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Train station parking (TSP) accuracy is important to enhance the efficiency of train operation and the safety of passengers for urban
rail transit. However, TSP is always subject to a series of uncertain factors such as extreme weather and uncertain conditions of rail
track resistances. To increase the parking accuracy, robustness, and self-learning ability, we propose new train station parking
frameworks by using the reinforcement learning (RL) theory combined with the information of balises. Three algorithms were
developed, involving a stochastic optimal selection algorithm (SOSA), a Q-learning algorithm (QLA), and a fuzzy function based
Q-learning algorithm (FQLA) in order to reduce the parking error in urban rail transit. Meanwhile, five braking rates are adopted
as the action vector of the three algorithms and some statistical indices are developed to evaluate parking errors. Simulation results
based on real-world data show that the parking errors of the three algorithms are all within the ±30cm, whichmeet the requirement
of urban rail transit.

1. Introduction

Urban rail transit systems include underground railway,
streetcar, light rail transit, monorail, automated guide tran-
sit, and magnetic levitation, which have received increased
attention in large cities since urban rail systemhas remarkable
advantages in fast speed, safety, punctuality, environment
friendliness, and land saving features. In modern rail transit
lines, train station parking (TSP) is an important technique
that needs to be addressed. Specifically, TSP refers to the
running train stopping at the parking spot precisely when
train enters the train station. Imprecise TSP may impact the
efficiency, convenience, and safety of the urban rail transit. In
particular, most newly built transit stations install platform
screen doors (PSDs) to isolate the platform and rail track.
PSDs can reduce the cold and hot air exchange between
the platform area and rail track area. They can also prevent
passengers from falling or jumping onto the rail track and
ensure safety of the passengers [1, 2]. Imprecise parking could
directly lead to serious consequences that the train door can

not be accessed normally and passengers can not get on and
off the train easily [3]. In such cases, the train will be delayed
which causes the dramatic decrease of corridor capacity [4].

A lot of existing studies have addressed the TSP problem.
For example, Yoshimoto et al. applied the predictive fuzzy
control technology, which performs better parking accuracy
by comparing with proportional-integral-derivative control
method [5]. Yasunsbo et al. used fuzzy inference for auto-
matic train parking control.Theparking areawas divided into
several sections in order to use different fuzzy inference rules
[6, 7]. Hou et al. introduced the terminal iterative learning
control to train automatic stopping control. It updated the
current controller using the prior parking errors in the
previous iterations [8]. After several times of iterations, the
train parking error was reduced below 0.5m, while no explicit
statistical results were presented in this study. Zhou studied
the regression of Gaussian process in machine learning
and Boosting regression algorithm for the accurate parking
problem, and these twomethods are comparedwith the linear
regression method [9]. Soft computing methods have been
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Figure 1: Parking area and balises distribution [17].

applied to train parking in urban rail transit by Chen and
Gao, and three models were presented, involving a linear
model, a generalized regression neural network model, and
an adaptive network based fuzzy inference (ANFIS) model
[10]. The ANFIS can keep the parking errors within 30cm
with the probability being greater than 99.9% in simulation.
However, the simulation experiments are conducted under
ideal environment and nodisturbances are taken into account
in this study.

Based on the braking characteristics of trains in urban
rail transit, two simplified models were developed to estimate
the TSP error in [11]. Then, a precise stop control algorithm
based on LQR (linear-quadratic-regulation) was proposed
combining the vehicles dynamics model and system iden-
tification theory, which obtained the train station parking
errors within 50cm. Chen et al. tried to address the train
parking problem using a new machine learning technique
and proposed a novel online learning control strategy with
the help of the precise location data of balises installed in
stations [12–14]. Experiments were conducted to test the
algorithm performance under the variation of different train
parameters, and the best algorithm achieved an average park-
ing error of 3.8cm. Even though a lot of studies are proposed
in the existing literature, we note that the train station parking
is a very complex problem due to many influencing external
factors, for example, the weather, train running states, or on-
board passengers, while these uncertain factors have not been
explicitly tackled in former literature [15].

The theory of reinforcement learning (RL) provides a
normative account that describes how agents may optimize
their control under uncertain environment [16]. As a typical
algorithm in RL field, Q-learning uses action-value function
to approximate the optimal control strategies of an agent
and has been widely successfully implemented into many
complex control problems. In particular, Q-learning utilizes

the information through the interactions between an agent
and the environment and gradually learns the optimal control
strategies for a multistage decision problem. And this process
is actually very similar with TSP where a train can be termed
as an agent. Therefore, this paper aims to introduce the RL
theory and Q-learning algorithms to solve the TSP problem
in urban rail transit systems.

Specifically, in this paper, we first establish a simulation
training platform based on the real-world data, involving
the distance, speed limit, gradient, and position of balises
between the Jiugong station and the Xiaohongmen station
of Yizhuang Line in Beijing Subway. Three algorithms were
proposed—a stochastic optimal selection algorithm (SOSA),
a Q-learning algorithm (QLA), and a fuzzy function Q-
learning algorithm (FQLA). Performances of three algo-
rithms were analyzed and the experimental results were
compared. The rest of the paper is organized as follows. In
Section 2, TSP problem is described including five different
braking rates, and the TSP simulation platform is introduced.
In Section 3, three algorithms for reducing and estimating
the parking errors are developed based on the reinforcement
learning (RL) theory. Seven statistical indices are defined to
calculate and evaluate the accuracy and reliability of these
three algorithms. In Section 4, experimental results of these
three algorithms are compared and analyzed in detail using
the field data in simulation platform. Finally, conclusions and
future research are outlined in Section 5.

2. Problem Description and
Environment Construction of RL

2.1. Train Station Parking Problem. As shown in Figure 1,
several balises are installed on the tracks in rail stations, and
the train can correct its position and velocity once it goes
through each balise. Typically, the train enters the station
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Figure 2: Structure of the parking simulation platform.

area and starts to brake at the initial spot (first balise S1)
which is 𝐿 meters away from the stopping spot (last balise
S𝑁). This area between S1 and S𝑁 is also called parking
area. There are 𝑁 balises distributed in this area (including
S1 ⋅ ⋅ ⋅ S𝑁) according to the actual distribution of the urban rail
transit. Meanwhile the distribution of the balises satisfies the
fundamental requirement that the balises near the stopping
spot are dense and the balises far from the stopping spot are
sparse.

There are different braking rates in each balise. Every time
the train reaches a balise, we will get 5 different train braking
rates through the following calculation, also called 5-element
vector A. They are the following:(1) Nonlearning strategy (NLs) braking rate: we can
calculate the theoretical braking rate 𝑎𝑡𝑖 by using the kine-
matic formula. This strategy does not consider the influence
of interference on parking. The target braking rate 𝑎𝑔𝑖 we
want equals the theoretical braking rate in this nonlearning
strategy.

𝑉2𝑇 − 𝑉2𝑖 = 2𝑎𝑡𝑖𝑆𝑖 𝑉𝑇=0󳨀󳨀󳨀󳨀→ 𝑎𝑡𝑖 = −𝑉2𝑖2𝑆𝑖 (1)

𝑎𝑔𝑖 = 𝑎𝑡𝑖 (2)

where𝑉𝑇 is the train speed at the last balise. 𝑉𝑖 represents the
train speed at the current balise. 𝑆𝑖 is the distance between the
current balise and the parking spot.(2) Fixed learning strategy (FLs) braking rate: based on
NLs, we add a fixed learning rate 𝜂 and Δ𝑎𝑖 which is the
deviation of actual braking rate with theoretical braking rate.

𝑉2𝑖+1 − 𝑉2𝑖 = 2𝑎𝑟𝑖𝐷𝑖 𝑉𝑖+1 ̸=0󳨀󳨀󳨀󳨀󳨀→ 𝑎𝑟𝑖 = (𝑉2𝑖+1 − 𝑉2𝑖 )2𝐷𝑖 (3)

Δ𝑎𝑖 = 𝑎𝑟𝑖 − 𝑎𝑡𝑖 (4)

𝑎𝑔𝑖 = 𝑎𝑡𝑖 − 𝜂Δ𝑎𝑖 (5)

The calculation method of 𝑎𝑡𝑖 is the same as NLs where 𝑉𝑖
represents the train speed at the current balise.𝑉𝑖+1 represents
the train speed at the next balise. 𝐷𝑖 is the distance between
the current balise and the next balise.(3) Variable learning strategy (VLs) braking rate: use
variable learning rate, which takes into account the train

speed passing through the balises and arrangement of the
balises, instead of fixed learning rate.

𝜂𝑖 = 𝜆𝑉𝑖𝑆𝑖 (6)

𝑎𝑔𝑖 = 𝑎𝑡𝑖 − 𝜂𝑖Δ𝑎𝑖 (7)

Thedefinition of𝑉𝑖 and 𝑆𝑖 is the same as inNLs.Thedefinition
ofΔ𝑎𝑖 is equivalent toΔ𝑎𝑖 of FLs where 𝜆 is a constant, named
fixed adjustment coefficient.(4) Gradient descent learning strategy (GDLs) braking
rate: objective function of GDLs is as follows:

𝐽 = 0.5 (𝑆𝑖 − 𝑆𝑒𝑖 )2 (8)

where 𝑆𝑖 represents the actual remaining distance. 𝑆𝑒𝑖 is the
estimated remaining distance. We have

𝑎𝑔𝑖 = 𝑎𝑡𝑖 − 𝜂𝐺𝑖 𝜕𝐽𝜕𝑎𝑡𝑖 (9)

where 𝜂𝐺𝑖 represents the gradient descent learning rate.(5) Newton descent learning strategy (NDLs) braking
rate: objective function of NDLs is the same as GDLs, and
we get

𝑎𝑔𝑖 = 𝑎𝑡𝑖 − 𝜂𝑁𝑖 𝜕𝐽/𝜕𝑎𝑡𝑖𝜕2𝐽/𝜕 (𝑎𝑡𝑖 )2 (10)

where 𝜂𝑁𝑖 represents the Newton descent learning rate.
In practice, we can choose one of the above control

strategies once a train goes through a balise to adjust the
train braking rate, in order to stop the train precisely at
the last balise S𝑁 under uncertain environment. To model
the uncertain environment, we next construct a simulation
platform to simulate the train parking process.

2.2. Parking Simulation Platform. Theparking system is used
to simulate the actual train parking process in rail stations.
The system mainly includes an input module, algorithm
module, braking module, and display module, shown as
Figure 2.

Parameters are set up in the input module according to
the field data. The input parameters include initial speed 𝑉0
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when the train starts braking, the length of the parking area 𝐿,
the number of balises 𝑛, the distance between each balise 𝐷,
resistance effect, white noise, type of algorithm, disturbance,
and number of iterations. These parameters provide the ini-
tialized circumstance and related configuration information.
We can change the simulation circumstance by changing the
parameters above.

Themain function of the algorithm module is to generate
the target braking rate 𝑎. Algorithm module can calculate
the 5 different train braking rates mentioned above and then
select the optimal or the most appropriate target braking rate
according to the algorithms.

Simulation resistance and random disturbance represent
the actual urban rail transit system.The simulation resistance
generates the current train resistance based on the current
speed, using the formula related to the speed of the train in
the form of a quadratic equation, called basic resistance unit
equation:

𝑊0 = 𝛼V2 + 𝛽V + 𝜑 (11)

where𝑊0 represents the basic resistance unit (N/t). V is speed
of train (km/h). 𝜑 represents the part of rolling resistance
unrelated to the train speed. 𝛽 is parameter that is used to
describe wheel flange friction resistance, and 𝛼 is associated
with the square of speed. The white noise generator can
generate random white noise to test the anti-interference
ability of the algorithms.

The braking module is used to park the train, according
to the target braking rate 𝑎. The transfer function of the
braking module includes time delay, time constant, and
train operating mode transition. The transfer function of the
braking module is

𝐺𝑎 (𝑠) = 𝑎1 + 𝑇𝑝𝑠 𝑒−𝑇𝑑𝑠 (12)

where 𝑎 is the target braking rate,𝑇𝑑 represents the timedelay,
and 𝑇𝑝 is the time constant.

Finally, display module mainly shows the experimental
results, including parking error and target braking rate.

3. Algorithm Design and Performance Indices

3.1. Stochastic Optimal Selection Algorithm (SOSA). In SOSA,𝑠1 to 𝑠𝑛 correspond to current 𝑛 states of algorithm at the
moment. We assume that the reward function about current
state is 𝑅. 𝑅 can transfer each state into the real number𝑠𝑖 R󳨀→ R. Δ represents the distance between the running
train and the current nearest balise. If the train passes the
current nearest balise, the value of Δ is negative; otherwise it
is positive. 𝑅(𝑠𝑖) is the relationship between the current state
and the current reward, shown as

𝑅 (𝑠𝑖) =
{{{{{{{{{{{{{{{

+3, 0𝑐𝑚 ≤ |Δ| ≤ 10𝑐𝑚,
+2, 10𝑐𝑚 ≤ |Δ| ≤ 20𝑐𝑚
+1, 20𝑐𝑚 ≤ |Δ| ≤ 30𝑐𝑚,
−3, 30𝑐𝑚 ≤ |Δ|

(𝑖 = 1, 2, . . . , 𝑛)
(13)

When the distance Δ is less than 10cm, the reward function𝑅(𝑠𝑖) is the largest among all the results. When the distanceΔ is beyond ±30cm, the reward function 𝑅(𝑠𝑖) is smallest
and negative. The reward function immediately indicates the
reward of the train in its current state. In this algorithm, we
do not have to consider the long-term reward of the state.
The bigger the value of the reward function is, the better the
performance of this algorithm will be.

We consider the train braking rate of the controller
module as the output action vector A. When a train passes
through a balise in the simulation, the system will change the
target braking rate to ensure an accurate parking. Because of
system time delay and time constant, the actual braking rate
of the train will approach the target braking rate gradually.

In this paper, we adopt five braking rates. They are non-
learning strategy (NLs) braking rate, fixed learning strategy
(FLs) braking rate, variable learning strategy (VLs) braking
rate, gradient descent learning strategy(GDLs) braking rate,
and Newton descent learning strategy (NDLs) braking rate.
The action vector A is a 5-element vector, including the
braking rates mentioned above. A=[NLs, FLs, VLs, GDLs,
NDLs], shown as Figure 3. When a train passes through
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a balise, the SOSA will choose one strategy from vector
A randomly as the current target braking rate. After the
train passes through all balises, also called one episode, the
algorithm records the parking error and action sequence.The
system will start the next episode from the initial spot until𝑅(𝑠𝑖) is large enough or bigger than a preset value 𝜃.

The SOSA consist of the following steps.

Step 1. For all the states, initialize the system parameters;
assume that the train enters the parking area.

Step 2. After passing through each balise, calculate the action
vector A and current reward 𝑅(𝑠𝑖). Choose an action from A
randomly as the current target braking rate.

Step 3. Store the current reward in the array; then repeat Step
2 until the train reaches the stopping spot. Store the parking
error and action sequence. Go to Step 4.

Step 4. If 𝑅(𝑠𝑖) < 𝜃, go to Step 1; or else use the current action
sequence as the train braking rate.

3.2. Q-Learning Algorithm. In QLA, 𝑠1 to 𝑠𝑛 correspond to
current 𝑛 states of algorithm at themoment.The action vector
A=[NLs, FLs, VLs, GDLs, NDLs]. Each state and action are
connected with the value of 𝑄(𝑠, 𝑎). According to the 𝑄(𝑠, 𝑎),
the algorithm will pick an action from vector A. Besides, the
algorithm can also update the Q function according to the𝜀-greedy action selection mechanism [18].𝑄(𝑠𝑖, 𝑎) function is the estimated total reward under the
state 𝑠𝑖 and action 𝑎. We have

𝑄 (𝑠, 𝑎) = 𝐸 [𝑅 (𝑠0, 𝑎) + 𝛾𝑅 (𝑠1, 𝑎) + 𝛾2𝑅 (𝑠2, 𝑎) + ⋅ ⋅ ⋅
+ 𝛾𝑖𝑅 (𝑠𝑖, 𝑎) | 𝑠0 = 𝑠] = 𝑅 (𝑠, 𝑎)
+ 𝛾∑
𝑆󸀠

𝑃𝑠𝑎 (𝑠󸀠)𝑄 (𝑠󸀠, 𝑎)
(14)

where the discounted factor is 0 ≤ 𝛾 < 1. In this paper
discounted factor 𝛾 equals 0.99. 𝑠 represents the current state
and 𝑠󸀠 is the next state when the last state is 𝑠. 𝑃𝑠𝑎 is state
transition distribution probability. It is the probability that
state transfers from 𝑠𝑖 to 𝑠𝑗 using the action 𝑎. The train
actually runs along the railway track. So no matter what
action is chosen, the next state must be 𝑠𝑖+1. We decide to
let 𝑃𝑠𝑎(𝑠󸀠)=1. The 𝑅(𝑠, 𝑎) is defined the same as the 𝑅(𝑠) in
stochastic optimal selection algorithm.

The bigger the𝑄(𝑠, 𝑎) is, the larger the immediate reward
in each balise will be. In order to obtain the maximum𝑄, the
algorithm needs to update the Q function, as shown in

𝜋 (𝑠) fl argmax
𝑎
∑
𝑠󸀠

𝑃𝑠𝑎 (𝑠󸀠)𝑄 (𝑠󸀠, 𝑎) (15)

The optimal𝑄 can be expressed as a𝑄∗. It represents the total
reward according to the above updating strategy; we get

𝑄∗ (𝑠, 𝑎) = 𝑅 (𝑠, 𝑎) + 𝛾∑
𝑠󸀠∈𝑆

𝑃𝑠𝑎 (𝑠󸀠)max
𝑎
𝑄∗ (𝑠󸀠, 𝑎) (16)
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Figure 4: Training flowchart of QLA.

The overall training processes of QLA are presented in
Figure 4, consisting of the following steps.

Step 1. Initialize 𝑄(𝑠, 𝑎).
Step 2. Adopt a strategy 𝜋 with any action sequence. When
passing by each balise, record the sequence of state, action,
and immediate reward value, using (13). After each episode,
calculate the 𝑄(𝑠, 𝑎) according to (14).
Step 3. If the current strategy and the previous selected strat-
egy are different, then update the strategy using the action
selection mechanism. Select an action with larger probability
that can make 𝑄(𝑠, 𝑎) become the largest one, like (15). On
the contrary, QL will select other actions with a smaller
probability.

Step 4. Repeat the steps mentioned above; when 𝑄(𝑠, 𝑎) 󳨀→𝑄∗(𝑠, 𝑎), we can achieve best strategy 𝜋 󳨀→ 𝜋∗.
3.3. Fuzzy Q-Learning Algorithm. FQLA is basically the same
as QLA. It is an improved version of QLA.Without using the
discrete function, instead the fuzzy function Q-learning uses
a continuous function where the value of immediate reward
is a typical Gauss type membership function, i.e.,

𝑦 = 𝑓 (𝑥, 𝜎, 𝑐) = 𝑒(𝑥−𝑐)2/2𝜎2 (17)

and the fuzzy member function is shown in Figure 5.
The FQLA is almost the same as QLA.

Step 1. Initialize the action-value function 𝑄(𝑠, 𝑎).
Step 2. Adopt a strategy 𝜋 with any action sequence. When
passing by each balise, record the sequence of state, action,
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and immediate reward value, using (17). After each episode,
calculate the 𝑄(𝑠, 𝑎) according to (14).
Step 3. If the current strategy and the previous selected
strategy are different, then update the strategy using the
action selection mechanism. Select an action with larger
probability that can make 𝑄(𝑠, 𝑎) become the largest one,
like (15). On the contrary, QL will select other actions with
a smaller probability.

Step 4. Repeat the steps mentioned above; when 𝑄(𝑠, 𝑎) 󳨀→𝑄∗(𝑠, 𝑎), we can achieve best strategy 𝜋 󳨀→ 𝜋∗.
3.4.The Performance Indices. To compare the performance of
three algorithms, we need to define the parking performance
indices. We have the following evaluation performance
indices.(1) The convergence number (𝑁𝑐) is t he number of
learning trails when the parking errors tend to be stable.(2) Average errors under different speed (𝐸𝑑𝑠): in order
to test the merits of the parking algorithm, we need to have
many simulation trials. Our simulations have produced a
great deal of parking information. Among them, the parking
error is one of the most important indices in the parking
information, because it is the most direct indicator of the
parking quality. With n different initial speeds, algorithm can
get n parking error after each episode. The 𝐸𝑑𝑠 is the absolute
average of n parking error, as shown in the following formula:

𝐸𝑑𝑠 = ∑𝑛𝑖=1 󵄨󵄨󵄨󵄨𝜇𝑖󵄨󵄨󵄨󵄨𝑛 (18)

where 𝜇𝑖 is parking error at different initial speeds.(3) Average error (𝐸): 𝐸 is the average of 𝐸𝑑𝑠, as shown in

𝐸 = ∑𝑚𝑖=1 𝐸𝑑𝑠𝑖𝑚 (19)

(4)The maximum error of the parking error (𝜇𝑚𝑎𝑥): the
maximum error of the parking error here is an important
indicator of the performance indices. 𝜇𝑚𝑎𝑥 is the maximum
parking error among all the parking errors. If the 𝜇𝑚𝑎𝑥 is too
big, it will seriously affect the parking safety of the train; we
have

𝜇𝑚𝑎𝑥 = max (𝜇1, 𝜇2, . . . , 𝜇𝑛) (20)

(5)The minimum of the average error (𝐸𝑚𝑖𝑛): the mini-
mum error of the parking error is also an important indicator.𝐸𝑚𝑖𝑛 is the minimum among all the 𝐸𝑑𝑠. We have

𝐸𝑚𝑖𝑛 = min (𝐸𝑑𝑠1, 𝐸𝑑𝑠2, . . . , 𝐸𝑑𝑠𝑚) (21)

(6) Root of mean square (𝜎): the 𝜎 reflects the parking
error fluctuations (discrete degree). In the process of parking
algorithm, we need to assess the fluctuation which indicates
the stability of the algorithm; we have

𝜎 = √∑𝑚𝑖=1 (𝐸 − 𝐸𝑑𝑠𝑖)2𝑚 − 1 (22)

(7) Parking probability in the required range (𝑃𝑝): 𝑃𝑝 is a
measurement of the estimated reliability. This is an important
index to control the automatic parking ability. The parking
probability will be unavailable, if the 𝑃𝑝 is too small to meet
the requirement of practical use.

𝑃𝑖 = (𝑥 − 𝐸)𝜎 (23)

𝑃𝑝 = (1 − 2(1 − ∫𝑃𝑖
−∞

1𝜎√2𝜋𝑒−𝑃2𝑖 /2𝑑𝑃𝑖)) × 100% (24)

A large number of studies have given the parking error
of the train within the range [-30cm,30cm] and made the
parking probability requirement larger than 99.5% [8, 10, 13].
For example, the third line of Dalian rail transit in China
requires train parking accuracy to be within [-30cm,30cm]
and the required reliability is 99.5% [10]. In Beijing Subway,
the allowable parking error is also 30cm with over 99.8%
reliability.

4. The Experimental Results

To approach the real-world running scenaric, according to
the above mathematical model, we choose field data between
the Jiugong station and theXiaohongmen station of Yizhuang
Line of Beijing Subway in the train station parking simulation
platform. We set that the length of the parking area is 100
meters.There are six balises in this parking area.The distance
between the balises and the parking spot is 100m, 64m, 36m,
16m, 4m, and 0m, respectively.The arrangement of the balises
meets the actual balises.

The maximum velocity (i.e., speed limit) for the train to
enter into the area is 14.28m/s. While there exists time delay
in the train braking system, we select 11.5m/s as themaximum
initial speed of a train based on actual operating data. In
the algorithms, we did not consider the parking error under
one single speed. By using single speed we can not fully
test the reliability and adaptability of the algorithm. So we
set that the initial speed varies from 9m/s to 11.5m/s, and
we pick 10 different initial speeds in every 0.25m/s speed
interval. The purpose is to consider the influence under the
variable initial speed. The threshold of the SOSA is [-5cm,
5cm]. We use Gauss membership function in FQLA to
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Figure 6: 50 trials of three algorithms about 10 different initial speeds.
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Figure 7: 50 trials of three algorithms about 100 different initial speeds.

substitute the current reward 𝑅(𝑠𝑖) in QLA. After debugging
and experimenting, we pick parameters 𝜎=0.1, 𝑐=0. Figure 6
presents the errors 𝐸𝑑𝑠 of 10 different initial speeds during 50
trials. As can be seen in Figure 6, the convergence iterations𝑁𝑐 are different by the three algorithms. The parking error𝐸𝑑𝑠 is becoming smaller and smaller after times of trail, and
the results also demonstrate that most of the parking errors
can be smaller than ±30cm in the end. With respect to the
computational efforts, we note that these three algorithms
are very close because they are all based on the theory of
reinforcement learning. Since each trial includes 10 times of
train station parking process with different initial speed, it
takes about 15 seconds to complete each trial and the total
training time is about 750 seconds.

We also conduct more trials to test the variation of 𝑁𝑐
when there are 100 initial speeds.When the numbers of initial

speed reach 100, we obtain the variation of train parking
errors, as shown in Figure 7.

The 𝑁𝑐 we get is larger than the 𝑁𝑐 received under 10
initial speeds. We can conclude from Figures 6 and 7 that the
more initial speeds are set, the slower convergence and larger
convergence number it will be.

The performance comparison of these three algorithm
can be seen in Tables 1 and 2. It is clear that QLA and
FQLA have smaller 𝑁𝑐 than SOSA. This indicates that the
convergence is much faster in QLA and FQLA, especially
when the number of initial speeds is increased.

As can be seen from the figures and tables, the developed
three algorithms work well on the field data between two
stations in Beijing Subway, which can improve most of the
performance indices, especially in decreasing 𝐸. QLA and
FQLA have smaller 𝐸 than SOSA. The 𝑁𝑐 rate of FQLA is
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Figure 8: Each parking error after 50 trials about different initial speeds.

Table 1: Performance indices of three algorithms with 10 initial
speeds.

Indicators 𝑁𝐶 𝐸(𝑐𝑚) 𝐸𝑚𝑖𝑛(𝑐𝑚) 𝜎(𝑐𝑚) 𝑃𝑝
SOSA 39 4.27 1.99 3.34 99.99%
QLA 20 4.24 1.86 4.32 99.99%
FQLA 18 3.99 1.83 3.95 99.99%

Table 2: Performance indices of three algorithms with 100 initial
speeds.

Indicators 𝑁𝐶 𝐸(𝑐𝑚) 𝐸𝑚𝑖𝑛(𝑐𝑚) 𝜎(𝑐𝑚) 𝑃𝑝
SOSA 49 4.18 1.58 3.67 99.99%
QLA 24 3.87 1.40 4.14 99.99%
FQLA 21 3.46 1.31 3.65 99.99%

about 19 times, and it has the fastest convergence among the
three algorithms. FQLA has the smallest 𝐸 and 𝐸𝑚𝑖𝑛. QLA
achieves the largest 𝜎.When it comes to𝑃𝑝, the𝑃𝑝 of the three
algorithms is almost the same and they are all larger than
99.5%. We can obtain the following conclusions: (1) these
three algorithms can adapt to the field data, which have good
performance indices and gradually reduce the parking error;(2) in general, FQLA ranks the first and SOSA ranks the third.
SOSA has the worst𝑁𝑐, 𝐸, and 𝐸𝑚𝑖𝑛; (3) three algorithms can
all meet the requirements of accurate parking and are easy to
be implemented. However, the intelligence, exploration, and
self-learning of SOSA are much worse than those of QLA and
FQLA.

In addition, we also test the performance of algorithms
with different initial speed after 50 times of trails. Figure 8
presents the parking errors under each different initial speed.

In Figure 8, we see that 𝐸𝑑𝑠 is within the range of ±30cm
and the errors of QLA and FQLA are closer to 0cm than that
of SOSA.The results also show us that the error fluctuation of

FQLA performs better than SOSA and QLA. We can almost
come to similar conclusions from Tables 1 and 2. FQLA
performs the best among the three algorithms, indicating that
adding fuzzy functions into Q-learning can further improve
its performance for TSP. In addition, it is worth to mention
that [13] proposed several online learning algorithms for train
station parking problem. The train parking errors by these
online learning algorithms are about 5cm to 6cm. We see
from the above results that our developed algorithms can
further reduce the parking errors compared with existing
studies.

5. Conclusions

To address the TSP issue in urban rail transit, this paper
developed one stochastic algorithm and two machine learn-
ing algorithms based on theory of reinforcement learning.
Furthermore, we propose five braking rates as the action
vector of the three algorithms within the scope of RL. Perfor-
mance indices were defined to evaluate the performance and
reliability of the issue. We evaluated the proposed algorithms
in the simulation platform with field data collected in Beijing
Subway. Our results show that these three algorithms can
achieve good results that guarantee the train station parking
error within 30 cm. In addition, fuzzy Q-learning algorithm
performs the best among these algorithms due to its fast
and stable convergence. In practical applications, the rail
managers could use the simulation platform to optimize the
value function with the aid of our developed algorithms and
then use the well-trained Q functions to generate the optimal
train parking actions in real time to reduce the parking errors
of trains.

In the future, we will explore new algorithms and other
methods based on soft computing and machine learning, to
further increase the accuracy and reliability for the train park-
ing. In particular, we will combine reinforcement learning
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with deep learning algorithms to further enhance the flexi-
bility and accuracy for TSP. Meanwhile, there still exist many
practical issues which need to be taken into consideration in
this paper. For example, we only consider the TSP problem
in urban rail transit, while the train braking system is much
more complex in high-speed railways. Compared with urban
rail transit networks, inwhich each line is a relatively enclosed
system that is independent of each other and each trainmoves
like a “shuttle” on the fixed tracks, the high-speed railway
networks are relatively open systems with heterogeneous
trains. The trains usually have different circulation plans,
and each train may travel among different railway lines
according to its circulation plan.Therefore, the design of TSP
algorithms for these open systems would be definitely much
more complex than that of urban transit systems in order to
be flexible with various external circumstances. We will fulfill
these issues in our future research.
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