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Abstract. In this paper, numerical demonstrations of a modified compressible Euler system are 

shown, where the bubble function element stabilization method together with adaptive mesh 

refinement is introduced for increasing numerical stability and numerical accuracy. For a test 

case, NACA0012 is selected as a domain of interest, and numerical results using finite elements 

of P1–P1b–P1 and P2–P2b–P2 for density–velocity–pressure were compared at AOA=1.25 

and Mach number 0.8. As a result, the shock wave is not found on the upper–end and the lower–
end of NACA0012 in the former, and on the other hand the latter is adequate numerical result 

and relative errors of Cl, Cd with previous study are 1.197% and 0.15376%. The mathematical 

model is much simpler than the compressible Euler equation, because they are advection 

equations for a density, a velocity, and a pressure with each external forces. Therefore, the 

material derivative is considered for time stepping, and the characteristic curve method can be 

used for decreasing calculation cost. 
 

 

1 INTRODUCTION 

In this work, we address the numerical solution of the compressible Euler equation. 

𝜕𝜌

𝜕𝑡
+ 𝛻 ⋅ (𝜌𝒖) = 0, 

(1) 

𝜕𝜌𝒖

𝜕𝑡
+ 𝛻 ⋅ (𝜌𝒖⨂𝒖) + 𝛻𝑝 = 0, 

(2) 

𝜕𝜌𝐸

𝜕𝑡
+ 𝛻 ⋅ (𝜌𝐸𝒖) + 𝛻 ⋅ (𝑝𝒖) = 0, 

(3) 

𝜌 ≥ 0, 𝑒 ≥ 0, 𝑝 = 𝛲(𝜌, 𝑒), 𝐸 =
1

2
|𝒖|2, 

(4) 

where 𝒖 = [𝑢𝑥, 𝑢𝑦]
T

, 𝜌, 𝑝, 𝐸  and 𝑒  denote the velocity, the density, the pressure, the total 
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energy, and the internal energy, respectively. The function Ρ(𝜌, 𝑒) is the equation of the state 

for an ideal gas, which we extend by zero for negative 𝜌 and 𝑒, for the sole purpose of the 

mathematical study of the scheme: 

Ρ(𝜌, 𝑒) = {
(𝛾 − 1)𝜌𝑒 if 𝜌 ≥ 0, 𝑒 ≥ 0,

0 otherwise,
 (5) 

where 𝛾 is the ratio of the specific heats of the gas. The problem is defined over Ω × (0, 𝑇). 

The system is complemented by initial conditions for 𝜌, 𝑒 and 𝒖, which are denoted by 𝜌0, 𝑒0  

and 𝒖0 with 𝜌0 > 0 and 𝑒0 > 0. In the study of the numerical scheme, we shall consider for 

simplicity the boundary condition 𝒖 ⋅ 𝒏 = 0, where 𝒏 stands for the outward normal vector to 

the boundary, but other conditions are also easily implemented. One of the models used for the 

numerical simulation of a compressible flow is based on the assumption that the flow is inviscid 

and adiabatic. This means that in gas we neglect the inertial friction and heat transfer. Inviscid 

adiabatic flow is described by the continuity equation. the Euler equation of motion and the 

energy equation, to which we add closing thermodynamical relations. This complete system is 

usually called the Euler equations in Eqs. (1-4). Variables and parameters used in this paper are 

listed in Table 1. 

Table 1: Variables and parameters. 

Symbol Parameters Values 

𝛾 The ratio of the specific heats of the air 1.4 

𝑅 Gas constant 259.825 (m2/s2K) 

𝑝∞ Pressure at free stream condition 26400 (Kg/s2) 

𝜌∞ Density at free stream condition 0.41 (Kg/m3) 

Τ∞ Temperature at free stream condition 𝑝∞

𝜌∞𝑅
≈ 247.821(𝐾) 

𝑈∞ Velocity at free stream 

√
𝛾𝑝∞

𝜌∞
≈ 300.243 (Km/s) 

𝑀∞ Mach number of free stream condition 0.8 

𝛼 Angle of attack 1.25 (degree) 

 

In the field of computational fluid dynamics (CFD), large eddy simulation (LES) is an attractive 

tool to predict turbulent flow more realistically. Recently, applications of the LES to 

complicated geometries, such as an entire aircraft configuration, have become the focus of 

much research in the field of engineering. Indeed, unstructured meshes are widely used to 

manage complicated geometries. 

The Euler equations, similarly, as other nonlinear hyperbolic systems of conservation 

laws, may have discontinuous solutions. As for the finite element method (FEM), the standard 

conforming finite element techniques were suitable for the numerical solution of elliptic and 

parabolic problems, linear elasticity and incompressible viscous flow, when the exact solution 

is sufficiently regular. Of course, there are also conforming finite element techniques applied 

to the solution of compressible flow. Stabilized finite element methods, such as the streamline 

upwind/Petrov–Galerkin (SUPG) method [1] of the Galerkin /least-squares (GLS) method [2] 

are well established and already employed in certain industrial and commercial codes. However, 
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stabilized finite element methods have, traditionally, been employed with linear elements [3]. 

A comparison of low and higher order stabilized finite elements for the incompressible Navier–
Stokes equations is presented in [4], where it is shown that cubic elements are between six and 

seven times more efficient than linear elements. In a variety of the above test cases, higher order 

approximations bring, in the viewpoint of efficiency, for obtaining a given accuracy. But the 

treatment of discontinuous solutions is rather complicated discussed in [5]. 

Finite volume method (FVM) is popular because conservation laws are rigorously 

satisfied for the numerical solution of compressible flow. For a detailed treatment of finite 

volume techniques, we can refer to [6,7,8]. Moreover, the FVM is applicable on general 

polygonal meshes and its algorithms are easy. Therefore, many fluid dynamics codes and 

program package are based on the FVM. However, the standard FVM is only of the first order, 

which is not sufficient in a number of applications. The increase of accuracy in finite volume 

schemes applied on unstructured and /or anisotropic meshes seems to be problematic and is not 

theoretically sufficiently justified, and more cases a fundamental problem for the LES because 

high mesh density is required to resolve the large-scale motion containing most of the turbulent 

energy. This problem makes the FVM unfordable for LES with unstructured meshes. 

A combination of idea and techniques of the FEM and the FVM yields the discontinuous 

Galerkin method (DGM) using advantages of both approaches and allowing to obtain schemes 

with a high–order accuracy in a natural way. The DGM [8,9] is a high order unstructured mesh 

method. With the DGM, basis functions and degree of freedom (DOF) are introduced 

independently in each cell, and variables are reconstructed as the sum of the basis function 

multiplied by the corresponding 

DOFs. This means that high-order reconstructions are possible without referring to variables in 

nearby cells, a feature that is often called compactness. The DGM has been widely applied to 

steady and unsteady flow problems with Reynolds averaged Navier – Stokes simulations 

(RANS) studied in [10]. 

On the other hand, a non-dissipative or low dissipative numerical scheme is crucial to 

perform high fidelity simulations of turbulence in direct numerical simulation and LES. 

However, it is well known that standard central difference approximations induce numerical 

instability, additional numerical dissipation is required to stabilize flow simulations. 

Alternatively, numerical stability can be enhanced at least for smooth solutions by satisfying 

conservation of quadratic quantity such as the kinetic energy in a discrete sense. In the Euler 

equations, the total kinetic energy is preserved in the incompressible limit in a periodic domain. 

However, kinetic energy preservation is not always guaranteed in numerical simulations. Some 

kinetic energy preserving (KEP) schemes have been proposed for compressible flows and 

showed improvements in computational stability in [11-14]. Those KEP schemes are 

formulated based on central difference approximation and thus are non-dissipative. Although a 

standard central difference discretization is not numerically stable, the KEP schemes archives 

stable and non–dissipative numerical simulations by preserving the kinetic energy in a discrete 

sense. Recently, a kinetic energy and entropy preserving (KEEP) scheme is proposed by [15]. 

To preserve both the kinetic energy and entropy, the KEEP scheme is designed such that the 

energy exchange between the kinetic energy and internal energy is properly calculated in the 

total energy equation. In [15], the KEEP scheme showed a further enhancement of numerical 

stability, compared to existing KEP scheme. 
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During last decade, there has been a great interest in developing efficient high order 

methods for computational fluid dynamics as mentioned above. However, the authors adopt a 

modified mathematical model for the compressible Euler equations together standard finite 

element strategy studied in [16]. For numerical experiments, we focus on a subsonic flow and 

a supersonic flow around an elliptic body in this paper. To implement a finite element-like 

program for the compressible Euler equations, [16] derives the following equations for the 

continuity equation, the momentum equation and an equation for the pressure: 

𝐷𝑎𝜌

𝐷𝑡
+ ∇ ⋅ 𝒖 = 0, 

(6) 

1

𝑅𝑇

𝐷𝒖

𝐷𝑡
+ ∇𝑎𝑝 = 0, 

(7) 

𝐷𝑎𝑝

𝐷𝑡
+ 𝛾∇ ⋅ 𝒖 = 0, 

(8) 

using the new variables 𝑎𝜌 = log(𝜌) and 𝑎𝑝 = log(𝑝), where 𝑅𝑇 = 𝑝 𝜌⁄ . Eq. (6) is interesting, 

because it is linear with respect to the variables 𝑎𝜌  and 𝒖. It appears again interesting to 

introduce the new variable 𝑎𝑝 to get the linear equation (8). As a result, we obtain the original 

system (1-4) in the equivalent form (6-8). It is noteworthy that the equivalent form (6-8) are 

standard convection equations added external forces ∇ ⋅ 𝒖, ∇𝑎𝑝, 𝛾∇ ⋅ 𝒖, respectively. Therefore, 

we need to consider physically compressible fluid, but can choice numerically an arbitrary 

numerical calculation scheme as incompressible flow. For temporal discretization for the 

material derivative 
𝐷

𝐷𝑡
 , the finite element characteristic curve method [17-19] is utilized to treat 

𝐷

𝐷𝑡
 as a linear term. To complete the spatial discretization, we use the finite element formulation 

with the bubble function. It has recently been found the relationship [20-22] between the 

stabilized finite element method and the bubble function element [23] in the finite element 

method in [24]. In the steady advection diffusion problem, the bubble function element is 

equivalent to the streamline-upwind/Petrov-Galerkin (SUPG) finite element method with the 

P1 element. Some researchers have developed advanced bubble function elements for 

incompressible fluid flow [25-28]. The advanced bubble function elements are established 

using the bubble function with a scaling parameter according to the cell Peclet number to attain 

optimal numerical diffusion. From finite element theory, meshes with equilateral triangles are 

well known to be more suitable for isotropic problems. However, the notion of equilaterality 

involves lengths through scalar products in each metric. Therefore, anisotropic meshes might 

be regarded as isotropic with respect to a different metric. We can adapt the mesh to follow the 

solution if the metric is defined using aposteriori error estimation. An unstructured grid 

environment is the natural framework for the introduction of general adaptivity and the 

anisotropy concept. [29,39] described numerical procedures related to AMR with the metric. 

[32] presented its mathematical proof in continuous and discrete spaces of the domain. 

[29,31,33] used it for flow-field shape optimization. The present study also applies it to the 

compressible Euler system (6-8). 
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2 THE SUBSONIC FLOW PROBLEM AROUND NACA0012 

Let Ω ⊂ ℝ𝑑(𝑑 = 2)  be bounded domain and Γ = 𝜕Ω   be the boundary of Ω , where Ω  is 

expressed as: 

Ω = ΩRect ∖ Ωwing, (9) 

ΩRect = {𝒙 = [𝑥, 𝑦]T ⊂ ℝ𝑑; −400 ≤ 𝑥 < 400, −300 ≤ 𝑦 ≤ 300}, (10) 

Ωwing = {𝒙 = [𝑥, 𝑦]T ⊂ ℝ𝑑; 0 < 𝑥 < 1, 𝑦− ≤ 𝑦 ≤ 𝑦+}, 

𝑦± = ±0.6(0.2969 − 0.1260𝑥 + 0.3516𝑥2 + 0.2843𝑥3 − 0.1015𝑥4), 

(11) 

(12) 

Let 𝑇 be a positive constant. We consider the subsonic flow problem around NACA0012; find 

(𝑎𝜌, 𝒖, 𝑎𝑝): Ω × (0, 𝑇) → ℝ × ℝ𝑑 × ℝ such that 

𝐷𝑎𝜌

𝐷𝑡
+ ∇ ⋅ 𝒖 = 0 in Ω × (0, 𝑇), 

(13) 

1

𝑅𝑇

𝐷𝒖

𝐷𝑡
+ ∇𝑎𝑝 = 0  in Ω × (0, 𝑇), 

(14) 

𝐷𝑎𝑝

𝐷𝑡
+ 𝛾∇ ⋅ 𝒖 = 0  in Ω × (0, 𝑇), 

(15) 

𝒖 ⋅ 𝒏 = 0 on 𝜕Ωwing × (0, 𝑇), (16) 

𝒖 = 𝑀∞𝑈∞[𝑈𝑥(𝛼), 𝑈𝑦(𝛼)] on 𝜕ΩRect × (0, 𝑇), (17) 

𝜌 = 𝜌0, 𝒖 = 𝒖0, 𝑝 = 𝑝0 in Ω at 𝑡 = 0, (18) 

where 

𝑈𝑥(𝛼) = cos (
2𝜋

360
𝛼) , 𝑈𝑦(𝛼) = sin (

2𝜋

360
𝛼), 

(19) 

and 𝛼 represents an angle of attack (AOA). 

3 NUMERICAL SCHEMES 

For all numerical calculations, FreeFEM++ [34] is used. A material derivative is 

approximated numerically by using the characteristic curve finite element scheme with the first 

order demonstrated in [17] and analysed mathematically about an error estimation in [18]. The 

scheme is useful for large scale computation, because at least P1 element can be employed and 

the matrix of resulting linear system is symmetric, of course P2b element is possible for 

discretization in space. This paper introduces finite element method with bubble function 

element stabilization method [24], where P1b and P2b denote P1 and P2 with the bubble 

function. For comparisons with finite element meshes, the authors select P1–P1b–P1 and P2–

P2b–P2 for a density–a velocity–a pressure. And more, the authors are adopting adaptive mesh 

refinement (AMR) and the quadrature formula distributed in FreeFEM++ [34] for resolving 
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shock wave with high accuracy. After discretising in time and space, UMFPACK solver [35] is 

used 

4 NUMERICAL RESULTS 

In this section. the author performs a numerical calculation for a subsonic flow around 

NACA0012 in the compressible Euler field, and the three kinds of aerodynamics coefficients 

𝐶𝑝, 𝐶𝑑, 𝐶𝑙 are compared with previous numerical studies [36]. 

4.1 Finite element mesh 

Fig. 1 shows (a) wide and (b) zoom finite element meshes with the number of vertex 

(NBVX) 151698. For resolving shock wave in high accuracy, finite element mesh around an 

inner boundary 𝜕ΩWing of Ω is much finer than an outer boundary 𝜕ΩRect of Ω. This paper 

generates 2 kinds of finite element meshes for NBVX = 151698 and 223090 listed in Table 2, 

where a time increment Δ𝑡 is set to satisfy CFL condition, respectively. 

 
Figure 1: Zoom view of finite element mesh of NBVX = 151698. 

4.2 Adaptive mesh refinement with times steps 

Hereafter, a finite element mesh at the time step 𝑛 is denoted by Ωℎ
𝑛 for the sake of simplicity. 

In this paper, adaptive mesh refinement (AMR) is performed at each time steps for resolving 

shock wave with high accuracy. At first, the authors adaptive a finite element mesh Ωℎ
𝑛−1 by 

using velocity 𝒖𝑛−1 to obtain Ωℎ
𝑛 which needs to calculate the compressible Euler field at the 

time step 𝑛. However, because of a slip condition defined on NACA0012, fine mesh enough to 

resolve a physical state of the compressible Euler flow is not generated. Thus, a shape of 

NACA0012 is degenerated with increasing time steps. Avoiding this numerical problem 

mentioned above, the authors performed adaptive mesh refinement to obtain the 𝑛–th finite 

element mesh Ωℎ
𝑛 by using a previous time step velocity 𝒖𝑛−1 and an initial finite element mesh 
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Ωℎ
1  shown in Fig. 1. Ωℎ

1  contains fine mesh around NACA0012, and by including it every time 

steps, it is possible to catch a time–dependent behaviour of density, velocity and pressure in 

shock wave. Fig. 2 shows adaptive meshes from 𝑛 = 103 to 105 for P2–P2b–P2 for density–

velocity–pressure. In figs. 2(a)–(c), two shock waves are moving from a nose–end and a trailing 

edge to ahead. From figs. 2(d)–(l), a shock wave created from a trailing edge is found on the 

upper and lower ends of NACA0012. 

  
(a) 𝑛 = 1.0 × 103. (b) 𝑛 = 5.0 × 103. 

  
(c) 𝑛 = 10.0 × 103. (d) 𝑛 = 15.0 × 103. 

  
(e) 𝑛 = 20.0 × 103. (f) 𝑛 = 25.0 × 103. 

  
(g) 𝑛 = 30.0 × 103. (h) 𝑛 = 35.0 × 103. 
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(i) 𝑛 = 40.0 × 103. (j) 𝑛 = 45.0 × 103. 

  
(k) 𝑛 = 50.0 × 103. (l) 𝑛 = 100.0 × 103. 

Figure 2: Adaptive meshes from 𝑛 = 1 × 103 to 100 × 103. 

4.3 The compressible Euler field depending on finite element 

Fig. 3 shows Mach number and finite element meshes at 𝑛 = 105 for (a) P1–P1b–P1 and (b) 

P2–P2b–P2 for density–velocity–pressure. In the case of Fig. 3(a), shock waves on the upper 

and lower–ends are not created. On the other hand, fig. 3(b) shows an adequate shock wave 

around NACA0012. Fig. 4 compares pressure around NACA0012. 

 Table 2 lists representative aerodynamic coefficients like 𝐶𝑙 and 𝐶𝑑. [36] compares 𝐶𝑙 

and 𝐶𝑑  obtained numerically by building cube method with TAS solver [37]. As a result, 

relative errors 𝐶𝑙  and 𝐶𝑑  with Nakahashi et al. 2003 are about 6% and 9%. However, our 

numerical results are 1.197% and 0.15376%, which are much better than the previous study 

[36]. Fig. 5 compares pressure on NACA0012 for NBVX = 151698 and 223090, and both 

numerical results about pressure is similar to each other, even though pressure values are 

different slightly on the lower end. 

  
(a) P1–P1b–P1 (b) P2–P2b–P2 

Figure 3: Mach number and finite element meshes at 𝑛 = 100 × 103 for (a) P1–P1b–P1 and (b) P2–P2b–P2 

for density–velocity–pressure. 
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(a) P1–P1b–P1 (b) P2–P2b–P2 

Figure 4: Pressure on NACA0012 at 𝑛 = 105 

 

  
(a) wide view. (b) zoom view. 

Figure 5:  Comparison of pressure on NACA0012 at 𝑛 = 105 for NBVX = 151698 and 223090. 

 

Table 2: Variables and parameters. 

Symbol 𝐶𝑙 𝐶𝑑 

TAS 0.3621 0.0223 

BCM(FINE) 0.3292(6.324%) 0.0202(9.417%) 

This study 0.3501(1.197%) 0.0238(0.153%) 
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6 CONCLUSIONS 

Numerical results of the compressible Euler system (6)–(8) suggested by [16] were 

described in this paper, where the bubble function element stabilization method together with 

adaptive mesh refinement was introduced for increasing numerical stability and numerical 

accuracy. For a test case, NACA0012 was selected as a domain of interest, and numerical results 

using finite elements of P1–P1b–P1 and P2–P2b–P2 for density–velocity–pressure were 

compared at AOA=1.25 and Mach number 0.8. As a result, the shock wave is not found on the 

upper–end and the lower–end of NACA0012 in the former, and on the other hand the latter is 

adequate numerical result and relative error of 𝐶𝑙 and 𝐶𝑑 with previous study (Nishimura et al. 

(2011)) are 1.197% and 0.15376%. The mathematical model suggested by Vuyst (2013) is 

much simpler than the compressible Euler equation, because they are advection equations for a 

density, a velocity, and a pressure with each external forces. Therefore, the material derivative 

is considered for time stepping, and the characteristic curve method can be used. for decreasing 

calculation cost. It is expected to use this mathematical model together with the bubble function 

element stabilization method in many kinds of engineering and industry where the compressible 

Euler equation． 
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