooth regions. A number of discontinuity detectors [15] have been implemented and experimented
during the course of this work. Unfortunately, almost all of them will mistakenly identify local high-
gradient smooth extrema such as stagnation regions as shock regions due to the high comparable
gradient there. For aerodynamic applications, the active limiters at the leading edge of an airfoil
will produce spurious entropy, thus contaminate the solution in the flow field and ultimately lead
to the loss of the higher-order accuracy. To address this concern, a physics-based shock detector is
introduced here, which is found to be quite helpful and effective in making a distinction between a
stagnation point and a shock wave. This physics-based shock detector is based on the two physics
facts about a shock wave, namely (1) the normal Mach number is greater than 1 before a shock
and less than 1 after a shock, and (2) a shock wave can only be a compressive wave. This can be
easily done using the following three steps:

1. Compute shock wave direction n on each element

n= ∇q

|∇q|

where q is the velocity vector magnitude.
2. Compute maximum and minimum normal Mach number on each element by taking flow

variables at the adjacent faces into consideration.
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3. Compute the following wave indicator:

k = �(v · n)

�n

where v is the velocity vector. For compression wave k<0, and for expansion wave k>0.

Roughly speaking, the first test will identify the sonic regions, and the second one will eliminate
the expansion waves. Our experience indicates that this shock detector can effectively eliminate
high-gradient smooth regions, and performs better than alternative indicators for the steady-state
flow problems considered here.

3. NUMERICAL EXAMPLES

All computations are performed on a Dell Precision M70 laptop computer with 2GBytes memory
running the Suse 10.0 Linux operating system. All computations are started with uniform flow.
An elaborate and well-tested vertex-centered finite volume code [19, 24] is used as a reference to
quantitatively compare the accuracy of the DG method, although it is not our objective to compare
the performance of FV and DG methods in terms of computational efficiency and numerical
accuracy. For most of the test cases, the following entropy production � defined as

�= S − S∞
S∞

= p

p∞

(
�∞
�

)�

− 1

is served as a criterion to measure the accuracy and quality of the numerical solutions, where
S is the entropy. Note that the drag coefficient is very sensitive to spurious entropy generated
by the numerical methods, entropy production should be zero (isentropic) for subsonic flows
under consideration, and can only be increased across shock waves for transonic or supersonic
flows.

3.1. Subsonic flows past a circular cylinder

The first example is a well-known test case: subsonic flow past a circular cylinder at a Mach number
of M∞ = 0.38. This test case is chosen to verify the implementation of boundary conditions for
curved geometries for DG methods and numerically compare accuracy between DG and FV
methods. Figure 1(a) shows four successively refined o-type grids having 16× 5, 32× 9, 64× 17,
and 128× 33 points, respectively. The first number refers to the number of points in the circular
direction, and the second designates the number of concentric circles in the mesh. The radius of
the cylinder is r1 = 0.5, the domain is bounded by r33 = 20, and the radii of concentric circles for
128× 33 mesh are set up as

ri = r1

(
1 + 2�

128

i−1∑
j=0

� j

)
, i = 2, . . . , 33

where � = 1.1580372. The coarser grids are generated by successively un-refining the finest mesh.

Copyright q 2007 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2008; 73:597–623
DOI: 10.1002/nme



606 H. LUO, J. D. BAUM AND R. LÖHNER
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Figure 1. (a) Sequences of four successively globally refined meshes 16× 5, 32× 9, 64× 17, 128× 33
for computing subsonic flow past a circular cylinder; (b) results of grid-refinement study for flow past
a cylinder obtained by the second-order FV method, second-order DG, and third-order DG methods;
(c) computed Mach number contours obtained by the finite volume method (left) and DG(P1) method (right)
on 64× 17 mesh for subsonic flow past a circular cylinder at M∞ = 0.38; (d) computed Mach number
contours obtained by DG(P2) method (left) on 32× 9 mesh and DG(P2) method (right) on 64× 17 mesh for
subsonic flow past a circular cylinder at M∞ = 0.38; and (e) comparison of computed pressure coefficient
(left) and entropy production (right) on the lower surface obtained by the FV(P1), DG(P1) on 64× 17

mesh and DG(P2) on 32× 9 for subsonic flow past a circular cylinder at M∞ = 0.38.
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Figure 1. Continued.

Numerical solutions to this problem are computed using FV(P1), DG(P1), and DG(P2) methods
on these four grids to obtain quantitative measurement of the order of accuracy and discretization
errors. The detailed results of this test case are presented in Table I(a–c). They show the mesh size,
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Table I. Subsonic circular cylinder test case: (a) FV(P1) is in the order of O(h2),
(b) DG(P1) is in the order of O(h2) and (c) DG(P2) is in the order of O(h3).

Mesh No. DOFs L2-error Order

(a) 16× 5 80 2.37148E−01 —
32× 9 288 7.76551E−02 1.595
64× 17 1088 1.36962E−02 2.551
128× 33 4224 3.54568E−03 1.951

(b) 16× 5 360 5.68722E−02 —
32× 9 1536 1.07103E−02 2.443
64× 17 6144 1.67302E−03 2.688
128× 33 24 576 2.34369E−04 2.838

(c) 16× 5 768 8.40814E−03 —
32× 9 3072 5.26017E−04 4.055
64× 17 12 288 4.48952E−05 3.563
128× 33 49 152 4.16294E−06 3.434

the number of degrees of freedom, the L2-error of the solutions, and the order of convergence.
Figure 1(b) provides the details of the spatial accuracy of each method for this numerical exper-
iment. The results obtained by DG methods, very similar to those found in the literature [8, 16],
indicate that the DGM applied to the steady compressible Euler equations exhibits a full O(h p+1)

order of convergence on smooth solutions, and the novel approach for curved geometries instead
of using body-fitted curved elements does maintain the formal order of the DG method.

It can be clearly seen that a higher-order DG method requires much lesser number of degrees of
freedom than a lower-order DG method to achieve the same accuracy. In fact, DG(P2) solution on a
given coarse mesh is actually better than DG(P1) solution on a doubled size fine mesh. Amazingly,
the results obtained by DG(P1) are much better than those obtained by its finite volume counterpart
FV(P1), which can clearly be seen on the computed Mach number contours in the flow field shown
in Figures 1(c) and (d). In fact, DG(P1) solution on a given mesh is more accurate than FV(P1)
solution on a doubled size fine mesh. These observations become especially apparent in Figure 1(e),
where one compares the pressure coefficient and entropy production on the surface of cylinder
obtained by DG(P1), DG(P2), and FV(P1) on the 64× 17 mesh and DG(P2) on the 32× 9 mesh.
The advantage of the DG method over the FV method is self-evident here.

3.2. Subsonic flows past a sphere

As in the 2D case, a subsonic flow past a sphere at a Mach number of M∞ = 0.5 is considered in
this test case to validate the implementation of boundary conditions for curved geometries, and to
numerically verify that the formal order of the DG method is not compromised using this approach
instead of the curved boundary elements for 3D configuration.

Figure 2(a) shows three successively refined unstructured grids having 2174, 17 140, and 137 028,
elements, respectively, and the computed Mach number contours in the flow field obtained by
DG(P2) on the coarse mesh, DG(P1) on the medium mesh, and DG(P0) on the fine mesh. Note
that only a quarter of configuration is modeled due to the symmetry of the problem, and that
the number of elements on a successively refined mesh is not exactly 8 times the coarse mesh’s
elements, due to a smoothing procedure after dividing a tetrahedron into eight smaller tetrahedra.
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Figure 2. (a) Sequences of three globally refined unstructured surface meshes used for computing subsonic
flow past a sphere. Right: computed Mach number contours obtained by DG(2) on the coarse mesh (top),
by DG(1) on the medium mesh (middle), and DG(0) on the fine mesh (bottom) for computing subsonic
flow past a sphere M∞ = 0.5; (b) accuracy summary for subsonic flow past a sphere for DG(0), DG(1), and
DG(2) computations; and (c) L2-error of numerical solutions against the number of degrees of freedom

for subsonic flow past a sphere by DG(0), DG(1), and DG(2) methods.
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Figure 2. Continued.

Numerical solutions to this problem are computed using DG(0), DG(1), and DG(2) methods on
these three grids to obtain quantitative measurement of the order of accuracy and discretization
errors. As in the 2D case, the entropy production serves as the error measurement. Figure 2(b)
provides spatial accuracy details of each method for this numerical experiment. Figure 2(c) shows
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the L2-error of the DG(0), DG(1), and DG(2) methods plotted against the number of degrees
of freedom. The results obtained by the DG method, perhaps not as impressive as those shown
in the 2D study likely due the 3D grid quality, do indicate that the DGM exhibits a O(h p+1)

order of convergence on smooth solutions. Results also show that our simplified implementation
of boundary conditions for curved geometries well conserves the formal order of the DG method.
In addition, the higher-order DG method requires a significantly reduced number of degrees of
freedom than the lower-order DG method to achieve the same accuracy. In fact, DG(2) solution
on a given coarse mesh is actually better than DG(1) solution on a double refined mesh. The
advantage of the higher-order method is again demonstrated for 3D configurations.

3.3. Transonic flow past a NACA0012 airfoil

The third example is the transonic flow past a NACA0012 airfoil. This test case is chosen primarily
to demonstrate the superior accuracy of second-order DG method over the second-order FVM and
the impact and importance of slope limiters on the accuracy of DG solutions for flows with shock
waves. Two grids of similar quality are generated as shown in Figure 3(a). The coarse one has 1999
elements, 1048 grid points, and 97 boundary points, and the fine one consists of 8006 elements,
4102 grid points, and 198 boundary points. The computation is performed at a Mach number of
0.8, and an angle of attack 1.25◦, characterized by the existence of a strong shock on the upper
surface and a weak shock on the lower surface. Figure 3(b) shows the computed Mach number
contours in the flow field obtained using DG(P1), DG(P2) without a limiter on the coarse mesh
and FV(P1) methods without a limiter, on the coarse and fine mesh, respectively. The pressure
coefficient and entropy production distributions on the surface of the airfoil are compared for these
four solutions in Figure 3(c), respectively. As expected, the over- and under-shoots in the vicinity
of shocks do appear in all four solutions, which are especially apparent for the two DG solutions
due to a lack of numerical dissipation. Clearly, the DG solutions are much more accurate than their
finite volume counterparts. In fact, the FV solution on the coarse mesh is so dissipative that it is
unable to resolve the weak shock on the lower surface of the airfoil. Judging the accuracy of these
two numerical methods based on the spurious entropy production at the leading edge of the airfoil,
one can easily come to the conclusion that the DG(P1) solution on the coarse mesh is even more
accurate (less dissipative) than the FV(P1) solution on the fine mesh, demonstrating the superior
accuracy of the DG method over the FV method. However, when one compares the results, in
Figures 3(d) and (e), obtained by the DG(P1) and FV(P1) solutions using Barth–Jespersen limiter
everywhere, the DG(P1) solution is similar to, if not worse than, the FV(P1) solution, clearly
demonstrating the sensitivity of DG methods to the limiters, and the importance of the limiters on
the DG solutions. Figures 3(f) and (g) show the computed solutions obtained using the DG(P1)
method with Barth–Jespersen limiter only active in the discontinuities identified by Krivodonova’s
discontinuity detector and the physics-based shock detector, respectively. Clearly, Krivodonova’s
discontinuity detector [14] mistakenly identifies the stagnation area as shock regions due to the
high comparable gradient there, leading to the production of spurious entropy, and pollute the
solution in the flow field. Note that Krivodonova’s discontinuity detector is actually found to
be one of the best shock detectors tested in Reference [15]. The physics-based shock detector
is very effective in making a distinction between a smooth extremum (stagnation point) and a
shock wave. As a result, the DG(P1) method is able to capture very sharply both strong and weak
shock waves with one point with negligible amount of entropy production in the leading edge of
the airfoil.
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Figure 3. (a) Coarse (left, nelem= 1999, npoin= 1048, nboun= 97) and fine (right, nelem= 8006,
npoin= 4102, nboun= 198) grids for a NACA0012 airfoil used in the computation; (b) computed Mach
number contours obtained by the unlimited DG(P1) solution (top left), DG(P2) solution (top right),
FV(P1) solution on the coarse mesh (bottom left), and FV(P1) solution on the fine mesh (bottom right)
for transonic flow past a NACA0012 airfoil at M∞ = 0.8, �= 1.25◦; (c) comparison of computed pres-
sure coefficient (top) and entropy production (bottom) distributions on the surface of airfoil obtained by
the unlimited DG(P1), DG(P2), FV(P1) solutions on the coarse mesh, and FV(P1) solution on the fine
mesh for transonic flow past a NACA0012 airfoil at M∞ = 0.8, �= 1.25◦; (d) computed Mach number
contours obtained by the limited DG(P1) solution (left), and FV(P1) solution (right) on the coarse mesh
for transonic flow past a NACA0012 airfoil at M∞ = 0.8, �= 1.25◦; (e) comparison of computed pressure
coefficient (left) and entropy production (right) distributions on the surface of airfoil obtained by the
limited DG(P1) and FV(P1) solutions on the coarse mesh for transonic flow past a NACA0012 airfoil at
M∞ = 0.8, � = 1.25◦; (f) computed Mach number contours obtained by the limited DG(P1) solutions with
Krivodonova’s discontinuity detector (left), and the physics-based shock detector (right) on the coarse
mesh for transonic flow past a NACA0012 airfoil at M∞ = 0.8, �= 1.25◦; and (g) comparison of computed
pressure coefficient (left) and entropy production (right) distributions on the surface of airfoil obtained
by the limited DG(P1) solutions with Krivodonova’s discontinuity detector, and the physics-based shock

detector on the coarse mesh for transonic flow past a NACA0012 airfoil at M∞ = 0.8, � = 1.25◦.
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Figure 3. Continued.

3.4. Transonic flow past a RAE 2822 airfoil

The fourth test case is the transonic flow past a RAE2822 airfoil at a Mach number of 0.73, and
an angle of attack 2.8◦. Two grids of similar quality are generated as shown in Figure 4(a). The
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Figure 3. Continued.

coarse one has 2582 elements, 1360 grid points, and 138 boundary points, and the fine one consists
of 10 408 elements, 5342 grid points, and 276 boundary points. The numerical experiments are
performed using FV methods on both grids, and DG(P1) and DG(P2) methods on the coarse grid,
respectively. Figure 4(b) shows the computed Mach number contours in the flow field obtained by
FV solution on the coarse and fine grids, and DG(P1) and DG(P2) solutions on the coarse mesh
using Barth–Jespersen limiter with the physics-based limiter, respectively. The computed pressure
coefficient and entropy production distributions on the airfoil obtained by these four solutions are
compared in Figure 4(c), where the experimental measurement is also given as a reference. Due
to a lack of mesh resolution, FV solution on the coarse mesh is unable to capture the suction
peak at the leading edge. The FV(P1) solution is significantly improved by doubling the mesh
size, even though the solution is still not as good as the one obtained by DG(P1) solution on the
coarse mesh by judging the entropy production on the surface of the wing. The DG(P2) solution
provides a further improvement over the DG(P1) solution, although the difference is relatively
small, indicating that the obtained solution is order independent, i.e. a convergent solution is
reached. Note that the shock wave is captured very well with only one point by all four solutions,
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Figure 3. Continued.

and the results obtained by the two DG solutions and the FV solution on the fine mesh compare
closely with experimental data, except the location of shock wave, due to a lack of viscous effects.
The quality of DG(P2) solution can only be appreciated by looking at the almost zero entropy
production before the shock wave, illustrating the high accuracy of the third-order DG solution.

3.5. Supersonic flow inlet flow

This example considers the supersonic flow entering a generic inlet configuration that is typical
of scramjet engines. This test case is chosen to test the ability of higher-order DG method for
accurately computing the supersonic flows. The configuration is taken from Reference [11], and
the prescribed Mach number at the inlet is 3. The mesh used in the computation, which contains
7993 elements, 4276 points, and 559 boundary points, is depicted in Figure 5(a). Due to the special
configuration inside the inlet, very complex flow features will appear. The computed Mach Number
contours in the flow field obtained using FV(P1), DG(P1), and DG(P2) computations are shown
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Figure 4. (a) Coarse (left, nelem= 2582, npoin= 1360, nboun= 138) and fine (right, nelem= 10 408,
npoin= 5342, nboun= 276) grids for a RAE2822 airfoil used in the computation; (b) computed Mach
number contours obtained by the DG(P1) solution (top left), DG(P2) solution (top right), FV(P1) solution
on the coarse mesh (bottom left), and FV(P1) solution on the fine mesh (bottom right) for transonic flow
past a RAE2822 airfoil at M∞ = 0.73, �= 2.8◦; and (c) comparison of computed pressure coefficient (top)
and entropy production (bottom) distributions on the surface of airfoil obtained by the DG(P1), DG(P2),
FV(P1) solutions on the coarse mesh, and FV(P1) solution on the fine mesh for transonic flow past a

RAE2822 airfoil at M∞ = 0.73, �= 2.8◦.
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Figure 4. Continued.

in Figures 5(b)–(d), respectively. Both DG computations use the Barth–Jespersen limiter with the
physics-based shock detector. Although both FV(P1) and DG(P1) methods are able to produce
the similar flow features, DG(P1) produces better resolution than its second-order counterpart,
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Figure 5. (a) Unstructured mesh used for computing supersonic flow inside an inlet (nelem= 7993,
npoin= 4276, nboun= 559); (b) computed Mach number contours by FV(P1) method with BJ limiter
for supersonic flow inside an inlet at M∞ = 3; (c) computed Mach number contours by DG(P1) method
with BJ limiter and physics-based shock detector for supersonic flow inside an inlet at M∞ = 3; and
(d) computed Mach number contours by DG(P2) method with BJ limiter and physics-based shock detector

for supersonic flow inside an inlet at M∞ = 3.

FV(P1). As expected, the DG(P2) delivers the best solution witnessed by the sharp resolution of
shock waves and slip line.

3.6. Transonic flows past an ONERA M6 wing

A transonic flow over an ONERA M6 wing geometry is considered in this test case. The M6
wing has a leading edge sweep angle of 30◦, an aspect of 3.8, and a taper ratio of 0.562. The
airfoil section of the wing is the ONERA ‘D’ airfoil, which is a 10% maximum thickness-to-chord
ratio conventional section. The flow solutions are presented at a Mach number of 0.84 and an
angle of attack of 3.06◦ using the FV method on a coarse mesh and a fine mesh and DG(P1)
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Figure 6. (a) Computed pressure contours on the unstructured surface mesh obtained by the FV(P1) solution
on the coarse mesh (top left, nelem= 136 705, npoin= 25 616, nboun= 5017), the FV(P1) solution on
the fine mesh (top right, nelem= 710 971, npoin= 131 068, nboun= 20 659), the DG(P1) solution on the
coarse mesh, and the DG(P2) solution on the coarse mesh for transonic flow past an ONERA M6 wing at
M∞ = 0.84, � = 3.06◦ and (b) comparison of computed pressure coefficient (left) and entropy production
(right) distributions for wing section at different semispan locations obtained by the FV solutions on the
coarse mesh and fine mesh and DG(P1) and DG(P2) solutions on the coarse mesh with experimental data

for transonic flow past an ONERA wing at M∞ = 0.84, �= 3.06◦.

and DG(P2) methods with Barth–Jespersen limiter and physics-based shock detector on the coarse
mesh, respectively. The coarse mesh contains 136 705 elements, 25 616 points, and 5017 boundary
points, and the fine one 710 971 elements, 131 068 points, and 20 659 boundary points. Figure 6(a)
shows the computed pressure contours on the upper wing surface obtained by these four solutions,
respectively. The computed pressure coefficient and entropy production distributions obtained by
these four solutions are compared at three spanwise stations in Figure 6(b), where experimental
data for the pressure coefficients are also given as a reference. The FV(P1) solution on the coarse
mesh is so dissipative that it has the difficulty to capture the suction peak at the leading edge due
to a lack of mesh resolution. The FV(P1) solution is significantly improved by doubling the mesh
size, even though the solution is still not as good as the one obtained by DG(P1) solution on the
coarse mesh by judging the entropy production on the surface of the wing. The DG(P2) solution
provides a further improvement over the DG(P1) solution, although the difference is relatively
small, indicating that the obtained solution is order independent, i.e. the solution is convergent.
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Figure 6. Continued.

Note that the results obtained by the two DG solutions and the FV solution on the fine mesh
compare closely with experimental data, except at the root stations, due to a lack of viscous
effects.
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Figure 7. Computed pressure contours and unstructured surface mesh (nelem= 399 211, npoin= 72 455,
nboun= 9242) for transonic flow past a wing/pylon/nacelle configuration at M∞ = 0.95, �= 0◦.
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3.7. Transonic flows past a wing/pylon/nacelle configuration

Finally, as an illustrative example, a computation is performed on a wing/pylon/nacelle config-
uration to demonstrate that the developed DG method can be applied to problems of scientific
and industrial interests. The mesh, used in the computation, contains 399 211 elements, 72 455
grid points, and 9242 boundary points for the half-span configuration. The computed solution is
presented at a free stream of Mach number of 0.95 and an angle of attack of 0◦. The computed
pressure contours on the surface of the configuration, along with the surface mesh, are shown in
Figure 7, where shock waves are captured well, confirming the accuracy and robustness of the
developed DG method for computing complicated flows of practical importance.

4. CONCLUDING REMARKS

Computation of compressible steady-state flows using a high-order discontinuous Galerkin finite
element method is discussed in this paper. An accurate representation of the boundary normals
based on the definition of the geometries is used for imposing solid wall boundary conditions for
curved geometries instead of using boundary-fitted elements, resulting in a huge simplification of
the code implementation and tremendous saving in both storage requirements and computing costs.
It is numerically demonstrated that limiters have a big impact on the accuracy of DG solutions,
and application of limiters everywhere adversely affects the formal order of accuracy of the DG
methods. In order to reduce the computational cost and maintain the high-order accuracy of the
DG methods, it is necessary to use a slope limiter only in the vicinity of shock waves. This can be
accomplished using a physics-based shock detector which is found to be very helpful and effective
in making a distinction between a stagnation point and a shock wave. The developed DG method
has been used to compute a variety of compressible flow problems for a wide range of flow
conditions in both 2D and 3D configurations. The numerical results obtained illustrate the superior
accuracy of the developed DGM over a vertex-based finite volume method, demonstrating that the
DGMs provide a viable, attractive, and competitive alternative to the traditional finite-volume, finite
element, and finite-difference methods for computing compressible flows on unstructured grids.
Future work will explore application of this method for the solution of the Navier–Stokes equations,
as well as development of a reliable, and accurate shock detector for unsteady flows and more
accurate, and robust limiters based on the strategies of the ENO/WENO schemes to effectively
eliminate the spurious oscillations in the vicinity of strong discontinuities, thus alleviating the
burden of a shock detector to precisely locate shock waves.
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